中考考试重点关于平行四边形的证明题

合集下载

中考考试重点-关于平行四边形的证明题

中考考试重点-关于平行四边形的证明题

1、如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=1/2AC,则四边形ABCD是什么特殊四边形?请证明你的结论.2、已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.3、如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.4、如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5 cm,AP=8 cm,求△APB的周长. 5、如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.6、已知:如图,在□ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.7、如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:BE=DF.8、如图3-34所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且BG=DH,求证四边形EGFH是平行四边形.9、如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.10、如图,已知四边形ABDE是平行四边形,C为边B D 延长线上一点,连结AC、CE,使AB=AC.⑴求证:△BAD≌△AEC;⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.11、如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1) 求证:AB=AF;(2)当AB=3,BC=5时,求的值.12、已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.13、如图所示,已知在平行四边形ABCD中,BE=DF,求证:AE=CF.14、已知:如图,在△ABC中,,D是BC 的中点,,CE∥AD.如果AC=2,CE=4.(1)求证:四边形ACED是平行四边形;(2)求四边形ACEB的周长;(3)直接写出CE和AD之间的距离.15、如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF ⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.16、如图9,ABCD中,AE、CF分别平分∠DAC、∠BCA,则四边形AFCE是平行四边形吗?为什么?17、如图,在△ABC中,D是BC边上的一点,E是AD 的中点,过A点作BC的平行线交CE的延长线于F ,且AF=BD,连结BF(1)求证:D是BC的中点.(2)如果AB=AC ,试判断四边形AFBD的形状,并证明你的结论.18、如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF 于H点、交BE于E点.求证:△EBC≌△FDA.19、如图,在□ABCD中,为边上一点,且.(1)求证:;(2)若平分,,求的度数.20、如图,已知平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,(14分)(1)若AE=3cm,AF=4cm,AD=8cm,求:CD的长.(2)若平行四边形的周长为36cm,AE=4cm,AF=5cm,求平行四边形ABCD的面积.21、如图,平行四边形ABCD中,AE⊥BD, CF⊥BD,垂足分别为E、F.求证:四边形AECF是平行四边形.22、如图,在□ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.23、已知,如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE交于点G.求证:GF=GC.24、已知,如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.25、四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA =BD ,则四边形ABCD 是什么特殊四边形?请说明理由.26、如图,四边形中,,点在的延长线上,联结,交于点,联结DB ,,且.(1) 求证:;(2)当平分时,求证:四边形是菱形.27、已知:如图,在□ABCD 中,E 是CA 延长线上的点,F 是AC 延长线上的点,且AE =CF .求证:(1)△ABE ≌△CDF ;(2)BE ∥DF .28、如图,在□ABCD 中,AC 、BD 交于点O ,EF 过点O ,分别交CB 、AD 的延长线于点E 、F .。

完整版)平行四边形典型证明题(已分类)

完整版)平行四边形典型证明题(已分类)

完整版)平行四边形典型证明题(已分类)1.在平行四边形ABCD中,平分线AE交DC于点E,已知∠DAE=25°,求平行四边形ABCD各角的度数。

2.如图,将长方形ABCD沿EF折叠后,交点G在ED和BC上,点D、C分别落在D′、C′的位置上,已知∠EFG=55°,求∠AEG的度数。

3.如图,在平行四边形ABCD中,点E、F分别在BD上,且BE=DF,证明四边形AECF是平行四边形。

4.如图,在平行四边形ABCD中,点E、F分别在对角线BD上,且∠DAE=∠BCF。

1)证明AE=CF。

2)证明AE∥CF。

5.如图,在平行四边形ABCD中,点E在BC上平分∠BAD,点F在AD上平分∠BCD,证明四边形AECF是平行四边形。

6.如图,点D、E、F分别是△XXX各边中点。

1)证明四边形ADEF是平行四边形。

2)已知AB=AC=10,BC=12,求四边形ADEF的周长和面积。

7.如图,在△ABC中,点D、E分别为AB、AC边的中点,将△ADE绕点E顺时针旋转180°得到△CFE。

证明四边形DBCF是平行四边形。

8.如图,矩形纸片ABCD中,AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G。

1)证明AG=C′G。

2)求△BDG的面积。

9.如图,矩形ABCD中,AC与BD相交于点O,已知AO=3,∠OBC=30°,求矩形的周长和面积。

10.如图,在矩形ABCD中,AE平分∠BAD,已知∠1=15°。

1)求∠2的度数。

2)证明BO=BE。

11.如图,矩形ABCD中,AE平分∠BAD,CE∥BD,DE∥AC。

1)判断四边形OCED的形状,并证明。

2)已知AB=6,BC=8,求四边形OCED的面积。

12.在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD 的平分线于点F。

江西中考简单几何证明题知识点总结

江西中考简单几何证明题知识点总结

江西中考简单几何证明题知识点总结考点1:特殊的平行四边形(平行四边形)的判定及其性质1.已知:如图,在ABCD 中,点E 、F 分别在AD 、BC 上,且BE 平分ABC ,EF .求证:四边形ABFE是菱形.2.如图,四边形ABCD 是平行四边形,E ,F 分别是边AB ,CD 上的点,AE CF .证明AF CE.3.如图,已知:在ABC 中,90BAC ,延长BA 到点D ,使12AD AB,点E ,F 分别是边BC ,AC 的中点.求证:DF BE .4.如图,平行四边形ABCD 中,点E ,F 分别在线段BC ,AD 上,连接AE ,CF ,//AE CF ,BE AE AD ,求证:四边形AECF是菱形.严禁复制5.如图,在△ABC 中,AB =AC ,AE ⊥BC ,AD 平分∠FAC ,CD ⊥AD 于点D .求证:四边形AECD是矩形.6.已知:如图,在▱ABCD 中,AC 为对角线,∠BAC =∠DAC .求证:▱ABCD为菱形.7.如图,已知AE 是ABC 的角平分线,//ED AC 交AB 于点//D EF AB ,交AC 于点F .求证:四边形ADEF 为菱形.8.如图,在Rt △ABC 中,∠ACB =90°,分别以AC 、BC 为底边,向△ABC 外部作等腰△ADC 和△CEB ,点M 为AB 中点,连接MD 、ME 分别与AC 、BC 交于点F 和点G .求证四边形MFCG是矩形.9.如图,在矩形ABCD 中,E 、F 分别是BC ,AD 边上的点,且AE =CF ,若AC ⊥EF ,试判断四边形AECF 的形状,请说明理由.严禁复制10.如图,已知△ABC 中,AB =AC ,AD 是角平分线,F 为BA 延长线上的一点,AE 平分∠FAC ,DE ∥BA 交AE 于E .求证:四边形ADCE是矩形.11.如图,▱ABCD 中,对角线BD 平分∠ABC ,求证:▱ABCD是菱形.12.已知:如图,在△ABC 中,AB =AC ,点D 、E 、F 分别是△ABC 各边的中点,求证:四边形AEDF 是菱形.严禁复制考点2:全等三角形的证明1.如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于E ,DF ⊥AG 于F ,连接DE .求证:△ABE ≌△DAF.2.如图,已知△ABC 的BC 边的垂直平分线DE 与∠BAC 的平分线交于点E ,EF ⊥AB 的延长线于点F ,EG ⊥AC 于点G ,求证:(1)BF =CG;2.如图,90A D ,AC BD ,AC 与BD 相交于点O ,求证:OB OC .4.如图,点,E F 分别在菱形ABCD 的边,BC CD 上,且BE DF .求证:BAE DAF.5.如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC 严禁复制(1)求证:点F 为AB 的中点6.如图,点A ,D ,B ,E 在同一条直线上,AD=BE ,AC=DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)7.已知:如图,点D 是ABC 内一点,AB AC ,12 .求证:AD 平分BAC .8.如图,A ,E 两点在线段DB 上,EF =BC ,DF =AC ,DA =EB .求证:EF ∥BC.9.如图,已知ABC ,点E 在边AC 上,过点B 作//BD AC ,且AE BD ,连接DE 交AB 于点F .求证:AF BF .严禁复制10如图,已知四边形ABCD 为菱形,延长AB 到点E ,使得BE AB ,过点E 作//EF AD ,交DB 的延长线于点F ,求证:DC EF.11.如图,四边形ABCD 是菱形,DE BA ,交BA 的延长线于点E ,DF BC ,交BC 的延长线于点F ,求证:DE DF.12.如图,ABC 与ABD △中,AD 与BC 相交于O 点,12 ,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC BD ,并给出证明.你添加的条件是:__________.13.如图,△ABC 与△ABD 中,AD 与BC 相交于O 点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD ,并给出证明.你添加的条件是:.证明:严禁复制14.如图,在平行四边形AFCE 中,,D B 分别是,EC AF 的中点.求证:BC AD.15.如图,在△ABC 中,已知∠ABC=30°,将△ABC 绕点B 逆时针旋转50°后得到△A 1BC 1,若∠A=100°,求证:A 1C 1∥BC.16.如图,ABCD 的对角线AC BD ,相交于点O E F ,,分别为OC OA ,的中点.求证:BE DF .17.如图,已知,OA OB OC OD ,连接,,AD BC 两线相交于点P ,连接OP 1图中有对全等三角形;2请选择其中一对全等三角形给予证明.严禁复制18.如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC 内部相交于点O ,画射线BO ,交AD 于点E.(1)求证:AB=AE ;19.如图所示,已知点A ,D ,B ,E 在同一条直线上,且AD =BE ,BC =EF ,∠ABC =∠DEF ,求证:AC ∥DF .20.如图,AD 、BC 相交于点O ,AD =BC ,∠C =∠D =90°.(1)求证:△ACB ≌△BDA;20.如图,矩形ABCD 中,AB AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADE CED ;严禁复制21.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,且CD =CE.(1)求证:ACD BCE ;(2)若70A ,求E 的度数.22.如图,点A,D,B,E 在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC ≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题请给出一个适当的条件使它成为真命题,并加以证明.考点3:等腰三角形和等边三角形的计算1.如图,在等边三角形ABC 中,∠APD =60°,AB =6,PC =4,求CD的长.2.如图,在Rt △ABC 中,∠C =90°,∠CBA =32°,如果△ABC 绕点B 顺时针旋转至△EBD ,使点D 落在AB 边上,连接AE ,求∠EAB 的度数.严禁复制3.如图,在△ABC 中,AB =BC ,点E 为边AC 的中点,过点A 作AD ∥BC ,过点C 作CD ⊥AD 于点D ,且BE =CD .求证:△ABC为等边三角形.4.如图,已知AB AC AD ,且//AD BC .求证:2C D.5.如图,在四边形ABCD 中,AB ⊥BC ,E ,F ,M 分别是AD ,DC ,AC 的中点,连接EF ,BM ,求证:EF =BM.6.如图,已知在△ABC 中,AB=AC ,且∠BAC=40°,BD 是AC 边上的高,求∠CBD 的度数.严禁复制7.如图,在ABC 中,AB AC ,120BAC ,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,求AFC的度数.考点4:相似三角形判定及其性质1.如图,AB=AC ,∠A=36°,BD 是∠ABC 的角平分线,求证:△ABC ∽△BCD.2.如图,点D 在△ABC 的边AB 上,AC 2=AD •AB ,求证:△ACD ∽△ABC .3.如图,D 是△ABC 的BC 边上一点,E 为AD 上一点,若∠DAC=∠B ,CD=CE ,试说明△ACE ∽△BAD.4.如图,在ABCD 中,E 是DC 上一点,连接AE 、F 为AE 上一点,且BFE C .求证:ABF EAD .严禁复制5.如图,在正方形ABCD 中,点E 是AD 的中点,点F 在CD 上,且4CD DF ,连接EF 、BE .求证:ABE DEF △△∽.6.如图,在ABC 中,点E 是AC 上一点,//DE BC ,1B ,AD AE ,求证:AB BC .7.如图,在ABC 中,//DE BC ,14AD DB ,2AE ,求EC的长.8.如图,已知菱形ABCD ,点E 是AB 的中点,AF ⊥BC 于点F ,连接EF ,ED ,DF ,DE 交AF 于点G ,且AE 2=EG •ED .求证:DE ⊥EF.9.如图,在△ABC 中,四边形DBFE 是平行四边形.求证:△ADE ∽△EFC .严禁复制10.如图,在△ABC 中,AB=AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B .(1)求证:△ABP ∽△PCD;考点5:平行线的判定及其性质1.如图AB ∥CD .EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.2.如图,已知BC 平分∠ACD ,且∠1=∠2,求证:AB ∥CD.3.如图,已知BC 平分∠ACD ,且∠1=∠2,求证:AB ∥CD.4.如图,四边形ABCD 中,点E ,F 别在AD ,BC 上,G 在AB 延长线上,若180D GBC ,//AD BC ,//EF DC .求证://AB EF .严禁复制5.如图,直线AB ∥CD ,MN ⊥CE 于M 点,若∠MNC =60°,求∠EMB的度数.6.如图,已知∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC ,求证:AB =AC .严禁复制制复禁严试卷第15页,共1页。

初三数学-平行四边形证明题

初三数学-平行四边形证明题

一、计算题1.如图,在菱形 ABCD 中,/ A=60° , AB =4, O 为对角线 BD 的中点,过 O 点作OE 丄AB ,垂足为E .(1) 求/ ABD 的度数;⑵求线段BE 的长.、证明题2.如图,菱形ABCD 的对角线 AC 与BD 相交于点O ,点E 、F 分别为边 AB 、AD 的中点,连接EF 、 OE 、OF .求证:四边形AEOF 是菱形.3. 在正方形 ABCD 中,AC 为对角线,E 为AC 上一点,连接 EB 、ED .(1) 求证:△ BEC DEC ;(2) 延长BE 交AD 于F ,当/ BED =120。

时,求/ EFD 的度数.4.已知:如图,在正方形 ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF . (1)求证:BE = DF ;初三数学 平行四边形证明题(2)连接AC 交EF 于点0,延长0C 至点M ,使0M = 0A ,连接EM 、 FM .判断四边形 AEMF 是 什么特殊四边形?并证明你的结论. 证明:(1) FEC5•如图,四边形 ABCD 是边长为a 的正方形,点 方形外角的平分线 CF 于点F .(1 )证明:/ BAE=Z FEC ;(2) 证明:△ AGE ◎△ ECF ;(3) 求厶AEF 的面积.6.已知梯形 ABCD 中,AD//BC , AB =AD (如图所示).BAD 的平分线 AE 交BC 于点E ,联结DE .(1) 在图中,用尺规作.BAD 的平分线AE (保留作 图痕迹,不写作法),并证明四边形 ABED 是菱形;(2) 若 /ABC =60 , EC =2BE ,求证:ED _ DC .8. 如图,将矩形纸片 ABCD 沿EF 折叠, (1) 求证:△ FGC EBC ;(2) 若AB 二8, AD =4,求四边形ECGF (阴影部分)的面积.7.如图,正方形 ABCD 中,E 、F 分别是 AB 、BC 边上的点,且 AE = BF.求证AF 丄DE.CF B 使点A 与点C 重合,点9. 如图,在△ ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE // BF ,连接BE 、CF .(1) 求证:△ BDF CDE ;(2) 若AB = AC ,求证:四边形 BFCE 是菱形.11. 如图,梯形 ABCD 中,AB // CD , AC 平分/ BAD , CE // AD 交AB 于点E .求证:四边形 AECD 是菱 形.12. 求证:矩形的对角线相等.10. 如图,在矩形 ABCD (AB V AD )中,将△ ABE 沿AE 对折,使 AB 边落在对角线AC 上,点B 的对应 点为F ,同时将△ CEG 沿EG 对折,使CE 边落在EF 所在直线上,点C 的对应点为H .(1) 证明:AF // HG (图(1));(2) 证明:△ AEFEGH (图(1));(3) 如果点C 的对应点H 恰好落在边 AD 上(图(2)).求此时/BAC 的大小. aCU D13. 如图,在□ABCD中,EF// BD,分别交BC、CD于点P、Q, 知BE=BP .求证:(1)Z E= / F.(2) □ ABCD是菱形.14. 如图,0为矩形ABCD对角线的交点,DE // AC, CE / BD .(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6 , BC=8,求四边形OCED的面积.三、画(作)图题15. 如图1,有一张菱形纸片ABCD , AC=8, BD=6.(1) 请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.(2) 沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)分别交AB、AD的延长线于点E、F.已E2 ........ £(图2) 周长为L _____________ t A B(图3)周长为。

平行四边形证明题精选(初中数学)

平行四边形证明题精选(初中数学)

平行四边形证明题精选(初中数学)1. 证明平行四边形的性质已知四边形ABCD,证明ABCD是平行四边形的方法有:- 证明对角线互相平分- 证明对边平行- 证明对边长度相等且对角线互相垂直证明对角线互相平分证明方法如下:1. 连接对角线AC和BD;2. 证明线段AC与线段BD的中点E重合,即AE=CE及BE=DE;3. 通过副诱导线的证明,得出结论:ABCD是平行四边形。

证明对边平行证明方法如下:1. 假设AB∥CD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。

证明对边长度相等且对角线互相垂直证明方法如下:1. 假设AB=CD且AC⊥BD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。

2. 平行四边形的性质应用在解决平行四边形证明题时,可以根据平行四边形的性质进行推导。

以下是一些常见的平行四边形证明题:证明1已知平行四边形ABCD,证明△ACF≌△EBD。

证明方法:1. 延长AC和BD相交于点F;2. 通过对角线互相平分的证明,得出△ACF≌△EBD。

证明2已知平行四边形ABCD,证明AF=CD。

证明方法:1. 连接AF;2. 通过对边平行的证明,得出AF≥CD;3. 通过对角线互相平分的证明,得出AF≤CD;4. 综合以上两个结论,得出AF=CD。

证明3已知平行四边形ABCD,证明∠DAB=∠BCD。

证明方法:1. 延长AD和BC相交于点E;2. 通过对角线互相平分的证明,得出∠DAB=∠BCD。

以上是初中数学中的一些平行四边形证明题示例及解题方法。

希望能对你的学习有所帮助!。

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)一、综合题1.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.(1)求证:DE=CF;(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.2.已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)若AD与⊙O相切,求∠B.3.已知:如图,点D在ΔABC的边AB上,CF//AB,DF交AC于E,EA=EC.(1)如图1,求证:CD=AF;(2)如图2,若AD=BD,请直接写出和ΔBDC面积相等的三角形.4.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4√2,则▱ABCD的面积是.5.已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.6.如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.7.如图,在ΔABC中,点D、E、F分别在AB、AC、BC上,DE // BC,EF // AB.(1)求证:ΔADE∽ΔEFC;(2)如果AB=6,AD=4,求SΔADESΔEFC的值.8.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.BC,9.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=12连接CD和EF .(1)求证:DE=CF;(2)求EF的长.10.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.11.已知锐角△ABC内接于⊙O,AD⊥BC于点D,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,CE⊥AB于点E,交AD于点F,过点O作OH⊥BC于点H,求证:AF=2OH;,BC=2√15,求AC的长.(3)如图3,在(2)的条件下,若AF=AO,tan∠BAO=1312.如图,抛物线y=x2+bx+c与x轴交于点A(−1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.13.如图,CD是⊙O的直径,点A是⊙O外一点,AD与⊙O相切于点D,点B是⊙O上一点(点B不与点C,D重合),连接AO,AB,BC .(1)当BC与AO满足什么位置关系时,AB是⊙O的切线?请说明理由;(2)在(1)的条件下,当∠DAO=度时,四边形AOCB是平行四边形.(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足14.如图,已知函数y= kx为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点EOD,求a、b的值;(1)若AC= 32(2)若BC∥AE,求BC的长.15.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.16.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图,小华继续将图中的纸片Rt△DEF沿AC方向平移,连结AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形ABDE的形(2)如图,若BC=EF=6cm,AC=DF=8cm,当AF=92状,并说明理由.参考答案与解析1.【答案】(1)证明:在△CDE 和△ECF 中,∵∠ACB=∠ECF=90°,点D 、E 是分别是AB 、BC 的中点.∴CD=BD=AD ,∴∠B=∠DCE ,∠CED=∠ECF=90°, 又∵∠FEC=∠B ..∠FEC=∠DCE ,又∵CE=EC .∴△CDE ≌△ECF (ASA ),∴DE=CF ;(2)解:在Rt △ABC 中,∵∠ACB=90°,∴BC=√AB 2−AC 2=√102−62=8cm , ∵点D 、E 分别是AB 、BC 的中点,∴DE ∥CF ,又DE=CF , ∴四边形DCFE 是平行四边形,∴DE=12AC=12×6=3cm ,CE=12BC=12×8=4cm , ∴S 四边形DCFE =DE ×CE=3×4=12cm . 2.【答案】(1)证明:∵OA =OC =AD , ∴∠OCA =∠OAC ,∠AOD =∠ADO , ∵OD ∥AC , ∴∠OAC =∠AOD ,∴180°﹣∠OCA ﹣∠OAC =180°﹣∠AOD ﹣∠ADO , 即∠AOC =∠OAD , ∴OC ∥AD , ∵OD ∥AC ,∴四边形OCAD 是平行四边形;(2)解:∵AD 与⊙O 相切,OA 是半径, ∴∠OAD =90°, ∵OA =OC =AD , ∴∠AOD =∠ADO =45°,∵OD∥AC,∴∠OAC=∠AOD=45°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=45°.3.【答案】(1)证明:∵CF//AB∴∠DFC=∠ADF,∠DAC=∠ACF又∵EA=EC∴ΔADE≌ΔCFE(AAS)∴CF=AD又∵CF//AD∴四边形ADCF为平行四边形∴DC=AF(有一组对边平行且相等的四边形为平行四边形)(2)解:ΔADC,ΔADF,ΔCFD,ΔCFA∵AD=BD,∴SΔADC=SΔBDC (等底等高面积相等)∵四边形ADCF是平行四边形,∴SΔADC=SΔCDF=SΔADF=SΔACFF (等底等高面积相等) .故与ΔBDC面积相等的三角形为:ΔADC,ΔADF,ΔCFD,ΔCFA.4.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴ΔADF≅ΔCBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,四边形ABCD是平行四边形(2)245.【答案】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中{DF=BE∠DFA=∠BECAF=CE,∴△AFD≌△CEB(SAS).(2)解:四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.6.【答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=12OA=12OC=OF,∴四边形DEBF是平行四边形,∴BE=DF .(2)解:由(1)已证:四边形DEBF是平行四边形,要使平行四边形DEBF是矩形,则BD=EF,∵OE=12OA=12OC=OF,∴EF=OE+OF=12OA+12OC=OA=12AC,即AC=2EF,∴k=ACBD =2EFEF=2,故当k=2时,四边形DEBF是矩形. 7.【答案】(1)证明:∵DE//BC,EF//AB,∴∠A=∠CEF,∠AED=∠C,∴△ADE∽△EFC.(2)解:∵AB=6,AD=4,∴DB=6-4=2,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∴EF=DB=2,∵△ADE∽△EFC,SΔADE SΔEFC =(ADEF)2=(42)2=4.8.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行)。

平行四边形的证明题

平行四边形的证明题

平行四边形的【2 】证实题一.解答题(共30小题)1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M.N分离为边AD.BC上的点,且DM=BN,试断定四边形MENF的外形(不必解释来由).2.如图所示,▱AECF的对角线订交于点O,DB经由点O,分离与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分离为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE.DF是△ABC的中位线,衔接EF.AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和地位关系,并加以证实.6.如图,已知,▱ABCD中,AE=CF,M.N分离是DE.BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E.F两点在对角线BD上,且BE=DF,衔接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分离以AD.BC为边向内作等边△ADE和等边△BCF,衔接BE.DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度活动,到D点即停滞.点Q自点C向B以2cm/s的速度活动,到B点即停滞,直线PQ截梯形为两个四边形.问当P,Q同时动身,几秒后个中一个四边形为平行四边形?11.如图:已知D.E.F分离是△ABC各边的中点,求证:AE与DF互相等分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE.四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分离是AB.CD.AC.BD的中点,并且点E.F.G.H有在统一条直线上.求证:EF和GH互相等分.14.如图:▱ABCD中,MN∥AC,试解释MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD订交于点O,EF经由点O并且分离和AB,CD订交于点E,F,点G,H分离为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E.F是对角线BD上的两点,BE=DF,点G.H分离在BA和DC的延伸线上,且AG=CH,衔接GE.EH.HF.FG.(1)求证:四边形GEHF是平行四边形;(2)若点G.H分离在线段BA和DC上,其余前提不变,则(1)中的结论是否成立?(不用解释来由)17.如图,在△ABC中,D是AC的中点,E是线段BC延伸线一点,过点A作BE的平行线与线段ED的延伸线交于点F,衔接AE.CF.(1)求证:AF=CE;(2)假如AC=EF,且∠ACB=135°,试断定四边形AFCE是什么样的四边形,并证实你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E.F分离在CD.BC的延伸线上,AE ∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D.F分离在线段BC.AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E.F.G.H分离是AB.BC.CD.DA的中点.(1)请断定四边形EFGH的外形?并解释为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有如何的性质?21.如图,△ACD.△ABE.△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证实:四边形ADFE为平行四边形;(2)当AB=AC时,按序衔接A.D.F.E四点所组成的图形有哪几类?直接写出组成图形的类型和响应的前提.22.如图,以△ABC的三边为边,在BC的同侧分离作三个等边三角形即△ABD.△BCE.△ACF,那么,四边形AFED是否为平行四边形?假如是,请证实之,假如不是,请解释来由.23.在△ABC中,AB=AC,点P为△ABC地点平面内一点,过点P分离作PE∥AC 交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直策运用上述信息解决下列问题:当点P分离在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请赐与证实;若不成立,PD,PE,PF与AB之间又有如何的数目关系,请写出你的猜想,不须要证实24.如图1,P为Rt△ABC地点平面内随意率性一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA.PC为邻边作平行四边形PADC,持续PM并延伸到点E,使ME=PM,衔接DE.探讨:(1)请猜想与线段DE有关的三个结论;(2)请你运用图2,图3选择不同地位的点P按上述办法操作;(3)阅历(2)之后,假如你以为你写的结论是准确的,请加以证实;假如你以为你写的结论是错误的,请用图2或图3加以解释;(留意:错误的结论,只要你用反例赐与解释也得分)(4)若将“Rt△ABC”改为“随意率性△ABC”,其他前提不变,运用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探讨活动中,小强用两条直线把平行四边形ABCD朋分成四个部分,使含有一组对顶角的两个图形全等;(1)依据小强的朋分办法,你以为把平行四边形朋分成知足以上全等关系的直线有很多组;(2)请在图中的三个平行四边形中画出知足小强朋分办法的直线;(3)由上述试验操作进程,你发明所画的两条直线有什么纪律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A动身,以每秒3cm的速度沿折线ABCD 偏向活动,点Q从点D动身,以每秒2cm的速度沿线段DC偏向向点C活动.已知动点P.Q同时发,当点Q活动到点C时,P.Q活动停滞,设活动时光为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P.点Q的活动进程中,是否消失某一时刻,使得△BPQ的面积为20cm2?若消失,要求出所有知足前提的t的值;若不消失,请解释来由.27.已知平行四边形的三个极点的坐标分离为O(0,0).A(2,0).B(1,1),则第四个极点C的坐标是若干?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE.DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A.B.C的坐标分离是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个极点的坐标是若干?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF等分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.1.解答:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(A.A.S.),∴BE=DF;(2)四边形MENF是平行四边形.证实:有(1)可知:BE=DF,∵四边形ABCD为平行四边行,∴AD∥BC,∴∠MDB=MBD,∵DM=BN,∴△DNF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.2.解答:证实:∵四边形AECF是平行四边形∴OE=OF,OA=OC,AE∥CF,∴∠DFO=∠BEO,∠FDO=∠EBO,∴△FDO≌△EBO,∴OD=OB,∵OA=OC,∴四边形ABCD是平行四边形.3.解答:证实:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DE,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.4.解答:证实:∵DE,DF是△ABC的中位线,∴DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴平行四边形AEDF是矩形,∴EF=AD.5.解答:解:猜想线段CD与线段AE的大小关系和地位关系是:平行且相等.证实:∵CE∥AB,∴∠DAO=∠ECO,∵OA=OC,∴△ADO≌△ECO,∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.6.解答:证实:由平行四边形可知,AD=CB,∠DAE=∠FCB,又∵AE=CF,∴△DAE≌△BCF,∴DE=BF,∠AED=∠CFB又∵M.N分离是DE.BF的中点,∴ME=NF又由AB∥DC,得∠AED=∠EDC∴∠EDC=∠BFC,∴ME∥NF∴四边形MFNE为平行四边形.7.解答:证实:衔接AC交BD于点O,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD.∵BE=DF,∴OE=OF.∴四边形AECF为平行四边形.8.解答:证实:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD.又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF.∠DAE=∠BCF=60°.∵∠DCF=∠BCD﹣∠BCF,∠BAE=∠DAB﹣∠DAE,∴∠DCF=∠BAE.∴△DCF≌△BAE(SAS).∴DF=BE.∴四边形BEDF是平行四边形.9.解答:证实:∵E是AC的中点,∴EC=AC,又∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.10.解答:解:设P,Q同时动身t秒后四边形PDCQ或四边形APQB是平行四边形,依据已知得到AP=t,PD=24﹣t,CQ=2t,BQ=30﹣2t.(1)若四边形PDCQ是平行四边形,则PD=CQ,∴24﹣t=2t∴t=8∴8秒后四边形PDCQ是平行四边形;(2)若四边形APQB是平行四边形,则AP=BQ,∴t=30﹣2t∴t=10∴10秒后四边形APQB是平行四边形11.解答:证实:∵D.E.F分离是△ABC各边的中点,依据中位线定理知:DE∥AC,DE=AF,EF∥AB,EF=AD,∴四边形ADEF为平行四边形.故AE与DF互相等分.12.解答:证实:∵▱ABCD中,对角线AC交BD于点O,∴OB=OD,又∵四边形AODE是平行四边形,∴AE∥OD且AE=OD,∴AE∥OB且AE=OB,∴四边形ABOE是平行四边形,同理可证,四边形DCOE也是平行四边形.13.解答:证实:衔接EG.GF.FH.HE,点E.F.G.H分离是AB.CD.AC.BD的中点.在△ABC中,EG=BC;在△DBC中,HF=BC,∴EG=HF.同理EH=GF.∴四边形EGFH为平行四边形.∴EF与GH互相等分.14.解答:证实:∵四边形ABCD是平行四边形,∴AM∥QC,AP∥NC.又∵MN∥AC,∴四边形AMQC为平行四边形,四边形APNC为平行四边形.∴AC=MQ AC=NP.∴MQ=NP.15.解答:证实:如答图所示,∵点O为平行四边形ABCD对角线AC,BD的交点,∴OA=OC,OB=OD.∵G,H分离为OA,OC的中点,∴OG=OA,OH=OC,∴OG=OH.又∵AB∥CD,∴∠1=∠2.在△OEB和△OFD中,∠1=∠2,OB=OD,∠3=∠4,∴△OEB≌△OFD,∴OE=OF.∴四边形EHFG为平行四边形.16、解答:(1)证实:∵四边形ABCD是平行四边形,17、∴AB=CD,AB∥CD,∴∠GBE=∠HDF.又∵AG=CH,∴BG=DH.又∵BE=DF,∴△GBE≌△HDF.∴GE=HF,∠GEB=∠HFD,∴∠GEF=∠HFE, ∴GE∥HF,∴四边形GEHF是平行四边形.(2)解:仍成立.(证法同上)17.解答:(1)证实:∵AF∥EC,∴∠DFA=∠DEC,∠DAF=∠DCE,∵D是AC的中点,∴DA=DC,∴△DAF≌△DCE,∴AF=CE;(2)解:四边形AFCE是正方形.来由如下:∵AF∥EC,AF=CE,∴四边形AFCE是平行四边形,又∵AC=EF,∴平行四边形AFCE是矩形,∴∠FCE=∠CFA=90°,而∠ACB=135°,∴∠FCA=135°﹣90°=45°,∴∠FAC=45°,∴FC=FA,∴矩形AFCE是正方形.18.解答:(1)证实:在平行四边形ABCD中,AB∥CD,且AB=CD,又∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∴CD=DE,即D是EC的中点;(2)解:衔接EF,∵EF⊥BF,∴△EFC是直角三角形,又∵D是EC的中点,∴DF=CD=DE=2,在平行四边形ABCD中,AB∥CD,∵∠ABC=60°,∴∠ECF=∠ABC=60°,∴△CDF是等边三角形,∴FC=DF=2.故答案为:2.19.解答:证实:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)衔接BE∵BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴EB=EF,∠EBF=60°∵DC=EF,∴EB=DC,∵△ABC是等边三角形,∴∠ACB=60°,AB=AC,∴∠EBF=∠ACB,∴△AEB≌△ADC,∴AE=AD.20.解答:解:(1)如图,四边形EFGH是平行四边形.衔接AC,∵E.F分离是AB.BC的中点,∴EF∥AC,EF=AC同理HG∥AC,∴EF∥HG,EF=HG∴EFGH是平行四边形;(2)四边形ABCD的对角线垂直且相等.∵假若四边形EFGH为正方形,∴它的每一组邻边互相垂直且相等,∴依据中位线定理得到四边形ABCD的对角线应当互相垂直且相等.21、解答:(1)证实:∵△ABE.△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.∴∠CBA=∠FBE.∴△ABC≌△EBF.∴EF=AC.又∵△ADC为等边三角形,∴CD=AD=AC.∴EF=AD.同理可得AE=DF.∴四边形AEFD是平行四边形.(2)解:组成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠BAC≠60°(或A与F不重合.△ABC不为正三角形)当图形为线段时,∠BAC=60°(或A与F重合.△ABC为正三角形).22.解答:解:四边形AFED是平行四边形.证实如下:在△BED与△BCA中,BE=BC,BD=BA(均为统一等边三角形的边)∠DBE=∠ABC=60°﹣∠EBA∴△BED≌△BCA(SAS)∴DE=AC又∵AC=AF∴DE=AF在△CBA与△CEF中,CB=CE,CA=CF∠ACB=∠FCE=60°+∠ACE∴△CBA≌△CEF(SAS)∴BA=EF又∵BA=DA,∴DA=EF故四边形AFED为平行四边形(两组对边分离相等的四边形是平行四边形).23.解答:解:图2结论:PD+PE+PF=AB.证实:过点P作MN∥BC分离交AB,AC于M,N两点,由题意得PE+PF=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.24.解答:解:(1)DE∥BC,DE=BC,DE⊥AC.(2)如图4,如图5.(3)办法一:如图6,衔接BE,∵PM=ME,AM=MB,∠PMA=∠EMB,∴△PMA≌△EMB.∵PA=BE,∠MPA=∠MEB,∴PA∥BE.∵平行四边形PADC,∴PA∥DC,PA=DC.∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.办法二:如图7,衔接BE,PB,AE,∵PM=ME,AM=MB,∴四边形PAEB是平行四边形.∴PA∥BE,PA=BE, 余下部分同办法一:办法三:如图8,衔接PD,交AC于N,衔接MN,∵平行四边形PADC,∴AN=NC,PN=ND.∵AM=BM,AN=NC,∴MN∥BC,MN=BC.又∵PN=ND,PM=ME,∴MN∥DE,MN=DE.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC.∴DE⊥AC.(4)如图9,DE∥BC,DE=BC.25.解答:解:(1)很多;(2)作图的时刻要起首找到对角线的交点,只要过对角线的交点,任画一条直线即可.如图有:AE=BE=DF=CF,AM=CN.(3)这两条直线过平行四边形的对称中间(或对角线的交点).26.解答:解:(1)过点A作AM⊥CD于M,依据勾股定理,AD=10,AM=BC=8,∴DM==6,∴CD=16; (2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10﹣3t,DQ=2t∴10﹣3t=2t,解得t=2此时,BP=DQ=4,CQ=12∴∴四边形PBQD的周长=2(BP+BQ)=;(3)①当点P在线段AB上时,即时,如图∴.②当点P在线段BC上时,即时,如图BP=3t﹣10,CQ=16﹣2t∴化简得:3t2﹣34t+100=0,△=﹣44<0,所以方程无实数解.③当点P在线段CD上时,若点P在Q的右侧,即6≤t≤,则有PQ=34﹣5t,<6,舍去若点P在Q的左侧,即,则有PQ=5t﹣34,,t=7.8.分解得,知足前提的t消失,其值分离为,t2=7.8.27.解答:解:当BC∥OA,BC=OA时,C和B的纵坐标相等,若选择AB为对角线,则C1(3,1);若选择OB为对角线,则C2(﹣1,1);当AB∥OC,AB=OC时,选择OA为对角线,则C3(1,﹣1).故第四个极点坐标是:C1(3,1),C2(﹣1,1),C3(1,﹣1).28.解答:解:设AB=x,则BC=18﹣x,由AB•DE=BC•DFF得:,解之x=10,所以平行四边形ABCD的面积为.29.解答:解:(1)由B.C的坐标可知,AD=BC=4,则可得点D的横坐标为1,点D的纵坐标与点A的纵坐标相等,为,可得点D的坐标为(1,).(2)依题意得A1.B1.C1.D1的坐标分离为A(﹣3+,0),B(﹣2+,2)C(2+,2),D(1+,0).(3)如图,平行四边形ABCD与四边形A1B1C1D1重叠部分的面积为平行四边形DEFG的面积, 由题意可得GD=AD﹣AG=4﹣,平行四边形DEFG的高为2﹣=,∴重叠部分的面积为(4﹣)•=4﹣2.30.解答:证实:在平行四边形ABCD中,AD∥BC,∴∠DAF=∠F,又AF等分∠BAD,∴∠DAF=∠BAF,∴∠BAF=∠F,∴AB=BF,又AF等分∠BAD,DE⊥AF,∴∠AOD=∠ADO,又∠BOE=∠AOD=∠EDC,∠ADO=∠E,∴∠EDC=∠E,∴CE=CD,又AB=CD,∴BE=CF.。

平行四边形证明典型题

平行四边形证明典型题

平行四边形证明典型题1.如下图,已知平行四边形ABCD,E为AD上的点,且AE=AB,BE和CD的延长线交于F,且∠BFC=40°,求平行四边形ABCD各内角的度数.2.已知平行四边形一组邻角的比是2∶3,求它的四个内角的度数.3.如下图所示,ABCD是平行四边形,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O,求证:EO=FO,DO=BO.4.已知:平行四边形ABCD中,AD=2AB,延长AB到F,使BF=AB,延长BA到E使AE=AB,求证:CE⊥DF5.如图所示,已知平行四边形ABCD,直线FH与AB、CD相交,过A、B、C、D向FH作垂线,垂足为E、H、G、F,求证:AE-DF=CG-BH6.平行四边形ABCD中,E为DC中点,延长BE与AD的延长线交于F,求证:E为BF中点,D为AF的中点.7.如图所示,平行四边形ABCD中,以BC、CD为边向内作等边三角形BCE和CDF.求证:△AEF为等边三角形.8.如图所示,在△ABC中,BD平分∠B,DE∥BC交AB于E,EF∥AC交BC于F,求证:BE=FC9.如图所示,平行四边形ABCD中,E是AB的中点,F是CD中点,分别延长BA和DC到G、H,使AG=CH,连结GF、EH,求证:GF∥EH10.如图所示,平行四边形ABCD中,E、F分别在AD、BC上,且AE=CF,AF与BE相交于G,CE与DF相交于H.求证:EF与GH互相平分11.在四边形ABCD中,AB∥DC,对角线AC、BD交于O,EF过O交AB于E,交DC于F,且OE=OF,求证:四边形ABCD是平行四边形.12.如图所示,已知△ABC,分别以AB、BC、AC为边向BC同侧作等边三角形ABE、BCD、ACF.求证:DEAF为平行四边形.13.已知:如下图,在四边形ABCD中,AB=DC,AE⊥BD,CF⊥BD,垂足分别是E、F,AE=CF,求证:四边形ABCD是平行四边形.14.点O是平行四边形ABCD的对角线的交点,△AOB的面积为7cm2,求平行四边形ABCD 的面积.15.有两个村庄A和B位于一条河的两岸,假定河岸是两条平行的直线,现在要在河上架一座与河岸垂直的桥PQ,问桥应架在何处,才能使从A到B总的路程最短.【中考真题演练】1.(河南省中考题)已知:如图,平行四边形ABCD中,对角线AC的平行线MN分别交DA、DC延长线于点M、N,交AB、BC于点P、Q.求证:MQ=NP.2.(黄冈市中考题)如图所示,平行四边形ABCD中,G、H是对角线BD上两点,且DG=BH,DF=BE.求证:四边形EHFG是平行四边形.3.(江西省中考题)已知:如图,平行四边形ABCD中,AE⊥BC,CF⊥BD,垂足分别为E、F,G、H分别是AD、BC的中点,GH交BD于点O.求证:GH与EF互相平分.。

中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解

中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解

中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解类型之一 以平行四边形为背景的计算与证明【经典母题】已知:如图Z11-1,在▱ABCD 中,AC 是对角线,BE⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:BE =DF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAE =∠DCF .又∵BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD ,∵AB =CD ,∴Rt △AEB ≌Rt △CFD ,∴BE =DF .【思想方法】 (1)平行四边形是一种特殊的四边形,它具有对边平行且相等,对角线互相平分的性质,根据平行四边形的性质可以解决一些有关的计算或证明问题;(2)平行四边形的判定有四种方法:两组对边平行;两组对边分别相等;一组对边平行且相等;对角线互相平分.【中考变形】1.[2016·益阳]如图Z11-2,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE .求证:AF =CE .证明:∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD .又∵AE ⊥BD ,CF ⊥BD , 图Z11-1图Z11-2∴∠AED =∠CFB ,AE ∥CF .∴△AED ≌△CFB (AAS ).∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE .2.[2016·黄冈]如图Z11-3,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H .求证:AG =CH .证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∵AD =BC ,∴AE =CF =DE =BF .∵DE ∥BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH (ASA ),∴AG =CH .【中考预测】[2016·义乌模拟]如图Z11-4,已知E ,F 分别是▱ABCD的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,且BC =10,∠BAC =90°,图Z11-3图Z11-4求BE的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如答图,∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,中考预测答图∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE =12BC=5.类型之二以矩形、菱形或正方形为背景的计算与证明【经典母题】如图Z11-5,在菱形ABCD中,E,F分别是BC,CD的中点,且AE⊥BC,AF⊥CD.求菱形各个内角的度数.图Z11-5 经典母题答图解:如答图,连结AC.∵四边形ABCD是菱形,AE⊥BC,AF⊥CD且E,F分别为BC,CD的中点,∴AC=AB=AD=BC=CD,∴△ABC,△ACD均为等边三角形,∴菱形ABCD 的四个内角度数分别为∠B =∠D =60°,∠BAD =∠BCD =120°.【思想方法】 要掌握矩形、菱形、正方形的性质和判定方法,采用类比法,比较它们的区别和联系.对于矩形的性质,重点从“四对”入手,即从对边、对角、对角线及对称轴入手;判定菱形可以从一般四边形入手,也可以从平行四边形入手;正方形既具有矩形的性质又具有菱形的性质.【中考变形】1.[2017·日照]如图Z11-6,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即__AD =BC __,可使四边形ABCD为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC (SSS );(2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E =90°,由(1)得△DCA ≌△EAC ,∴∠D =∠E =90°,∴四边形ABCD 为矩形.故答案为AD =BC (答案不唯一).2.[2017·白银]如图Z11-7,矩形ABCD 中,AB =6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; 图Z11-6图Z11-7(2)当四边形BEDF 是菱形时,求EF 的长.解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO =FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则 DE =x ,AE =6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,∵BD =AD 2+AB 2=213,∴OB =12BD =13,∵BD ⊥EF ,∴OE =BE 2-OB 2=2133,∴EF =2EO =4133.3.[2017·盐城]如图Z11-8,矩形ABCD 中,∠ABD ,∠CDB 的平分线BE ,DF 分别交边AD ,BC 于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC ,∴∠ABD =∠CDB ,∵BE 平分∠ABD ,DF 平分∠BDC ,∴∠EBD =12∠ABD ,∠FDB =12∠BDC ,图Z11-8∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,理由:∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.4.[2016·株洲]如图Z11-9,在正方形ABCD中,BC=3,E,F分别是CB,CD延长线上的点,DF=BE,连结AE,AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.解:(1)证明:正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE(SAS);(2)在Rt△ABE中,∵AB=BC=3,BE=1,∴AE=10,ED=CD2+CE2=5,∵S△AED=12ED·AH=12AD·BA=92,图Z11-9∴AH =95, 在Rt △AHD 中,DH =AD 2-AH 2=125,∴EH =ED -DH =135,∴tan ∠AED =AH EH =913.5.[2017·上海]已知:如图Z11-10,四边形ABCD 中,AD∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD,DE =DE ,EA =EC ,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形;(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.图Z11-106.如图Z11-11,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.图Z11-11中考变形6答图解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH=BF,∴BE=AH,∴△AEH≌△BFE(SAS),∴EH=FE,∠AHE=∠BEF,同理,FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)直线EG经过正方形ABCD的中心.理由:如答图,连结BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD(AAS),∴BO=DO,即O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∵S四边形EFGH=EH·EF=EH2,∴四边形EFGH面积的最小值为32 cm2.【中考预测】如图Z11-12,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.图Z11-12(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.解:(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠CBF+∠BCD=∠CDF+∠EFD,∴∠EFD=∠BCD.。

【精编版】数学中考专题训练——平行四边形的判定和性质

【精编版】数学中考专题训练——平行四边形的判定和性质

中考专题训练——平行四边形的判定和性质1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.参考答案与试题解析1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)∵BE=DF,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.【分析】(1)只要证明DE=CF,DE∥CF即可解决问题;(2)过D作DH⊥BE于H,想办法求出DH、HF即可解决问题;【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵E是AD的中点,∴DE=AD,∵CF=BC∴DE=CF,又∵AD∥BC,∴四边形CEDF是平行四边形.(2)过D作DH⊥BE于H,在▱ABCD中,∵∠B=60°,AB∥CD,∴∠DCF=60°,∵AB=4,∴CD=4,∴CH=2,DH=2,∴FH=1,在Rt△DHF中,DF==.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC;【分析】(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC∵延长BC至点F,使CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形.(2)解:∵DE∥FC,DE=FC∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?【分析】(1)方法一:证明△BAE≌△DCF,推出BE=DF,BE∥DF即可.方法二:连接BD,交AC于点O.只要证明OE=OF,OB=OD即可;(2)是平行四边形.只要证明△BAE≌△DCF即可解决问题;(3)四边形BFDE不是平行四边形.因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等;【解答】(1)证法一:∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF又∵AE=CF∴△BAE≌△DCF(SAS)∴BE=DF,∠AEB=∠CFD∴∠BEF=180°﹣∠AEB∠DFE=180°﹣∠CFD即:∠BEF=∠DFE∴BE∥DF,而BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)证法二:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE是平行四边形∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF∵BE⊥AC,DF⊥AC∴∠BEA=∠DFC=90°,BE∥DF∴△BAE≌△DCF(AAS)∴BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)由(1)知,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,即AB∥DE,∵AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵EF⊥BC,∴∠EFC=90°.∵AB∥EC,∴∠ECF=∠ABC=60°,∴∠CEF=30°∵CF=,∴CE=2CF=2,∵四边形ABCD和四边形ABDE都是平行四边形,∴AB=CD=DE,∴CE=2AB,∴AB=.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.【答案】(1)证明见解析;(2)CD,AF,BD,AD,CF.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)根据平行四边形的性质和直角三角形的性质解答即可.【解答】(1)证明:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)解:∵四边形CDAF是平行四边形,∴AG=GC,AD=CF,∵E为AD的中点,∴EG是△ADC的中位线,∴2EG=DC,∵∠BAC=90°,AD为BC边上的中线,∴BD=DC=AD,由(1)可知,CD=AF=BD=2EG,即所有长度为2EG的线段是CD,AF,BD,AD,CF.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.(1)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,【分析】得出BC∥FG,BC=FG,证出AD∥FH,AD=FH,由平行四边形的判定方法即可得出结论;(2)由平行四边形的性质得出∠BCE=50°,再由等腰三角形的性质得出∠CBE=∠CEB,根据三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵∠BAE=70°,∴∠BCD=70°,∵∠DCE=20°,∴∠BCE=70°﹣20°=50°,∵CB=CE,∴∠CBE=∠CEB=(180°﹣50°)=65°.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.【分析】(1)先证△AEF≌△CED(AAS),得AF=CD,再由CD∥AB,即AF∥CD,即可得出结论;(2)过C作CM⊥AB于M,先证△BCM是等腰直角三角形,得BM=CM,再由含30°角的直角三角形的性质得AC=2AM,BM=CM=AM,由AM+BM=AB求出AM=2﹣2,即可求解.【解答】(1)证明:∵E是AC的中点,∴AE=CE,∵CD∥AB,∴∠AFE=∠CDE,在△AEF和△CED中,,∴△AEF≌△CED(AAS),∴AF=CD,又∵CD∥AB,即AF∥CD,∴四边形AFCD是平行四边形;(2)解:过C作CM⊥AB于M,如图所示:则∠CMB=∠CMA=90°,∵CD∥AB,∴∠B+∠DCB=180°,∴∠B=180°﹣135°=45°,∴△BCM是等腰直角三角形,∴BM=CM,∵∠BAC=60°,∴∠ACM=30°,∴AC=2AM,BM=CM=AM,∵AM+BM=AB,∴AM+AM=4,解得:AM=2﹣2,∴AC=2AM=4﹣4.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.【分析】(1)根据等边三角形的性质可得BD=DC,∠BAD=∠CAD=30°,然后证明△ADF为等边三角形,可得ED=DF,进而可以证明四边形BECF为平行四边形;(2)根据AB=6和勾股定理可得BF的长,然后证明BE=BD,进而可得四边形BECF 的周长.【解答】(1)证明:∵AD是等边△ABC的BC边上的高,∴BD=DC,∠BAD=∠CAD=30°,∵∠AED=30°,∴ED=AD,∠ADF=∠AED+∠EAD=60°,∵AF⊥AB,∴∠DAF=90°﹣∠EAD=90°﹣30°=60°,∴△ADF为等边三角形,∴AD=DF,∵ED=AD,∴ED=DF,∵BD=DC,∴四边形BECF为平行四边形;(2)∵AB=6,∴BD=3,AD=3,∵△ADF为等边三角形,∴AF=AD=3,∴BF===3,∵∠ABC=60°,∠AED=30°,∴∠BDE=30°,∴BE=BD=3,∴四边形BECF的周长为:2(BF+BE)=2(3+3)=6+6.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.【分析】(1)根据∠ADB=∠CBD=90°,可得DE∥CB,由∠AEB+∠C=180°.证明BE∥CD,进而可得四边形BEDC是平行四边形;(2)根据勾股定理先求出AD的长,再设DE=x,则EA=AD﹣DE=8﹣x,EB=EA=8﹣x.根据勾股定理列式计算得x的值,进而可以求出四边形ABCD的面积.【解答】解:(1)∵∠ADB=∠CBD=90°,∴DE∥CB,∵∠AEB+∠C=180°,∵∠AEB+∠BED=180°,∴∠C=∠BED,∴∠CDB=∠EBD,∴BE∥CD,∴四边形BEDC是平行四边形;(2)∵四边形BEDC是平行四边形.∴BC=DE,在Rt△ABD中,由勾股定理得,AD===8.设DE=x,则EA=AD﹣DE=8﹣x,∴EB=EA=8﹣x.在Rt△BDE中,由勾股定理得,DE2+DB2=EB2,∴x2+42=(8﹣x)2.解得x=3.∴BC=DE=3,∴S四边形ABCD=S△ABD+S△BDC=AD•DB+DB•BC=16+6=22.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.【分析】(1)根据已知条件证明△AED≌△BFD,可得ED=FD,可得四边形AEBF是平行四边形;(2)根据BE⊥CE,可得四边形AEBF是矩形,根据CE=2AE=4,BC=9,再利用勾股定理即可求DE的长.【解答】解:(1)四边形AEBF是平行四边形,证明:∵点D为边AB的中点,∴AD=BD,∵AE∥BF,∴∠AED=∠BFD,在△AED和△BFD中,,∴△AED≌△BFD(AAS),∴ED=FD,∵AD=BD,∴四边形AEBF是平行四边形;(2)∵BE⊥CE,∴∠AEB=90°,∴平行四边形AEBF是矩形,∴EF=AB,DE=AB,在Rt△BEC中,CE=4,BC=9,根据勾股定理,得BE2=BC2﹣CE2=92﹣42=65,在Rt△ABE中,AE=2,BE2=65,根据勾股定理,得AB===,∴DE=AB=.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.【分析】(1)由三角形的中位线定理可证得DE∥AC,由直角三角形斜边中线定理得到CE=AB,根据平行线的性质定理和等腰三角形的性质证得∠F=∠CED,进而得到AF∥CE,根据平行四边形的判定即可证得四边形ACEF是平行四边形;(2)根据直角三角形的性质得到AC=AB,由(1)知CE=AB,求得AC=CE,推出四边形ACEF为菱形,得到AE⊥CF,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵BD=CD,BE=AE,∴DE∥AC,∴∠AEF=∠EAC,∠CED=∠ECA,∵∠ACB=90°,BE=AE,∴CE=AE,∴∠EAC=∠ECA,∵AF=AE,∴∠F=∠AEF,∴∠F=∠CED,∴AF∥CE,∴四边形ACEF是平行四边形;(2)解:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE=BE,又∵四边形ACEF为平行四边形∴四边形ACEF为菱形,∴AE⊥CF,∵CE=BE,∴∠B=∠DCE=30°,∴∠BED=∠BAC=60°,∵DF∥AC,∠BDE=∠ACB=∠CDE=90°,∴BD=CD=DE,∵∠DEB=∠FEG=∠CEG=60°,∴∠CED=60°,∴∠FEG=∠CED,∵EF=CE,∠EGF=∠CDE=90°,∴△EFG≌△CED(AAS),∴EG=DE,FG=CD,∴FG=DE,∵CG=FG,∴CG=DE,∴等于线段DE的长度的倍的线段是FG,CG,CD,DB.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.【分析】(1)只要证明AD∥FG,AF∥DG即可;(2)根据三角形的中位线的性质和平行四边形的性质即可得到结论.【解答】(1)证明:如图,∵EB=BF,EC=CH,∴BC∥FH,BC=FH,∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴∠DAF+∠AFG=180°,∵∠ADG=∠AFG,∴∠DAF+∠ADG=180°,∴AF∥CD,∴四边形AFHD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AD=BC,∵BF=BE,CH=CE,∴BC=FH,∴AD=FH,∵四边形AFHD是平行四边形,∴FG=AD=FH,∴HG=FH,∴长度为FH的一半的所有线段为:AD,BC,FG,HG.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).【分析】(1)由CN∥AB,MA=MC,易证得△AMD≌△CMN,则可得MD=MN,即可证得:四边形ADCN是平行四边形.(2)由∠AMD=2∠MCD,可证得四边形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四边形ADCN是正方形,继而求得答案.【解答】(1)证明:∵CN∥AB,∴∠DAM=∠NCM,在△ADM和△CNM中,,∴△AMD≌△CMN(ASA),∴MD=MN,∴四边形ADCN是平行四边形.(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AC=DN,∴▱ADCN是矩形,∵AC=BC,∴AD=BD,∵∠ACB=90°,∴CD=AD=BD=AB,∴▱ADCN是正方形,∴AN=AD=BD=CD=CN.15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.【分析】(1)求出AP=BQ和AP∥BQ,根据平行四边形的判定得出即可;(2)求出高AM和ON的长度,求出△DOC和△OQC的面积,再求出答案即可.【解答】解:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=3cm,AD=BC=5cm,AO=CO,BO=OD,∴∠P AO=∠QCO,在△APO和△CQO中∴△APO≌△CQO(ASA),∴AP=CQ=2.5cm,∵BC=5cm,∴BQ=5cm﹣2.5cm=2.5cm=AP,即AP=BQ,AP∥BQ,∴四边形ABQP是平行四边形,即当t=2.5s时,四边形ABQP是平行四边形;(2)过A作AM⊥BC于M,过O作ON⊥BC于N,∵AB⊥AC,AB=3cm,BC=5cm,∴在Rt△ABC中,由勾股定理得:AC=4cm,∵由三角形的面积公式得:S△BAC==,∴3×4=5×AM,∴AM=2.4(cm),∵ON⊥BC,AM⊥BC,∴AM∥ON,∵AO=OC,∴MN=CN,∴ON=AM=1.2cm,∵在△BAC和△DCA中∴△BAC≌△DCA(SSS),∴S△DCA=S△BAC==6cm2,∵AO=OC,∴△DOC的面积=S△DCA=3cm2,当t=4s时,AP=CQ=4cm,∴△OQC的面积为 1.2cm×4cm=2.4cm2,∴y=3cm2+2.4cm2=5.4cm2.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.【分析】(1)根据全等三角形的性质和判定求出AF=CD,求出AF=BD,根据平行四边形的判定推出即可;(2)求出四边形AFBD的矩形,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AFE和△DCE中∴△AFE≌△DCE(AAS),∴AF=CD,∵BD=CD,∴BD=AF,∵AF∥BC,∴四边形AFBD是平行四边形;(2)解:∵AB=AC,CD=BD,∴AD⊥BC,∴∠ADB=90°,∵四边形AFBD是平行四边形,∴四边形AFBD是矩形,∵AB=AC=13,BD=5,∴由勾股定理得:AD==12,∴四边形AFBD的面积是12×5=60.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.【分析】(1)利用平行四边形得判定和性质证明;(2)利用全等三角形的判定求解.【解答】解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)BG=y,DE=t,当0≤t≤时,CF=3t,则BF=8﹣3t,∵AD∥BC,∴∠DBC=∠ADB,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或(不合题意,舍去),当<t≤时,则BF=3t﹣8,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或,所以△DEG与△BFG全等的情况出现了三次,第一次是2秒时,y=6,第二次是4秒时,y=6,第三次是5秒时,y=5.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为PE+PF=AB.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.【分析】(1)先求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据等边对等角可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后求出∠C=∠CDE,再根据等角对等边可得CE=PD+PE,然后求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PE=AF,然后求出PD+PE+PF=AC,等量代换即可得证;(3)证明思路同(2).【解答】解:(1)答:PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PF AE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PE+PF=AB;故答案为:PE+PF=AB(2)证明:∵AB=AC,∴∠B=∠C,∵PE∥AB,∴∠B=∠CDE,∴∠C=∠CDE,∴CE=PD+PE,∵PF∥AC,PE∥AB,∴四边形PF AE是平行四边形,∴PE=AF,∴PD+PE+PF=AC,∴PD+PE+PF=AB;(3)证明:同(2)可证DE=CE,PE=AF,∵AE+CE=AC,∴PF+PE﹣PD=AC,∴PE+PF﹣PD=AB.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB =AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)由(1)知AC=CF,根据三角形的中位线的性质得到DQ=FQ,根据直角三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)由(1)知AC=CF,∵CQ∥AD,∴DQ=FQ,∵在Rt△DAF与Rt△DEF中,∴AQ=EQ=DF.。

中才教育中考数学-平行四边形证明题

中才教育中考数学-平行四边形证明题

中才教育中考数学-平行四边形证明题第一篇:中才教育中考数学-平行四边形证明题中才教育中考数学1.(08)如图,已知□ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点A不重合,可与点B重合),设AE=x,DE的延长线交CB的延长线于点F,设CF=y,则下列图象能正确反映y与x的函数关系的是()2.(08)某花木场有一块如等腰梯形ABCD的空地(如图),各边的用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC cm3.(08).如图,矩形ABCD的两条线段交于点O,过点O作AC的垂、F,连接CE,已知∆CDE的周长为24cm,则矩形ABCD的周长是cm4.(08)、在一幅长50cm,宽30cm的风景画的四周镶一条金色纸2中点分别是E、F、G、H,线EF,分别交AD、BC于点E边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm,设金色纸边的宽为xcm,那么x满足的方程为5.(09)如图,在的长是ψABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB6。

(09)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.7.(2010河南)如图.矩形ABCD中,AB=1,以AD的长为半径的⊙A交BC边于点E,则图中阴影部分的面积为.8.(2011河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,B D⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为。

9.(2011,15,3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD点E是BC边的中点,△DEF是等边三角形,DF交AB于点C,则△BFG的周长为.∠ACB=90︒,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE 10.(08满分9分)如图,已知:在四边形ABFC中,(1)试探究,四边形BECF是什么特殊的四边形;(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)11.(09年10分)如图,在Rt△ABC中,∠ACB=90°,∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.12.(2010河南9分)如图,四边形ABCD是平行四边形,△AB’C和△ABC 关于AC所在的直线对称,AD和B’C相交于点O.连结BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△A B’O≌△CDO.13.(2010河南9分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,C=45,点P是BC边上一动点,设PB长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行网边形.(3)点P在BC边上运动的过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.14.(2010河南10分)(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE.且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?请说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求(3)类比探究保持(1)中的条件不变,若DC=n·DF,求AD的值.ABAD的值.AB15.(2011河南,17,9分)如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.16.(2011河南,22,10分)如图,在Rt△ABC中,∠B=90°,BC =5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明现由.(3)当t为何值时,△DEF为直角三角形?请说明理由.24.(10分)如图(1),在△ABC和△EDC中,AC=CE=CB =οCD,∠ACB=∠ECD=90,AB与CE交于F,ED与AB、EBC分别交于M、H.(1)求证:CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45时,试判断四边形ACDM是什么四边形?并证明你的结论.οDE CHDAC A24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;(1)延长MP交CN于点E(如图2)。

中考数学模拟题汇总《平行四边形的证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.2.如图,平形四边形ABCD中,E,F分别是边BC,AD的中点,∠BAC=90°(1)求证:四边形AECF是菱形;(2)若BC=4,∠B=60°,求四边形AECF的面积3.四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)如图1,求证:四边形AEFD是平行四边形;(2)如图2,若E是线段BC中点,连接AF、ED,在不添加任何辅助线和字母的情况下,请直接写出图2中面积是△ABE的面积2倍的三角形.4.如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为8√3,求AC的长.5.如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.6.如图,将▱ABCD的边DC延长到点E,使得CE=DC,连接AE,交BC于点FBC;(1)求证:BF=12(2)若∠AFC=2∠D,连接AC,BE,求证:四边形ABEC是矩形7.已知:平行四边形ABCD,过点A、C分别作AD、BC的垂线,交BD于E、F 两点,连接AF、CE.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,当点F为DE中点时,请直接写出图2中与四边形AECF面积相等的所有三角形.8.如图,四边形ABCD中,对角线相交于点O,E,F,G,H分别是AD,BD,BC,AC的中点.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论. 9.已知如图所示,与关于点成中心对称,连接,.(1)求证:四边形是平行四边形;(2)若的面积为15 ,求四边形的面积.10.如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且 BC.CF= 12(1)求证:DE=CF;(2)求证:BE=EF.x+3与x轴、y轴分别交于点B、A,动点C以每秒2 11.在平面直角坐标系中,直线y=12个单位长度的速度从点B向终点O运动,过点C作∠BCD=∠ABO,交直线AB于点D.设∠BDC=α°,将CD绕点C顺时针旋转α°得到线段CE,连接DE .设四边形BCED与ΔABO的重叠部分面积为S(平方单位),S>0,点C的运动时间为t秒.(1)求AB的长;(2)求证:四边形BCED是平行四边形;(3)求S与t的函数关系式,并直接写出自变量取值范围.12.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin ∠CAE的值.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.14.如图是边长为1的小正三角形组成的网格.(1)在网格中画出一个以AB为边的▱ABCD,使BC的长为无理数且C,D均在格点(即每个小正三角形的顶点)上.(2)针对你所画的平行四边形(不添加任何条件),请你编制一个计算题,并直接写出答案.15.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ//DB,且CQ= DP,连接AP,BQ,PQ .(1)求证:AP=BQ;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.16.如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.参考答案与解析1.【答案】(1)解:∵将△ABC 绕点C 顺时针旋转180°得到△EFC ,∴△ABC ≌△EFC ,∴CA=CE ,CB=CF ,∴四边形ABEF 是平行四边形;(2)解:当∠ABC=60°时,四边形ABEF 为矩形,理由是:∵∠ABC=60°,AB=AC ,∴△ABC 是等边三角形,∴AB=AC=BC . ∵CA=CE ,CB=CF ,∴AE=BF .∵四边形ABEF 是平行四边形,∴四边形ABEF 是矩形. 2.【答案】(1)证明:∵□ABCD , ∴BC =AD ,BC ∥AD. 又∵E ,F 分别是边BC ,AD 的中点, ∴EC = 12 BC ,AF = 12 AD , ∴ECAF ,∴四边形AECF 为平行四边形.在Rt △ABC 中,∠BAC =90°,E 是BC 边中点, ∴AE =EC ,∴四边形AECF 是菱形(2)解:如图,连接EF 交AC 于点O , 在Rt △ABC 中,∠BAC =90°,∠B =60°,BC =4, ∴AB =2,AC = 2√3 . ∵四边形AECF 是菱形, ∴AC ⊥EF ,OA =OC ,OE =OF , ∴OE 是△ABC 的中位线, ∴OE = 12 AB =1, ∴EF =2,∴S 菱形AECF = 12 AC •EF = 12 × 2√3 ×2= 2√3 3.【答案】(1)证明: ∵ 四边形 ABCD 是矩形,∴AB=DC,∠ABE=∠DCF=90°∵BE=CF∴△ABE≅△DCF(SAS)∴AE=DF,∠AEB=∠DFC∴AE//DF∴四边形AEFD是平行四边形;(2)解:有△AED,△AEF,△ADF,△EDF4.【答案】(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形;(2)解:∵∠ACB=30°,∴∠DCO=90°﹣30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=OC,设CF=x,则OC=2x,AC=4x.2,在Rt△DFC中,tan60°=AEEC∴DF=√3 x.∴OC•DF=8 √3.∴x=2.∴AC=4×2=8.5.【答案】(1)证明:∵D,E,F分别是边AB、BC、CA的中点,∴DE,EF是△ABC的中位线,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形.(2)解:∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DEF=∠DHF=∠AHF+∠AHD=70°.6.【答案】(1)证明:因为四边形ABCD是平行四边形所以AB//CD,AB=CD∵CE=DC∴AB=EC所以四边形ABEC是平行四边形,∴BF=1BC .2(2)证明:由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC 因为四边形ABCD是平行四边形,∴∠ABC=∠D∵∠AFC=2∠ADC ∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB∴FA=FE=FB=FC,∴AE=BC所以四边形ABEC是矩形.7.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADE=∠CBD∵EA⊥AD,EC⊥BC,∴∠EAD=∠FCB=90°,∴△EAD≌△FCB,∴EA=FC,∠AED=∠CFB∴EA//FC.∴四边形AECF是平行四边形.(2)解:∵点F为DE中点时,∴EF=FD,由(1)得△EAD≌△FCB,∴ED=BF,∴BE=DF,∴BE=EF=FD,∴S△ABE=S△AEF=S△AFD,同理可证S△BEC=S△CEF=S△CFD,∵四边形AECF是平行四边形,∴S△AEF=S△CEF,∴S△ABE=S△AEF=S△AFD = S△BEC=S△CEF=S△CFD∴正确的三角形有△ABF,△ADE,△BCF,△DCE.8.【答案】(1)解:通过G、H分别为BC、AC中点,可以推出EF∥AB,进而求出EF∥GH.(2)解:∵E、F分别是AD,BD的中点,G、F分别是BC,AC的中点,∴EF=12AB,FG=12CD,∵AB=CD,∴EF=FG,∴平行四边形EFGH是菱形9.【答案】(1)证明:∵与关于点成中心对称,∴即四边形的对角线互相平分,∴四边形是平行四边形.(2)解:记底边上的高为h,那么平行四边形ABCD底边AB上的为2h,因为的面积为15,所以,所以2ABh=60,所以平行四边形ABCD的面积为60 .10.【答案】(1)证明:∵D,E分别为AB,AC的中点,∴DE为中位线,∴DE∥BC,且DE= 12BC,又∵CF= 12BC,∴DE=CF(2)证明:连接DC,由(1)可得DE∥CF,且DE=CF,∴四边形DCFE为平行四边形,∴EF=DC,∵AB=AC,且DE为中位线,∴四边形DBCE为等腰梯形,又∵DC,BE为等腰梯形DBCE的对角线,∴DC=BE,∴BE=EF.x+3与x轴、y轴分别交于点B、A 11.【答案】(1)解:∵直线y=12∴A(0,3),B(−6,0)∴OA=3,OB=6∴AB=3√5(2)解:∵∠DBC=∠DCB∴DB=DC由旋转知CD=CE,∠BDC=∠DCE∴BD∥CE,BD=CE∴四边形ABCD是平行四边形x+3与x轴、y轴分别交于点B、A(3)解:∵直线y=12∴A(0,3),B(−6,0)∴tan∠ABO=12过点D作DH⊥BC于点HBC=t∵BD=CD∴BH=12t∴DH=tan∠DBH⋅BH=12t=t2∴当0<t≤2时s=2t⋅12当2<t≤3时∵OM=12t∴AM=3−12t∵DE∥OB∴∠ADE=∠ABC∴tan∠ADE=tan∠ABC=12∴AMDM =3−12tDM=12∴DM=6−t∴EM=2t−(6−t)=3t−6∵平行四边形ABCD∴∠ABC=∠E∴tan∠E=tan∠ABC=12∴NM=tan∠E⋅ME=32t−3∴SΔMNE=12×12(3t−6)2=94t2−9t+9∴S=−54t2+9t−9∴S={t2(0<t≤2)−54t2+9t−9(2<t≤3)12.【答案】(1)证明:连接OD与BD.∵△BDC是Rt△,且E为BC中点,∴∠EDB=∠EBD.又∵OD=OB且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE是⊙O的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED是平行四边形,则DE∥AB,D为AC中点,又∵BD⊥AC,∴△ABC为等腰直角三角形.∴∠CAB=45°.过E作EH⊥AC于H,设BC=2k,则EH= √22K,AE=√5K,∴sin∠CAE= EHAE =√1010.13.【答案】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形(2)1;214.【答案】(1)解:画出其中一个即可.(2)解:问题:求CD的长;求∠ABC的度数或∠BAD的度数;求BC的长等.求平行四边形ABCD的面积或周长;求AB,CD之间的距离或AD,BC之间的距离;求某个锐角的三角函数值等.图1中,CD=1,∠ABC=30°,BC=√3,周长=2+2√3,AB,CD之间的距离为√32,面积=√32.图2中,CD=1,∠ABC=30°,BC=√3,周长=2+2√3,AB,CD之间的距离为√3,面积=√3 .图3与图4中,CD=1,BC=√7,周长=2+2√7,AB,CD之间的距离为3√32,面积=3√32.图3中,tan∠ABC=3√3,sin∠ABC=314√21,cos∠ABC=114√7 .15.【答案】(1)证明:∵CQ//DB,CQ=DP ∴四边形DCQP是平行四边形∴PQ//CD,PQ=CD∵四边形ABCD是平行四边形∴AB//CD,AB=CD∴AB//PQ,AB=PQ∴四边形ABQP是平行四边形∴AP=BQ(2)证明:∵CQ//DB∴∠DBQ+∠BQC=180°∵∠ABP+∠BQC=180°∴∠ABP=∠QBP由(1)知:四边形ABQP是平行四边形,AB//PQ∴∠ABP=∠QPB∴∠QBP=∠QPB∴BQ=PQ∴四边形ABQP为菱形16.【答案】(1)证明:∵在梯形ABCD中,AB=DC,∴∠B=∠C.∵GF=GC,∴∠C=∠GFC,∴∠B=∠GFC∴AB∥GF,即AE∥GF.∵AE=GF,∴四边形AEFG是平行四边形(2)证明:∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.。

专题训练-平行四边形的证明思路

专题训练-平行四边形的证明思路

专题训练(一) 平行四边形的证明思路【题型1】若已知条件出现在四边形的边上,则应考虑:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.2.如图,在▱ABCD中,点E,F分别在边AB,CD上,BE=DF.求证:四边形AECF是平行四边形.3.如图,在▱ABC D中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.4.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.【题型2】若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明5.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.【题型3】若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明6.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.求证:四边形ABFC为平行四边形.7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,▱ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.求证:四边形AECF 是平行四边形.平行四边形的证明思路1.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,即BE∥CD.又∵EC∥BD,∴四边形BECD 是平行四边形.2.如图,在▱ABCD 中,点E ,F 分别在边AB ,CD 上,BE =DF.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB -BE =CD -DF ,即AE =CF.又∵AE∥CF,∴四边形AECF 是平行四边形.3.如图,在▱ABC D 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴CD =AB ,AD =CB ,∠DAB =∠BCD.又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF=60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD-∠BCF,∠BAE =∠DAB-∠DAE,即∠DCF=∠BAE.在△DCF 和△BAE 中,⎩⎪⎨⎪⎧CD =AB ,∠DCF =∠BAE,CF =AE ,∴△DCF ≌△BAE(SAS ).∴DF =BE.∴四边形BEDF 是平行四边形.4.(钦州中考)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.(1)求证:BF =DC ;(2)求证:四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线,∴CE =BE.在△DEC 和△FEB 中,⎩⎪⎨⎪⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB.∴BF =DC.(SAS )(2)∵DE 是△ABC 的中位线,∴DE ∥AB ,且DE =12AB. 又∵EF=DE ,∴DE =12DF. ∴DF =AB.∴四边形ABFD 是平行四边形.类型 2 若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明5.如图,在四边形ABCD 中,AD ∥BC ,∠A =∠C.求证:四边形ABCD 是平行四边形.证明:∵AD∥BC,∴∠A +∠B=180°,∠C +∠D=180°.∵∠A =∠C,∴∠B =∠D.∴四边形ABCD 是平行四边形.类型3 若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明6.已知:如图,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F.求证:四边形ABFC 为平行四边形.证明:∵AB∥CD,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE.在△ABE 和△FCE 中,⎩⎪⎨⎪⎧∠BAE=∠CFE,∠AEB =∠FEC,BE =CE ,∴△ABE ≌△FCE(AAS ).∴AE =E F.又∵BE=CE ,∴四边形ABFC 是平行四边形.7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,OA =OC ,AB ∥CD.∴∠DFO =∠BEO,∠FDO =∠EBO.∴△FDO ≌△EBO.(AAS )∴OF =OE.∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点,∴OE =12OB ,OF =12OD. ∴OE =OF. ∴四边形AECF 是平行四边形.。

中考数学总复习——四边形证明(含答案)

中考数学总复习——四边形证明(含答案)

专题. 四边形1、平行四边形1.如图,已知:▱ABCD中,∠ABC的平分线BG,交AD于G,∠BCD的平分线CE,交BG于F,交AD于E.(1)求证:BG⊥CE.(2)若AB=3,BC=4,求EG的长.2.如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.(1)求证:△ABF≌△DCE;(2)若∠BFA=40°,求∠BAF的度数.3.如图,在△ABC中,∠ACB=90°,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF ∥AB交直线DE于F.设CD=x.(1)当x=1时,求四边形EACF的面积;(2)当x为何值时,四边形EACF是菱形?请说明理由.4.如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.2、菱形1.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,连接EB,GD.且∠DAB=∠EAG。

(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.2.如图,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.3.菱形ABCD中,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°(1)如图1,当点E是CB上任意一点时(点E不与B、C重合),求证:BE=CF;(2)如图2,当点E在CB的延长线上时,且∠EAB=15°,求点F到BC的距离.4.如图1,菱形ABCD中,∠BAD=60°,点E、F分别是边AB、AD上两个动点,满足AE=DF,连接BF与DE相交于点G.(1)如图2,连接BD,求∠BGD的度数;(2)如图3,作CH⊥BG于H点,求证:2GH=DG+BG.5.如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.6.如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求cos∠CDE的值.7.如图,已知ABCD是菱形,△EFP的顶点E,F,P分别在线段AB,AD,AC上,且EP=FP.(1)证明:∠EPF+∠BAD=180°;(2)若∠BAD=120°,证明:AE+AF=AP;(3)若∠BAD=θ,AP=a,求AE+AF.8.如图.在菱形ABCD中,BC边的中垂线EF交AD边于F,G是CD中点.(1)求证:EG=FG;(2)若△DFG为等腰三角形,求∠D的度数.9.如图1,四边形ABCD为菱形,E为对角线AC上的一个动点,连接DE并延长交射线AB于点F,连接BE.(1)求证:∠F=∠EBC;(2)若∠DAB=90°,当△BEF为等腰三角形时,求∠F的度数(如图2).10.在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论:.(填“成立”或“不成立”)(3)如图3,当点E是线段AC延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.15.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.16.如图①,已知点O为菱形ABCD的对称中心,∠A=60°,将等边△OEF的顶点放在点O处,OE,OF分别交AB,BC于点M,N.(1)求证:OM=ON;(2)将图①中的△OEF绕O点顺时针旋转至图②所示的位置,请写出线段BM,BN与AB之间的数量关系,并进行证明.17.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否会发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否会发生变化?若不变,请说明理由;若变化,请探究OE、OF之间的数量关系,并说明理由.3、矩形1.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.2.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,连接CE,求CE的长.3.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.4.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?4、正方形6.已知:如图,在△ABC中,∠A>90°.以AB、AC为边分别在△ABC形外作正方形ABDE和正方形ACFG,EB、BC、CG、GE的中点分别是P、Q、M、N.(1)若连接BG、CE,求证:BG=CE.(2)试判断四边形PQMN为怎样的四边形,并证明你的结论.7.已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?8.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为;位置关系为.9.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.10.猜想与证明:如图,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM,EM.(1)试猜想写出DM与EM的数量关系,并证明你的结论.拓展与延伸:(2)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则(1)中的结论是否仍然成立?请直接写出你的判断.11.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.12.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连接CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长.13.如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出的值为(不必写出计算过程).14.(1)如图1,在正方形ABCD中,点O是对角线AC的中点,点E是边BC上一点,连接OE,过点O 作OE的垂线交AB于点F.求证:OE=OF.(2)若将(1)中,“正方形ABCD”改为“矩形ABCD”,其他条件不变,如图2,连接EF.▱)求证:∠OEF=∠BAC.▱)试探究线段AF,EF,CE之间数量上满足的关系,并说明理由.15.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE=EN,连接CN、CE.(1)求证:△CAN为直角三角形.(2)若AN=4,正方形的边长为6,求BE的长.16.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.17.如图,正方形ABCD的对角线AC、BD相交于点O,延长CB至点F,使CF=CA,∠ACF的平分线分别交AF、AB、BD于点E、N、M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.18.如图,点E为正方形ABCD外一点,点F是线段AE上一点,在△EBF中,∠EBF=90°,BF=BE,连接CE、CF.(1)求证:△ABF≌△CBE;(2)填空:用等式表示线段FA、FE、FC之间的数量关系为.19.已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.20.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.参考答案四边形1.【解答】(1)证明:∵▱ABCD,∴AB∥CD,∴∠ABC+∠BCD=180°,又∵BG、CE分别是∠ABC和∠BCD的角平分线,∴∠ABG=∠CBG,∠BCE=∠DCE,又∵∠ABG+∠CBG+∠BCE+∠DCE=180°,∴∠CBG+∠BCE=90°,在△BCF中,∠BFC=180°﹣∠CBF﹣∠BCF=90°;即BG⊥CE;(2)解:∵▱ABCD,∴AD∥BC,AB=CD=3,AD=BC=4,∴∠AGB=∠CBG,又∵BG是∠ABC的角平分线,∴∠ABG=∠CBG,∴∠AGB=∠ABG,∴AB=AG=3,∴GD=AD﹣AG=4﹣3=1,同理:AE=1,∴EG=AD﹣AE﹣GD=4﹣1﹣1=2.2.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∵BE=CF,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SSS);(2)解:∵△ABF≌△DCE,∴∠B=∠C,∵AB∥DC,∴∠B+∠C=180°,∴∠B=90°,∴∠BAF=90°﹣∠BFA=90°﹣40°=50°.3.【解答】解:(1)∵DE⊥BC,∠ACB=90°;∴EF∥AC∵CF∥AB;∴▱EACF的面积=2×1=2(2)由(1)可知四边形EACF是平行四边形,则∠A=∠CFD,EF∥AC,故∠ACB=∠FDC,故△ABC∽△FCD,即AB:CF=BC:CD又∵AB==(勾股定理),BC=3所以当CF=AC=2时,四边形EACF是菱形.∴:2=3:CD所以x=CD=时,▱EACF是菱形.4.【解答】证明:(1)∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即:∠EAB=∠DAC,∴△ABE≌△ACD(SAS);(2)证明:∵△ABE≌△ACD,∴BE=DC,∠EBA=∠DCA,又∵BF=DC,∴BE=BF.∵△ABC是等边三角形,∴∠DCA=60°,∴△BEF为等边三角形.∴∠EFB=60°,EF=BF∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC=∠EFB,∴EF∥BC,即EF∥DC,∵EF=BF,BF=DC,∴EF=DC,∴四边形EFCD是平行四边形.菱形1.【解答】(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2 ,∴EB===,∴GD=.2.【解答】解:(1)∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AD,∴BE+BC=AD+AB,即CE=BD,在△ACE和△CBD中,,∴△ACE≌△CBD(SAS);(2)如图,连接AC,易知△ABC是等边三角形,由(1)可知△ACE≌△CBD,∴∠E=∠D,∵∠BAE=∠DAG,∴∠E+∠BAE=∠D+∠DAG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.3.【解答】(1)证明:连接AC,如图1中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(2)解:如图2中,过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°,AB=4,∴BG=AB=2,AG=BG=2 ,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2 ,∴EB=EG﹣BG=2 ﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2 ﹣2,在RT△CHF中,∵∠HCF=180°﹣∠BCD=60°,CF=2 ﹣2,∴FH=CF•sin60°=(2 ﹣2)•=3﹣.∴点F到BC的距离为3﹣.4.【解答】(1)解:如图2中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,,∴△DAE≌△BDF,∴∠ADE=∠DBF,∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,∴∠BGD=180°﹣∠BGE=120°.(2)证明:如图3中,延长GE到M,使得GM=GB,连接BD、CG.∵∠MGB=60°,GM=GB,∴△GMB是等边三角形,∴∠MBG=∠DBC=60°,∴∠MBD=∠GBC,在△MBD和△GBC中,,∴△MBD≌△GBC,∴DM=GC,∠M=∠CGB=60°,∵CH⊥BG,∴∠GCH=30°,∴CG=2GH,∵CG=DM=DG+GM=DG+GB,∴2GH=DG+GB.5.【解答】(1)证明:∵四边形ABCD是菱形,∴CD=CB.在△CFD和△CEB中,,∴△CFD≌△CEB(SSS);(2)解:∵△CFD≌△CEB,∴∠CDB=∠CBE,∠DCF=∠BCE.∵四边形ABCD是菱形,∴∠CBD=∠ABD.∵CD=CB,∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°.∴∠DCB=60°.∵∠FCE=60°,∵CF=CE,∴∠CFE=∠CEF=60°.6.【解答】(1)证明:∵四边形ABCD是菱形;∴AD∥BC,∠BOC=90°,∵DE⊥BD,∴∠BDE=90°,∴∠BDE=∠BOC,∴AC∥DE,∴四边形ACED是平行四边形.(2)解:∵四边形ACED是平行四边形,∴AD=CE,∵AD=BC,∴BC=CE,∵∠BDE=90°,∴DC=CE,∴∠CDE=∠E,∴cos∠CDE=cos∠E,∵BD=4,AC=3,∠BDE=90°,∴BE=5,∴cos∠E==,∴cos∠CDE=cos∠E=.7.【解答】解:(1)如图1中,作PM⊥AD于M,PN⊥AC于N.∵四边形ABCD是菱形,∴∠PAM=∠PAN,∴PM=PN,∵PE=PF,∴Rt△PMF≌Rt△PNE,∴∠MPF=∠NPE,∴∠EPF=∠MPF,∵∠BAD+∠MPN=360°﹣∠AMP﹣∠ANP=180°,∴∠EPF+∠BAD=180°.(2)如图2中,作PM⊥AD于M,PN⊥AC于N.由(1)可知Rt△PMF≌Rt△PNE,∴FM=NE,∵PA=PA,PM=PN,∴Rt△PAM≌Rt△PAN,∴AM=AN,∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,∵∠BAD=120°,∴∠PAM=60°,易知PA=2AM,∴AE+AF=PA.(3)结论:AF+AE=PA•cos.理由:如图2中,作PM⊥AD于M,PN⊥AC于N.由(1)可知Rt△PMF≌Rt△PNE,∴FM=NE,∵PA=PA,PM=PN,∴Rt△PAM≌Rt△PAN,∴AM=AN,∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,∵∠BAD=θ,∴∠PAM=,易知AM=PA•cos,∴AF+AE=PA•cos.8.【解答】(1)证明:如图1中,延长FH交BC的延长线于M/∵四边形ABCD是菱形,∴AD∥BM,∴∠DFH=∠M,在△FDH和△MCH中,‘,∴△FDH≌△MCH,∴FH=HM,∵FE⊥BC,∴∠FEM=90°,∴EH=FH=HM,∴EH=FH.(2)解:如图2中,①当FD=FH时,设∠M=∠DFH=x,∵BE=EC,CH=DH,BC=CD,∴EC=CH,∴∠CEH=∠CHE,∵HE=HM,∴∠CEH=∠CHE=∠M=x,∴∠HCM=∠ECH+∠EHC=2x=∠D=∠FHD,∵∠DFH+∠D+∠FHD=180°,∴x+2x+2x=180°,∴5x=180°,∴x=36°,∴∠D=72°.②当∠D=90°时,易知DF=DH,△DEF是等腰直角三角形,综上所述,当△DFH是等腰三角形时,∠D=72°或90°.9.【解答】(1)证明:∵四边形ABCD是菱形,∴CD=AB,∠ACD=∠ACB,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE,∵CD∥AB,∴∠CDE=∠AFD,∴∠EBC=∠AFD,即∠F=∠EBC;(2)解:分两种情况:①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,解得:x=30,∴∠EFB=30°;②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠F=30°或120°.10.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF;(2)解:结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)解:结论成立.证明如下:过点E作EG∥BC交AB延长线于点G,如图3所示:∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.11.【解答】解:拓展:∵四边形ABCD、四边形CEFG均为菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG.(6分)应用:∵四边形ABCD为菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=2ED,∴S△CDE=×8=,∴S△ECG=S△CDE+S△CDG=,∴S菱形CEFG=2S△ECG=.故答案为:.(9分)12.【解答】(1)证明:取BC的中点G,连接OG∵四边形ABCD是菱形,∠A=60°∴∠A=∠C=∠ABD=60°,AB=BC=CD=DA,∵点O为菱形ABCD的对称中心,∴OD=OB∴OG∥CD ∴∠BGO=∠C=60°,OG=OB∵△OEF是等边三角形,∴∠EOF=60°,∴∠BOM=∠NOG又∵∠BGO=∠ABD=60°在△OBM和△OGN中,,∴△OBM≌△OGN(ASA),∴OM=ON;(2)证明:取BC中点G,同理可证:△OBM≌△OGN,∴BM=GN,∴BG=BN﹣NG,∴BN﹣BM=BG=AB.17.【解答】解:(1)如图,连接AC与BD相交于点G,在菱形ABCD中,AC⊥BD,BG=BD=×16=8,由勾股定理得,AG===6,∴AC=2AG=2×6=12,菱形ABCD的面积=AC•BD=×12×16=96;故答案为:12;96;(2)如图1,连接AO,则S△ABD=S△ABO+S△ADO,所以,BD•AG=AB•OE+AD•OF,即×16×6=×10•OE+×10•OF,解得OE+OF=9.6是定值,不变;(3)如图2,连接AO,则S△ABD=S△ABO﹣S△ADO,所以,BD•AG=AB•OE﹣AD•OF,即×16×6=×10•OE﹣×10•OF,解得OE﹣OF=9.6,是定值,不变,所以,OE+OF的值变化,OE、OF之间的数量关系为:OE﹣OF=9.6.3、矩形1.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.2.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,又∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是矩形.(2)解:∵∠BCD=120°,四边形ABCD是菱形,∴∠BAD=∠BCD=120°,∠CAB=∠CAD=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=2,OB=OD=AE=3,在Rt△AEC中,EC===.3.【解答】(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF=x,则EF=BF=x,EC=CD﹣DE=10﹣6=4cm,FC=BC﹣BF=8﹣x,在Rt△EFC中,EC2+FC2=EF2,即42+(8﹣x)2=x2,解得x=5,故BF=5cm;(3)解:在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴AF==5cm.4.【解答】证明:(1)∵AB∥CD,且FC=AB,∴四边形ABCF为平行四边形,∵∠B=90°,∴四边形ABCF是矩形;(2)∵EA=EG,∴∠EAG=∠EGA=∠FGC,∵四边形ABCF为矩形,∴∠AFC=∠AFD=90°,∴∠D+∠DAF=∠FGC+∠ECD=90°,∴∠D=∠ECD,∴ED=EC.5.【解答】(1)证明:∵AO=CO,BO=DO;∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.6.【解答】(1)证明:连接BG和CE交于O,∵四边形ABDE和四边形ACFG是正方形,∴AB=AE,AC=AG,∠EAB=∠GAC,∴∠EAB+∠EAG=∠GAC+∠EAG,∴∠GAB=∠EAC,在△BAG和△EAC中,,∴△BAG≌△EAC(SAS),∴BG=CE.(2)四边形PQMN为正方形,证明:∵EB、BC、CG、GE的中点分别是P、Q、M、N,∴PN∥BG,MN=CE,MN∥CE,PQ=CE,PQ∥CE,PN=BG,∵BG=CE,∴PN=MN,MN=PQ,MN∥PQ,∴四边形PQMN是菱形,∵△BAG≌△EAC,∴∠GBA=∠AEC,∵四边形ABDE是正方形,∴∠EAB=90°,∴∠ABG+∠BWA=90°,∵∠BWA=∠GWE,∴∠GWE+∠AEC=90°,∴∠EOW=180°﹣90°=90°,∵MN∥CE,PN∥BG,∴∠NZO=∠EOW=90°,∠NIO=90°,∴∠MNP=360°﹣90°﹣90°﹣90°=90°;∴菱形PQMN是正方形,即四边形PQMN为正方形.7.【解答】(1)答:AB=AH,证明:延长CB至E使BE=DN,连接AE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°﹣∠ABC=90°又∵AB=AD,∵在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴∠1=∠2,AE=AN,∵∠BAD=90°,∠MAN=45°,∴∠2+∠3=90°﹣∠MAN=45°,∴∠1+∠3=45°,即∠EAM=45°,∵在△EAM和△NAM中,,∴△EAM≌△NAM(SAS),又∵EM和NM是对应边,∴AB=AH(全等三角形对应边上的高相等);(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∵∠BAC=45°∴∠EAF=90°延长EB、FC交于点G,则四边形AEGF是矩形,又∵AE=AD=AF∴四边形AEGF是正方形,由(1)、(2)知:EB=DB=2,FC=DC=3,设AD=x,则EG=AE=AD=FG=x,∴BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52;解得x1=6,x2=﹣1,故AD的长为6.8.【解答】(1)解:由题意得:∠BAC=∠BCA=45°,AO=PA,∠AEO=∠AFO,在△AEO和△CFO中,∴△AEO≌△CFO(AAS)∴OE=OF(相等);(1分)(2)解:OE=OF,OE⊥OF;(3分)证明:连接BO,∵在正方形ABCD中,O为AC中点,∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)∵PF⊥BC,∠BCO=45°,∴∠FPC=45°,PF=FC.∵正方形ABCD,∠ABC=90°,∵PF⊥BC,PE⊥AB,∴∠PEB=∠PFB=90°.∴四边形PEBF是矩形,∴BE=PF.(5分)∴BE=FC.∴△OBE≌△OCF,∴OE=OF,∠BOE=∠COF,(7分)∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°,∴∠EOF=90°,∴OE⊥OF.(8分)(3)OE=OF(相等),OE⊥OF(垂直).(10分)9.【解答】(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.10.【解答】解:(1)结论:DM=EM.理由:如图1,延长EM交AD于点H,∵四边形ABCD和ECGF是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,,∴△FME≌△AMH,∴HM=EM,在直角△HDE中,HM=EM,∴DM=HM=EM,∴DM=EM.(2)成立.(证明方法类似),11.【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)答:四边形ABNE是正方形;理由如下:证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD△AEF≌△ABD(SAS),∴BD=EF;∵CD=CB,∠BCD=90°,∴∠CBD=45°,∵∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.12.【解答】证明:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=13.【解答】(1)证明:∵四边形ABCD和AEFG都是正方形,∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,∴BE=AB﹣AE,DG=AD﹣AG,∴BE=DG,在△BEF和△DGF中,,∴△BEF≌△DGF(SAS),∴BF=DF;(2)解:∵BF=DF;∴点F在对角线AC上,∵AD∥EF∥BC,∴CF:BE=AF:AE=AE:AE=,∴CF:BE=.14.【解答】证明:(1)连接OB,∵在正方形ABCD中,O是AC的中点,∴OB=OA,∠OAB=∠OBA=∠OBC=45°,∴∠AOB=90°,又∵OE⊥OF,∴∠AOF=∠BOE,在△AOF和△BOE中,,∴△AOF≌△BOE,∴OE=OF;(2)①∵∠EOF=∠FBE=90°,∴O,E,F,B四点共圆,∴∠OBA=∠OEF,∵在矩形ABCD中,O是AC的中点,∴OA=OB,∠OAB=∠OBA,∴∠OEF=∠BAC;②如图,连接BD,延长EO交AD于G,∵BD与AC交于O,则△OGD≌△DEB,∴OG=OE,∴AG=CE,∵OF⊥GE,∴FG=EF,在Rt△AGF中,GF2=AG2+AF2,即EF2=CE2+AF2.15.【解答】解:(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,AB=CB,在△ABE和∠CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;∵AE=CE,AE=EN,∴∠EAC=∠ECA,CE=EN,∴∠ECN=∠N,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN为直角三角形;(2)∵正方形的边长为6,∴AC=BD=6,∵∠ACN=90°,AN=4,∴CN==2,∵OA=OC,AE=EN,∴OE=CN=,∵OB=BD=3,∴BE=OB+OE=4.16.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.17.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)EM=CN.理由如下:连接FN,∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴BF=BN,∴∠CBN=∠FNB=45°,∵四边形ABCD是正方形,∴∠DBC=45°,∵EO∥BC,∴∠EOM=∠DBC=45°,∠OEM=∠FCN,∴∠CFN=∠EOM,∴△CFN∽△EOM,∴,即.∴EM=CN.18.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,,∴△ABF≌△CBE(SAS).(2)解:结论:FE2=FA2+FC2.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形,∵FE2=FC2+EC2,∵△ABF≌△CBE,∴AF=EC,∴FE2=FA2+FC2.故答案为FE2=FA2+FC2.20.【解答】解:(1)BM=DF,BM⊥DF.理由:∵四边形ABCD、AMEF是正方形,∴AF=AM,AD=AB,∠FAM=∠DAB=90°,∴∠FAM﹣∠DAM=∠DAB﹣∠DAM,即∠FAD=∠MAB,∵在△FAD和△MAB中,,∴△FAD≌△MAB,∴BM=DF,∠FDA=∠ABD=45°,∵∠ADB=45°,∴∠FDB=45°+45°=90°,∴BM⊥DF,即BM=DF,BM⊥DF.(2)BM=DF,BM⊥DF都成立,理由是:∵四边形ABCD和AMEF均为正方形,∴AB=AD,AM=AF,∠BAD=∠MAF=90°,∴∠FAM+∠DAM=∠DAB+∠DAM,即∠FAD=∠MAB,∵在△FAD和△MAB中,,∴△FAD≌△MAB,∴BM=DF,∠ABM=∠ADF,由正方形ABCD知,∠ABM=∠ADB=45°,∴∠BDF=∠ADB+∠ADF=90°,即BM⊥DF,∴(1)中的结论仍成立.21.【解答】(1)证明:∵E是BC的中点,∴BE=CE,在正方形ABCD和正方形BFGE中,BC=CD,BE=BF,∴BF=CE,在△BCF和△CDE中,,∴△BCF≌△CDE(SAS),∴DE=CF;(2)解:设CE=x,∵∠CDE=30°,∴tan∠CDE==,∴CD=x,∵正方形ABCD的边BC=CD,∴BE=BC﹣CE=x﹣x,∵正方形BFGE的边长BF=BE,∴tan∠BCF===,∵正方形BGFE对边BC∥GF,∴∠BCF=∠GFH,∵tan∠GFH=,∴=.。

2023年中考九年级数学高频考点 专题训练--平行四边形的判定

2023年中考九年级数学高频考点 专题训练--平行四边形的判定

2023年中考九年级数学高频考点专题训练--平行四边形的判定一、综合题1.如图,在□ ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.2.如图,E、F是平行四边形ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件A E=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?3.如图,平行四边形ABCD 中,AB=8 cm,BC=12 cm,⊥B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF 是平行四边形;(2)①AE=cm 时,四边形CEDF 是矩形,请写出判定矩形的依据(一条即可);②AE=cm 时,四边形CEDF 是菱形,请写出判定菱形的依据(一条即可).4.如图,四边形ABCD中,AD⊥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.(1)求证:四边形ABCD是平行四边形.(2)若⊥BAE=⊥BDC,AE=3,BD=9,AB=4,求四边形ABCD的周长.5.如图,直线y=−2x+10与x轴交于点A,点B是该直线上一点,满足OB=OA.(1)求点B的坐标;(2)若点C是直线上另外一点,满足AB=BC,且四边形OBCD是平行四边形,试画出符合要求的大致图形,并求出点D的坐标.6.如图,在⊥ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若⊥A=50°,则当⊥BOD= °时,四边形BECD是矩形.7.如图,在⊥AFC中,⊥FAC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD。

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案

中考数学总复习《平行四边形的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在▱ABCD中,E为BC的中点,DE、AC交于点F,则EFDF的值为()A.1B.13C.23D.122.在□ ABCD中,∠A=70∘,则∠B度数为()A.110∘B.100∘C.70∘D.20∘3.如图,在□ABCD中,对角线AC,BD交于点O,下列结论一定成立的是()A.AC⊥BD B.AO=OD C.AC=BD D.OA=OC4.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.4√5B.5√5C.5√2D.6√25.如图,在平行四边形ABCD中,⊥A=130°,在AD上取DE=DC,则⊥ECB的度数是()A.65°B.50°C.60°D.75°6.已知▱ABCD中,∠A+∠C=70°,则∠B的度数为()A.125°B.135°C.145°D.155°7.在平行四边形ABCD中,若⊥A+⊥C=80°,则⊥B的度数是()A.140°B.100°C.40°D.120°8.如图,在▱ABCD中,点F是线段CD上一点,点A作▱BFGE,当点F从点C向点D运动过程中,四边形BFGE的面积的变化情况是()A.保持不变B.一直减小C.一直增大D.先增大后减小9.如图,在平行四边形ABCD中,⊥BAD的平分线交BC于点E,⊥ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1610.如图,在⊥ABCD中,点E是DC边上一点,连接AE,BE,若AE,BE分别是⊥DAB,⊥CBA的角平分线,且AB=4,则⊥ABCD的周长为()A.10B.8 C.5 D.1211.如图,▱ABCD的对角线AC,BD交于点O,EF和GH过点O,且点E,H在边DC上,点G,F 在边AB上,若▱ABCD的面积为10,则阴影部分的面积为()A.6B.4C.3D.5212.如图,平行四边形ABFC的对角线x∈(1,e)相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD、OE,若平行四边形ABFC的面积为48,则SΔEOG的面积为()A.4B.5C.2D.3二、填空题13.如图,E是⊥ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,⊥F=70°,则⊥D=度.14.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若∠1=∠2=50∘,则为.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若⊥BOC的周长比⊥AOB的周长大2cm,则CD=cm.16.在平行四边形ABCD中,⊥BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.17.如图,已知⊥ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标18.如图,E、F分别是⊥ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S⊥APD=10cm2,S⊥BQC=20cm2,则阴影部分的面积为cm2.三、综合题19.如图,▱ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作⊥DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,⊥DAB=60°,求四边形AFED的面积.20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC 是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.21.如图,在▱ABCD中AE⊥BC于E,AF⊥CD于F,且CE=CF.(1)求证:AE=AF;(2)求证:四边形ABCD是菱形.22.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.(1)求证:四边形ACED是矩形;(2)若⊥AOD=120°,AC=4,求对角线CD的长.23.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.24.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是⊥BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若⊥B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)参考答案1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】A6.【答案】C7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】D12.【答案】C13.【答案】4014.【答案】105°15.【答案】416.【答案】217.【答案】(3,2),(﹣5,2),(1,﹣2)18.【答案】3019.【答案】(1)证明:∵AE为⊥DAB的角平分线∴⊥DAE=⊥EAF∵AB//CD∴⊥DEA=⊥EAF∴⊥DAE=⊥DEA∴AD=DE∵AD=AF∴DE=AF∵DE//AF∴四边形AFED为平行四边形∵AD=DE∴四边形AFED是菱形.(2)解:连接DF交AE于点O,如图所示:∵⊥DAB=60°,DA=AF ∴⊥DAF为等边三角形∵AD=4∴DF=4,DO=2∴AO= 2√3,AE= 4√3∴S四边形AFED= 12×4×4√3= 8√3.20.【答案】(1)证明:∵四边形ABCD是平行四边形∴AO=CO∵⊥EAC是等边三角形∴EA=EC∴EO⊥AC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,AC=8∴AO=CO=4,DO=BO在Rt⊥ABO中,BO=√AB2−AO2=3∴DO=BO=3在Rt⊥EAO中,EO=√EA2−AO2=4√3∴ED=EO-DO=4√3-3.21.【答案】(1)证明:∵AE⊥BC于E,AF⊥CD于F.∴△ACE与△ACF为直角三角形∵CE=CF,AC=AC∴Rt△ACE≌Rt△ACF(HL)∴AE=AF;(2)证明:∵在▱ABCD中,AE⊥BC于E,AF⊥CD于F ∴∠B=∠D∵AE=AF(已证)∴△ABE≌△ADF(AAS)∴AB=AD∴▱ABCD为菱形.22.【答案】(1)证明:四边形ABCD是平行四边形AD⊥BC,AD=BC,AB=DCCE=BCAD=CE,AD⊥CE四边形ACED是平行四边形AB=DC,AE=ABAE=DC四边形ACED是矩形;(2)解:四边形ACED是矩形,OA= 12AE,OC=12CD,AE=CD,OA=OC⊥AOC=180°-⊥AOD=180°-120°=60°⊥AOC是等边三角形OC=AC=4CD=8.23.【答案】(1)解:如图1,如图2;(2)624.【答案】(1)证明:如图(1)∵AE 是⊥BAD 的平分线 ∴⊥BAF=⊥DAF∵在平行四边形ABCD 中 ∴AB⊥DF ,AD⊥BC ∴⊥BAF=⊥F ,⊥DAF=⊥CEF ∴⊥F=⊥DAF=⊥CEF ∴CE=FC(2)解:四边形ABFC 是矩形 理由:如图(2)∵⊥B=60°,AD⊥BC ∴⊥BAD=120° ∵⊥BAF=⊥DAF ∴⊥BAF=60°则⊥ABE 是等边三角形可得AB=BE=AE ,⊥BEA=⊥AFC=60° ∵BC=2AB ∴AE=BE=EC∴⊥ABC 是直角三角形,⊥BAC=90° 在⊥ABE 和⊥FCE 中 ∵{∠ABE =∠FCE BE =EC ∠BEA =∠CEF ∴⊥ABE⊥⊥FCE (ASA ) ∴AB=FC 又∵AB⊥FC∴四边形ABFC 是平行四边形 再由⊥BAC=90°故四边形ABFC 是矩形.。

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,四边形ABCD 的对角线AC 、BD 交于点O ,已知O 是AC 的中点,AE=CF ,DF ∥BE.
(1)求证:△BOE≌△DOF ;
(2)若OD=
2
1AC ,则四边形ABCD 是什么特殊四边形请证明你的结论.
2、已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD
边上,BE=DF ,连接CE ,AF.求证:AF=CE.
3、如图,在平行四边形ABCD 中,∠C=60°,M 、N 分别
是AD 、BC 的中点,BC=2CD.
(1)求证:四边形MNCD 是平行四边形;
(2)求证:BD=3MN.
4、如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5 cm,AP=8 cm,求△APB的周长.5、如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
6、已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.
7、如图,四边形ABCD是平行四边形,AC是对角线,BE ⊥AC,垂足为E,DF⊥AC,垂足为F.求证:BE=DF.
8、如图3-34所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且BG=DH,求证四边形EGFH 是平行四边形.9、如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
10、如图,已知四边形ABDE是平行四边形,C为边B D 延长线上一点,连结AC、CE,使AB=AC.
⑴求证:△BAD≌△AEC;
⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.
11、如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.
(1) 求证:AB=AF;
(2)当AB=3,BC=5时,求的值.12、已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD 于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
13、如图所示,已知在平行四边形ABCD中,BE=DF,求证:AE=CF.14、已知:如图,在△ABC中,,D是BC的中点,,CE ∥AD.如果AC=2,CE=4.
(1)求证:四边形ACED是平行四边形;
(2)求四边形ACEB的周长;
(3)直接写出CE和AD之间的距离.
15、如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.16、如图9,平行四边形ABCD中,AE、CF分别平分∠DAC、∠BCA,则四边形AFCE是平行四边形吗为什么
17、如图,在△ABC中,D是BC边上的一点,E是AD
的中点,过A点作BC的平行线交CE的延长线于F ,且AF=BD,连结BF
(1)求证:D是BC的中点.
(2)如果AB=AC ,试判断四边形AFBD的形状,并证明你的结论.
18、如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.
求证:△EBC≌△FDA.19、如图,在□ABCD中,为边上一点,且.(1)求证:;
(2)若平分,,求的度数.
20、如图,已知平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,(14分)
(1)若AE=3cm,AF=4cm,AD=8cm,求:CD的长.
(2)若平行四边形的周长为36cm,AE=4cm,AF=5cm,求平行四边形ABCD的面积.21、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.
求证:四边形AECF是平行四边形.
22、如图,在□ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.
(1)求证:△AEB≌△CFD;
(2)若四边形EBFD是菱形,求∠ABD的度数.23、已知,如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE交于点G.求证:GF=GC.
24、已知,如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.
求证:四边形EFGH是平行四边形.25、如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.
26、如图,四边形中,,点在的延长线上,联结,交于点,联结DB,,且.
(1) 求证:;
(2)当平分时,求证:四边形是菱形.
27、已知:如图,在□ABCD中,E是CA延长线上的点,F 是AC延长线上的点,且AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.28、如图,在□ABCD中,AC、BD交于点O,EF过点O,分别交CB、AD的延长线于点E、F.。

求证:AE=CF
.。

相关文档
最新文档