(易错题精选)初中数学几何图形初步易错题汇编及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(易错题精选)初中数学几何图形初步易错题汇编及解析

一、选择题

1.下列图形中1∠与2∠不相等的是( )

A .

B .

C .

D .

【答案】B

【解析】

【分析】

根据对顶角,平行线,等角的余角相等等知识一一判断即可.

【详解】

解:A 、根据对顶角相等可知,∠1=∠2,本选项不符合题意.

B 、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.

C .根据平行线的性质可知:∠1=∠2,本选项不符合题意.

D 、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.

故选:B .

【点睛】

本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是( )

A .

B .

C .

D .

【答案】D

【解析】

【分析】

根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.

【详解】

解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.

故选:D.

【点睛】

本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.

3.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()

A.38°B.104°C.142°D.144°

【答案】C

【解析】

∵∠AOC=76°,射线OM平分∠AOC,

∴∠AOM=1

2

∠AOC=

1

2

×76°=38°,

∴∠BOM=180°−∠AOM=180°−38°=142°,

故选C.

点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.

4.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.

D.

【答案】D

解:Rt △ACB 绕直角边AC 旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D .

首先判断直角三角形ACB 绕直角边AC 旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.

5.将一副三角板如下图放置,使点A 落在DE 上,若BC DE ,则AFC ∠的度数为

( )

A .90°

B .75°

C .105°

D .120°

【答案】B

【解析】

【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.

【详解】

∵//BC DE

∴30E BCE ==︒∠∠

∴453075AFC B BCE =+=︒+︒=︒∠∠∠

故答案为:B .

【点睛】

本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.

6.下列图形中,是正方体表面展开图的是( )

A .

B .

C .

D .

【答案】C

【解析】

【分析】

利用正方体及其表面展开图的特点解题.

【详解】

解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C .

本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.

7.下列各图经过折叠后不能围成一个正方体的是()

A.B.C.D.

【答案】D

【解析】

【分析】

由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.

【详解】

解:A、是正方体的展开图,不符合题意;

B、是正方体的展开图,不符合题意;

C、是正方体的展开图,不符合题意;

D、不是正方体的展开图,缺少一个底面,符合题意.

故选:D.

【点睛】

本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()

A.黑B.除C.恶D.☆

【答案】B

【解析】

【分析】

正方体的空间图形,从相对面入手,分析及解答问题.

【详解】

解:将其折成正方体后,则“扫”的对面是除.

【点睛】

本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.

9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()

A.1 B.2 C.3 D.4

【答案】C

【解析】

试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.

∴EP+FP=EP+F′P.

由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时

EP+FP=EP+F′P=EF′.

∵四边形ABCD为菱形,周长为12,

∴AB=BC=CD=DA=3,AB∥CD,

∵AF=2,AE=1,

∴DF=AE=1,

∴四边形AEF′D是平行四边形,

∴EF′=AD=3.

∴EP+FP的最小值为3.

故选C.

考点:菱形的性质;轴对称-最短路线问题

10.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )

相关文档
最新文档