圆形磁场中的几个典型问题分析
圆形磁场的聚焦问题 精品课件
B
C.
M 2R
D.
M 2R
O
2R
N
O
R 2R N
M
O
N
……以速率 v 沿纸面各个方向由小孔O射入磁场
2R 2R
2R
2R
O
O
R R 2R
2R
O
2R
2R
O
R 2R
A.
B.
C.
D.
例、如图,半径为 r=3×10-2m的圆形区域内有一匀强磁场
B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入磁
0
解:(1) R1+R1sin30º = L/2 得R1 = L/3 R2- R2cos60º = L/2 得:R2 = L。
qBL (1) m ≥v0≥
qBL 3m
a
b
R1
O
v 0
R2 B c
d
例2、如图所示,一足够长的矩形区域abcd内充满方向 垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O,方向垂直磁场向里射入一速度方向跟ad边 夹角θ=30°、大小为v 的带正电粒子,已知粒子质 量为m,电量为q,ad边长为L,ab边足够长,粒子 重力不计,求:(2)如果带电粒子不受上述v 大小范 围的限制,求粒子在磁场中运动的最长时间.
例2、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在 ad边中点O,方向垂直磁场向里射入一速度方向跟 ad边夹角θ=30°、大小为v 的带正电粒子,已知 粒子质量为m,电量为q,ad边长为L,ab边足够 长,粒子重力不计,求:(1)粒子能从ab边上射出 磁场的v0大小范围.
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
圆形磁场中的几个典型问题的相关规律练习
圆形磁场中的几个典型问题的相关规律练习一、当圆形磁场的半径与圆轨迹半径相等时,即“磁聚焦”存在两条特殊规律规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。
【典型题目练习】1.如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电,电荷量为q ,质量为m ,速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足qBR v m,沿不同方向入射的粒子出射后均可垂直打在MN 上 2.如图所示,长方形abed 的长ad =0.6m ,宽ab =0.3m ,O 、e 分别是ad 、bc 的中点,以e 为圆心eb 为半径的四分之一圆弧和以O 为圆心Od 为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T 。
一群不计重力、质量m=3×10-7kg 、电荷量q=+2×10-3C 的带正电粒子以速度v =5×102m/s 沿垂直ad 方向且垂直于磁场射人磁场区域,则下列判断正确的是( )A .从Od 边射入的粒子,出射点全部分布在Oa 边B .从aO 边射入的粒子,出射点全部分布在ab 边C .从Od 边射入的粒子,出射点分布在ab 边D .从ad 边射人的粒子,出射点全部通过b 点3.如图所示,在坐标系xOy 内有一半径为a 的圆形区域,圆心坐标为O 1(a ,0),圆内分布有垂直纸面向里的匀强磁场,在直线y =a 的上方和直线x =2a 的左侧区域内,有一沿x 轴负方向的匀强电场,场强大小为E ,一质量为m 、电荷量为+q (q >0)的粒子以速度v 从O 点垂直于磁场方向射入,当入射速度方向沿x 轴方向时,粒子恰好从O 1点正上方的A 点射出磁场,不计粒子重力,求:(1)磁感应强度B 的大小;(2)粒子离开第一象限时速度方向与y 轴正方向的夹角;(3)若将电场方向变为沿y 轴负方向,电场强度大小不变,粒子以速度v 从O 点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t。
磁场中的动态圆问题分析(供参考)
摘要:磁场中动态圆问题是高中物理的难点,圆轨迹的转变规律的确信是难中之难,本文就动态圆问题进行总结归类,分确信入射点和速度大小,不确信速度方向;确信入射点和速度方向,不确信速度大小;确信入射速度,不确信入射点三种模型进行归类总结,旨在为以后的解题提供帮忙。
关键词:磁场;动态圆;带电粒子带电粒子在磁场中的动态圆问题是近几年高考的热点。
这种题目的难点在于带电粒子在磁场中运动轨迹的圆心在转变。
解这种题目的关键是准确找出符合题意的临界轨迹圆弧,大体方式是找圆心、画圆、求半径、按时刻。
下面分几种模型进行论述:模型一:确信入射点和速度大小,不确信速度方向如下图,磁场中P点有带正电粒子,以相等速度V沿各个方向射入磁场中。
1.找圆心方式以P点为圆心,R长为半径画圆,圆周上各点即为所求圆心O。
2.模型特点(1)各动态圆圆心轨迹为圆。
(2)各动态圆均相交于同一点P。
(3)在纸面内,各粒子所能打到的区域是以2R为半径的圆(包络面)。
(4)各动态圆周期T相同。
3.例题分析(1)如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。
许多质量为m、带电量为+q的粒子以相同的速度v沿位于纸面内的各个方向,由小孔O射入磁场区域。
不计重力,不计粒子间的彼此阻碍。
以下图中阴影部份表示带电粒子可能通过的区域,其中哪个图是正确的()。
解:如下图,圆心轨迹是以O为圆心,半径为R的一个圆弧,右边界是沿ON 方向出射的粒子轨迹包围的部份,左侧界是2R为半径的圆的包络线,因此正确答案是A。
模型二:确信入射点和速度方向,不确信速度大小如下图,磁场中P点,不同速度的带正电的粒子沿水平方向射出。
1.找圆心方式带电粒子射入磁场的方向不变,大小转变,那么所有粒子运动轨迹的圆心都在垂直于初速度的直线上。
2.模型特点(1)各动态圆圆心轨迹为直线。
(2)各动态圆的半径R不同。
(3)各动态圆均相交于同一点P。
(4)各动态圆周期T相同。
数学圆法巧解磁场中的临界问题(解析版)
数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
圆形磁场中的几个典型问题
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
专题1:圆磁场问题
圆弧应是磁场区域的下边界。
两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
S2(1 4r2r2 2)(21)m e22 B v0 2 2
一点发散成平行
R r
R r
平行会聚于一点
结论4:如果在圆形匀强磁场区域的 边界上某点向磁场发射速率相同的 带电粒子,且粒子在磁场中运动的 轨道半径与磁场区域半径相同,那 么粒子射出磁场时运动方向一定相 同.反之,粒子以相同速度平行射 人这样的磁场,粒子就能会聚于磁 场边界上的某点。
且初速度方向与磁场方向都垂直,该粒子的比荷为
q/m=1.0×108 C/kg,不计粒子重力.
(1)粒子的轨迹半径; (2)粒子在磁场中运动的最长时间;
(3)若射入磁场的速度改为v0=3.0×105 m/s,其他条
件不变,试用斜线画出该批粒子在磁场中可能出现的 区域.(sin37°=0.6,cos37°=0.8)
[解析 ] (1)由牛顿第二 定律可求得粒子在磁场中运动的半 径.qv0B= mvR02,
R=mqBv0=5.0×10-2 m.
(2)由于 R>r,要使粒子在磁场中运动的时间最长,则粒子在磁场中 运动的圆弧所对应的弧长最长,从图甲中可以看出,以直径 ab 为弦、R 为半径所作的圆周,粒子运动时间最长,
T=2qπBm, 运动时间 tm=22πα×T=2qαB·m,
又 sinα=Rr =35,∴tm=6.4×10-8 s.
(3)R′=mqvB0′=1.5×10-2 m, 粒子在磁场中可能出现的区域如图乙所示(以 aO 为直径的半圆加上 以 a 为圆心,aO 为半径所作圆与磁场相交的部分).
例题:在xoy平面内有很多质量为m,电量为e的电子,从 坐标原点O不断以相同速率沿不同方向射入第一象限, 如图所示.现加一垂直于xOy平面向里、磁感强度为B的 匀强磁场,要求这些入射电子穿过磁场都能平行于x轴 且沿x轴正向运动,试问符合该条件的磁场的最小面积
带电粒子在圆形磁场中运动问题分类解析
L。
点评 : 本题 给 定 带 电粒 子 在 有 界 磁 场 中运 动 的
入射 速度 和 出射 速 度 的 大 小和 方 向 , 但 由 于 有 界 磁
场发 生改 变( 磁 感应 强 度 不 变 , 但 磁 场 区域 在 改 变) , 从 而 改 变 了该 粒 子在 有界 磁 场 中运 动 的 轨 迹 图 , 导
三 ,讨论 带 电粒子 在 圆形磁 场 中的多解 问题
迹 如 图 4所 示 。 由几 何 知 识 可 知 , 离 子 在 磁 场 中
当带 电粒 子 在 圆 形 磁 场 中 运 动 时 , 会 因 为 带 电
粒子 运动 轨迹 的对 称性 而形 成多解 。
做 圆周 运 动 的半 径 r —R一 1 O 、 / 3 c m。设 离 子 的 电
( 3 ) 保持 M 、 N 间场 强 E 不变 , 仅将 M 板 向上 平 移 ÷ , 粒子 仍从 M 板边 缘 的 P 处 由静 止 释放 , 粒 子 自进 入 圆 筒 至 从 S 孔 射 出 期 间 。 与 圆 筒 的 碰 撞 次
数 。
置 为所 求 范 围 的左 端 点 , 解 得 离 子射 出 电 场 后 的速
中掌 生数理化. 富一 一 赢三使用
带 电粒子在 圆形磁场 中运动 问题分类解析
一 湖 北 陈 宏 姚 昌新
带 电粒子 在 圆形 磁 场 中的 运动 问题 是 高考 中常 考 的 问题 , 只要 将 带 电 粒 子 的 初 速 度 和 进 入 圆形 磁 场 的位 置略 作 变 化 , 便 可 构 成 情 景 各 异 的全 面 考 查
荷量 为 g 、 质 量 为 m, 进 入磁 场 时 的速 度 为 7 3 , 由
圆形磁场中地几个典型问题
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径 ab 一端 a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以 v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于 Ox 轴的速度v从y轴上的a点射人如图 3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度 v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
关于圆形有界磁场的几个结论
关于圆形有界磁场的几个结论
1.圆形有界磁场的磁感应是沿着圆形有界磁场的中心点放射且向偏离中心点的位置递减的。
2.圆形有界磁场的磁感应强度受圆形有界磁场的半径的影响,当半径变大时磁感应强度变小。
3.圆形有界磁场的磁场强度沿着圆形磁场的中心点向偏离中心点方向递减,但在距离磁场中心太远时磁场强度几乎不受影响。
4.由于圆形有界磁场的磁感应强度和磁场强度是沿着圆形磁场的中心点向偏离中心点方向递减的,因此圆形有界磁场可用两个独立的、以原点为中心的坐标系统来确定。
磁场中的动态圆问题分析
摘要:磁场中动态圆问题是高中物理的难点,圆轨迹的变化规律的确定是难中之难,本文就动态圆问题进行总结归类,分确定入射点和速度大小,不确定速度方向;确定入射点和速度方向,不确定速度大小;确定入射速度,不确定入射点三种模型进行归类总结,旨在为以后的解题提供帮助。
关键词:磁场;动态圆;带电粒子带电粒子在磁场中的动态圆问题是近几年高考的热点。
这类题目的难点在于带电粒子在磁场中运动轨迹的圆心在变化。
解这类题目的关键是准确找出符合题意的临界轨迹圆弧,基本方法是找圆心、画圆、求半径、定时间。
下面分几种模型进行阐述:模型一:确定入射点和速度大小,不确定速度方向如图所示,磁场中P点有带正电粒子,以相等速度V沿各个方向射入磁场中。
1.找圆心方法以P点为圆心,R长为半径画圆,圆周上各点即为所求圆心O。
2.模型特征(1)各动态圆圆心轨迹为圆。
(2)各动态圆均相交于同一点P。
(3)在纸面内,各粒子所能打到的区域是以2R为半径的圆(包络面)。
(4)各动态圆周期T相同。
3.例题分析(1)如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。
许多质量为m、带电量为+q的粒子以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。
不计重力,不计粒子间的相互影响。
下列图中阴影部分表示带电粒子可能经过的区域,其中哪个图是正确的()。
解:如图所示,圆心轨迹是以O为圆心,半径为R的一个圆弧,右边界是沿ON方向出射的粒子轨迹包围的部分,左边界是2R为半径的圆的包络线,所以正确答案是A。
模型二:确定入射点和速度方向,不确定速度大小如图所示,磁场中P点,不同速度的带正电的粒子沿水平方向射出。
1.找圆心方法带电粒子射入磁场的方向不变,大小变化,则所有粒子运动轨迹的圆心都在垂直于初速度的直线上。
2.模型特征(1)各动态圆圆心轨迹为直线。
(2)各动态圆的半径R不同。
(3)各动态圆均相交于同一点P。
(4)各动态圆周期T相同。
(精典)磁场中各种边界问题解析
带电粒了在匀强磁场屮作圆周运动的分析方法一.找圆心、画轨迹、找角度。
数学模型:(1)已知圆的两条切线,作它们垂线,交点为0,即为圆心。
(2) 已知圆的一条切线,和过圆上的另一点B,作过圆切线的垂线,再作弦的 中垂线。
交点即为圆心0。
(3) 偏向角补角的平分线,与另一条半径的交点直线边界磁场例I •找到下面题中粒子的圆心,画出轨迹。
求从左边界或右边界射出时与竖直方向夹角<t >以及粒子在磁 场中经历的时间。
(第3图作出粒子刚好不从右侧穿出磁场)A/ I IX;X练3•如图所示,在水平直线醐上方有一匀强磁场,磁感强度为B,方向垂直向里。
一带电粒子质量为 电量为q,从a 点以与水平线MN 成0角度射入匀强磁场中,从右侧b 点离开磁场。
(1) 带电粒子带何种电荷(2) 带电粒子在磁场中运动的时间为多少X:B I练I :Cl) (2)图1已知 B 、+q 、m 、0、d 、刚好不从上边界穿出 刚好不从下边界穿出 能从左边界穿出。
m 、 图2•…问:m.xVo XX XaXaX练习•、CD 、EF 为三条平行的边界线,AB. CD 、相距L“ CD 、EF 相距S 如图所示,AB 、CD 之间有垂直妖 面向里的匀强磁场,礎感强度为B” CD 、EF 之间也有垂直纸面向里的匀强磁场,磁惹感强度为氏。
现从人 点沿A 方向垂直磁场射入一带负电的粒子,该粒子质量为叭 带电量为-q,重力不计,求: 若粒子运动到CD 边时速度方向恰好与CD 边垂直,则它从A 点射入时速度Vo 为多少若已知粒子从A 点射入时速度为U(11>讥),则粒子运动到CD 边界时,速度方向与CD 边的夹角0为 若已知粒子从A 点射入时速度为u (u>V 。
)粒子运动到EF 边界时恰好不穿出雄场,则CD. EF 之间磁场的磁感强度B ::为多少力》力L1 …A XC 力丹n ■力、》、DAR R L2£..£ ■■—ZH--i..5- - J —W —EF2. 如图所示,M 、N 、P 是三个足够长的互相平行的边界,M 、N与7、P 间距离分别为L.. U.其间分别有礎感强度为Bl 、Bj 的匀强磁场区I 与区II,咙场方向均垂直纸面 向里。
巧用动态圆分析带电粒子在磁场中运动问题(共20张PPT)
电子打在A板上的范围是PH段。
PH=2d
v
B
电子打在B板上的范围是MN段。 A
P
QM = rm rm2-d 2 = (2- 3 )d
QN = d,故MN=( 3 -1)d
PH = 2d
变式:如图,一端无限伸长的矩形区域abcd内存在着 磁感应强度大小为B,方向垂直纸面向里的匀强磁场。 从边ad中点O射入一速率v0、方向与Od夹角θ=30º的 正电粒子,粒子质量为m,重力不计,带电量为q, ad=L。 〔1〕要使粒子能从ab边射出磁场,求v0的取值范围。 〔2〕从ab边射出的粒子在磁场中运动时间t 的范围。
子打到,应使粒子发射速度 v > 5 q B L
2m
求解临界问题要借助于半径R和速度v之间的约束 关系进行动态轨迹分析,确定轨迹圆和边界的关系, 寻找临界点,然后利用数学方法求解。常用结论: 1、刚好突出磁场边界的条件是粒子在磁场中的运动轨 迹与边界相切。 2、当速度一定时,弧长或弦长越长,圆周角越大,粒 子在磁场中运动时间越长。 3、当速度变化时,圆周角大的运动时间越长。 4、从同一边界射入的粒子从同一边界射出时,速度与 边界的夹角相等,在圆形磁场区域内,沿径向射入的 粒子,必沿径向射出。
a
b
O q v0
d
B c
变式:如图,一端无限伸长的矩形区域abcd内存在着 磁感应强度大小为B,方向垂直纸面向里的匀强磁场。 从边ad中点O射入一速率v0、方向与Od夹角θ=30º的 正电粒子,粒子质量为m,重力不计,带电量为q, ad=L。 〔1〕要使粒子能从ab边射出磁场,求v0的取值范围。 〔2〕从ab边射出的粒子在磁场中运动时间t 的范围。
圆形磁场中的几个典型问题83209
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径 ab 一端 a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以 v0与 Oa的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于 Ox 轴的速度v从y轴上的a点射人如图 3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度 v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。
圆形磁场中的几个典型问题分析
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手, 分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题” 体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键一一抓弦长 1 .求最长时间的问题例1真空中半径为 R=3X 10 m 的圆形区域内,有一磁感应强 度为B=0.2T 的匀强磁场,方向如图 1所示一带正电的粒子以初速 度vo =106m / s从磁场边界上直径 ab 一端a 点处射入磁场,已知 该粒子比荷为q/m=108c / kg ,不计粒子重力,若要使粒子飞离磁 场时偏转角最大,其入射时粒子初速度的方向应如何?(以V 。
与Oa 的夹角二表示)最长运动时间多长?小结:本题涉及的是一个动态问题, 即粒子虽然在磁场中均做同一半径的匀速圆周运动, 但因其初速度方向变化, 使粒子运动轨迹的长短和位置均发生变化, 并且弦长的变化一定对应速度偏转角的变化, 同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为 m ,电量为q ,以平行于 Ox 轴 的速度v 从y 轴上的a 点射人如图3所示第一象限的区域.为 了使该质点能从 x 轴上的b 点以垂直于x 轴的速度v 射出,可 在适当的地方加一个垂直于 xoy 平面、磁感应强度为 B 的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区 域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题, 而且同时考查了空间想象能力, 即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁 场中做匀速圆周运动,所以粒子运动的1 /4圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键一一抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场, 如杲圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入 射点的切线方向平行,如甲图所示。
圆形磁场典型例题
1、一带电质点,质量为m,电荷量为q,以平行于x轴的速度v从y轴上的a点射入如图所示的第一象限所示的区域、为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当地方加一个垂直于xOy平面磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这个圆形磁场区域的最小半径,重力忽略不计.2如图所示,在真空室中平面直角坐标系的y轴竖直向上,x轴上的P点与Q点关于坐标原点O对称,PQ间的距离d=30cm。
坐标系所在空间存在一匀强电场,场强的大小E=1.0N/C。
一带电油滴在xOy平面内,从P点与x轴成30°的夹角射出,该油滴将做匀速直线运动,已知油滴的速度v=2.0m/s射出,所带电荷量q=1.0×10-7C,重力加速度为g=10m/s2。
(1)求油滴的质量m。
(2)若在空间叠加一个垂直于xOy平面的圆形有界匀强磁场,使油滴通过Q点,且其运动轨迹关于y轴对称。
已知磁场的磁感应强度大小为B=2.0T,求:a.油滴在磁场中运动的时间t;b.圆形磁场区域的最小面积S。
3一质量为m、带电量为q的粒子以速度v0从O点沿y轴的正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角为30°,如图所示,粒子的重力不计,试求:⑴圆形磁场区域的最小面积。
⑵粒子从O点进入磁场区域到达b点所经历的时间。
⑶b点的坐标。
、4真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m/s从磁场边界上直径ab一端a点处射入磁场,已知该粒子比荷为q/m=108C/kg,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa的夹角 表示)最长运动时间多长?5如图,在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
圆形区域磁场
圆形区域磁场注意:圆轨迹的对称性——1对准圆越大心射入,必定沿着圆心射出 2对准圆心射入,速度,偏转角和圆心角越小,运动时间越短 3运动半径相同是(v 相同),弧长越长对应时间越长4例1 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图所示。
磁场方向垂直于圆面。
磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B 应为多少?例2:在圆形区域的匀强磁场的磁感应强度为B ,一群速率不同的质子自A 点沿半径方向射入磁场区域,如图所示,已知该质子束中在磁场中发生偏转的最大角度为1060,圆形磁场的区域的半径为R ,质子的质量为m ,电量为e ,不计重力,则该质子束的速率范围是多大?例3 在真空中,半径r =3×10-2 m 的圆形区域内有匀强磁场,方向如图2所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v0=1×106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷 q/m =1×108 C/kg ,不计粒子重力.(1)R =5×10-2 m.(2)37o 74o(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab 的夹角θ及粒子的最大偏转角.34BeR v m例4(2009年浙江卷)如图,在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。
发射时,这束带电微粒分布在0<y<2R的区间内。
已知重力加速度大小为g。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手, 分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题” 体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键一一抓弦长 1 .求最长时间的问题例1真空中半径为 R=3X 10 m 的圆形区域内,有一磁感应强 度为B=0.2T 的匀强磁场,方向如图 1所示一带正电的粒子以初速 度v o =106m / s 从磁场边界上直径 ab 一端a 点处射入磁场,已知 该粒子比荷为q/m=108c / kg ,不计粒子重力,若要使粒子飞离磁 场时偏转角最大,其入射时粒子初速度的方向应如何?(以V 。
与Oa 的夹角二表示)最长运动时间多长?小结:本题涉及的是一个动态问题, 即粒子虽然在磁场中均做同一半径的匀速圆周运动, 但因其初速度方向变化, 使粒子运动轨迹的长短和位置均发生变化, 并且弦长的变化一定对应速度偏转角的变化, 同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为 m ,电量为q ,以平行于 Ox 轴 的速度v 从y 轴上的a 点射人如图3所示第一象限的区域.为 了使该质点能从 x 轴上的b 点以垂直于x 轴的速度v 射出,可 在适当的地方加一个垂直于 xoy 平面、磁感应强度为 B 的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区 域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题, 而且同时考查了空间想象能力, 即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁 场中做匀速圆周运动,所以粒子运动的1 /4圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键一一抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场, 如杲圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入 射点的切线方向平行,如甲图所示。
规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等, 则所 有粒子都从磁场边界上的同一点射出, 并且出射点 的切线与入射速度方向平行,如乙图所示。
一做就错.常见问题 .对于这些问题,针对具例3如图5所示,x 轴正方向水平向右, y 轴正方向竖直向上.在半径为 R 的圆形区域内加一与 xoy 平面垂直的匀强磁场. 在 坐标原点 0处放置一带电微粒发射装置,它可以连续不断地发射 具有相同质量 m 、电荷量q ( q > 0 )且初速为v °的带电粒子,不 计重力.调节坐标原点 0处的带电微粒发射装置,使其在 xoy 平 面内不断地以相同速率v 0沿不同方向将这种带电微粒射入x 轴上方,现要求这些带电微粒最终都能平行于 x 轴正方向射出,则带电微粒的速度必须满足什么条件?小结:研究粒子在圆形磁场中的运动时, 要抓住圆形磁场的半径和圆周运动的半径, 建立二者之间的关系,再根据动力学规律运动规律求解问题.3. 如图甲所示,x 轴正方向水平向右,y 轴正方向竖直向上。
在 xoy 平面内有与y 轴平行的匀强电场,在半径为 R 的圆形区域内加有与 xoy 平面垂直的匀强磁场。
在坐标原点 0处放置一带电微粒发射装置,它可以连续不断地发射具有相同质量m 、电荷量q (0》° )和(1)当带电微粒发射装置连续不断地沿 y 轴正方向发射这种带电微粒时,这些带电微粒将沿圆形磁场区域的水平直径方向离开磁场, 并继续沿x 轴正方向运动。
求电场强度和磁感应强度的大小和方向。
(2)调节坐标原点处的带电微粒发射装置, 使其在xoy平面内不断地以相同速率 vO 沿不同 方向将这种带电微粒射入第1象限,如图乙所示。
现要求这些带电微粒最终都能平行于x轴正方向运动,则在保证匀强电场、匀强磁场的强度及方向不变的条件下, 应如何改变匀强磁场的分布区域?并求出符合条件的磁场区域的最小面积。
答案图5初速为’一的带电粒子。
已知重力加速度大小为 g o(1)(8^)由题目中“带电粒子从坐标原点0处沿y轴正方冋逬入腿场后+最绛沿圆形磁场区域的水平直径离开確场并堆爨沿r轴正方同运討“ 可知*带电徹粒所赍重力与电场力平衡。
设电场强度大小为匚由平衡条件得,啊二我二誉=竺电场方向沿*抽正方向带电微粒进人磁场后,做匀速圆周运动,且圆运动半径r=臨*设匀吨眄的瑋感应程厦大屮为B*由牛極第二定存存,磁场方冋垂亘干妖面向外⑵(&管)设由带电微越主射黄負射入弟I集岷的带电徽赴的制速度方向与x轴威夬甬6则3满足尺恥巴由于带电樹:粒最集搐沿X轴正方向运动+2故B应垂負于X妙平西同外"带电抽粗在磁场内就半径为氏=运动"由干制电擁粒的入射方问下同.若磁场充満旣面.它『1所对匯的运动的轨迹如图所示.技聲送垄帝电嗷粒炷蹤场傭特后曲戏轴正方问运动"由图可知*它力爵须胎至D点佯團运罰的各圆的最高自飞离確场* 这祥应场边畀上P盘的坐标P 0亦应淸足方程* x R cui 令B严=^(1 —&)所l:JL陞垛迪界的方牝为"JF a + O —穴尸■ K3 由甄中 X 夕-一g 的族件可知1一啊& r 竺的坪I度啪入趣垛ilZ:域的橄*7的运匸打*九迹2(jr- +y士=氏R冃卩因所求陞场的用~ fll旳辿卑*因此. 苻台世目茸求旳蔽斗、縮境旳袒闵应足團x a o -虑尸=氏“与圆<X - Jty3- 2?* 旳7Z煨部歼(:阳中阴壽部好九由几何我系* ni£JL求得符台踊f牛旳K1均的最寸、ffll枳再’三、边界交点问题的解题关键一抓轨迹方程例4如图7所示,在xoy平面内x>0区域中,有一半圆形匀强磁场区域,圆心为0,半径为R =0.10m,磁感应强度大小为B=0.5T,磁场方向垂直xoy平面向里.有一线状粒子源放在y轴左侧(图中未画出),并不断沿平行于x轴正方向释放出电荷量为19 6-q=+1.6x 10 C,初速度v o = 1.6 x 10 m / s的粒子,粒子的质量为26m =1.0x 10- kg,不考虑粒子间的相互作用及粒子重力,求:从y轴任意位置(0, y)入射的粒子离开磁场时的坐标.点评:带电粒子在磁场中的运动是最能反映抽象思维与数学方法XX4小结:对于周期性问题,因为粒子运动轨迹和磁场边界都是圆, 所以要充分利用圆的对称性及圆心角的几何关系,寻找运动轨迹的对称关系和周期性.五、磁场问题的规律前面分析的六个典型例题, 其物理情景各异,繁简不同,但解题思路和方法却有以下四 个共同点.(1) 物理模型相同即带电粒子在匀强磁场中均做匀速圆周运动.(2) 物理规律相同即洛伦兹力提供运动的向心力,通常都由动力学规律列方程求解. (3) 数学规律相同即运用几何知识求圆心角、弧长、半径等物理量.(4) 解题关键相同:一是由题意画出正确轨迹;二是寻找边界圆弧和轨迹圆弧的对应 圆心角关系;三是确定半径和周期, 构建合适的三角形或平行四边形, 再运用解析几何知识求解圆的弦长、弧长、圆心角等,最后转化到题目中需求解的问题.相结合的物理模型,本题则利用圆形磁场与圆周运动轨迹方程求交点, 运用,能较好的提高学生思维.四、周期性问题的解题关键一一寻找圆心角1 •粒子周期性运动的问题 例5如图9所示的空间存在两个匀强磁场,其分界线是半径为 R 的圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为 B .现有一质量为 m 、电荷量为q 的带正电粒子(不计重力) 点沿aA 方向射出.求:是对初等数学的抽象(1 )若方向向外的磁场范围足够大,离子自 A 点射出后在两个磁场不断地飞进飞出, 最后又返回 A 点,求返回A 点的最短时间及 对应的速度.(2)若向外的磁场是有界的,分布在以 0点为圆心、半径为 R2R 的两半圆环之 求其返回 A 点的间的区域,上述粒子仍从 A 点沿QA 方向射出且粒子仍能返回A 点,最短时间.2.磁场发生周期性变化例6如图12所示,在地面上方的真空室内,两块正对的平行金属板水平放置.在两 板之间有一匀强电场,场强按如图 13所示规律变化(沿 y 轴方向为正方向)在两板正中间有一圆形匀强磁场区 域,磁感应强度按图 如果建立如图 12t=0时刻有一质量 荷量 q =9.0X 10- C 以v o =1m / s 的初速度沿y 轴方向从 0点射入,分析小球在 磁场中的运动并确定小球在匀强磁场中的运动时间及离开时 的位置坐标. 14所示规律变化, 所示的坐标系,在-9 . .m=9.0 x 10 kg 、电 的带正电的小球,图9图14【同步练习】1.如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是()DA .只要对着圆心入射,出射后均可垂直打在MN上B •对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足v ^■qBR,沿不同方向入射的粒子出射后均可垂直打在MN上m2.如图所示,长方形abed 的长ad=0.6m,宽ab=0.3m , 0、e分别是ad、be的中点,以e为圆心eb为半径的四分之一圆弧和以0为圆心0d为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T。
一群不计重力、质量m=3X 10-7kg、电荷量q=+2x 1O‘C的带正电粒子以速度v=5 x 10n/s沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是()CDA .从0d边射入的粒子,出射点全部分布在0a边B.从a0边射入的粒子,出射点全部分布在ab边C.从0d边射入的粒子,出射点分布在ab边D.从ad边射人的粒子,出射点全部通过b点3、一质量为T:'、带电量为:的粒子以速度':从0点沿「轴正方向射入磁感强度为-的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从」轴正向夹角为30°,如图1所示(粒子重力忽略不计)。
试求:(1)圆形磁场区的最小面积;(2)粒子从0点进入磁场区到达:点所经历的时间;(3):点的坐标。