正弦函数图象教学设计
正弦函数的图象教学设计方案
通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦。渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观。
教学重点、难点
教学重点:正弦函数的图象。
教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点。
回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时,y=sinx的图象。
(学生活动):用描点法做出当x∈[0,2π]时,y=sinx的图象。
教学活动2
某些点涉及到了无理数,进而很难做出其在坐标系中的位置。如( , )。作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值。
教学目标
一、情感态度与价值观
通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成正弦曲线的初步认识。进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯。学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力。
二、过程与方法
通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象。
教学资源
(1)每位学生准备草稿纸、铅笔、细绳各一;
(2)教师自制PPT;
(3)上课环境为多媒体大屏幕环境,另外可供教师演示的黑板。
《正弦函数的图象》教学活动过程描述
教学活动1
遇到一个新的函数,我们非常自然的想到画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等。我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?
正弦函数的图象教学设计
教学设计信息技术支持的导入环节优化(一)第一步:设计前的分析第二步:技术支持的导入设计说明:在这一步里,请将你在导入环节上要说的话,预估的时间,所采用的信息技术支持(请具体说明如何利用信息技术来优化导入效果,并截取重要画面,链接相应的文档)呈现在下表中。
导入语时间信息技术支持1、怎么作正弦线?2、利用正弦线怎么作正弦函数的图像,从而引入新课。
3分钟信息技术支持的讲授环节优化(二)第一步:设计前的分析本课的名称:正弦函数的图象本课的教学目标和教学内容:1 . 知识与技能目标(1)会用单位圆中的正弦线作出Rxxy∈=,sin的图象,明确图象的形状;(2)掌握正弦函数图象的“五点法作图”。
2. 过程与方法目标(1)经历用单位圆中正弦线作y=sinx,x∈[0,2π]的图象的过程,体会数形结合思想在图形绘制中的应用;(2)通过正弦函数一个周期[0,2π]的图象得到整个实数集R 上的图象,体会函数的周期性。
3 . 情感态度与价值观目标(1)通过作正弦函数的图象,培养学生积极动手、团结协作、合作交流、深入细致的学习态度和习惯。
(2)培养勇于探索、勤于思考的精神;本节课的主要内容是用单位圆中的正弦线作正弦函数的图象,用“五点法”作正弦函数的简图。
在本节课中,利用多媒体复习回顾三角函数线的作法和函数图像的作法,引入本课。
动态演示,创设情境,吸引学生注意力,提高学习兴趣。
在课堂教学中,教师不直接把现成的知识呈现给学生,而是利用多媒体给学生提供一定的问题情境和有关的资源,让学生通过自己动手,观察、思考、探索、总结来形成概念,发现规律,这样更有利于学生对知识和技能的理解和掌握,并能够培养学生的学习兴趣和主动学习的良好习惯和发现问题、解决问题的能力。
第二步:技术支持的讲授设计说明:在这一步里,请你在下表左栏简述讲授环节的主要教学活动(一至二个),并在下表右栏具体说明如何利用信息技术优化讲授效果,请提供截取的重要画面及相应文档链接)教学活动简述信息技术支持1、作正弦线并平移利用多媒体在单位圆中画出对应于角0,π/6,π/3, (2)的正弦线(等价于“列表”).然后利用多媒体把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).2、探究一个周期内确定正弦函数图像形状的五个关键点通过思考和探究,总结出五点作图法.信息技术支持的评价优化(三)第一步:设计前的分析说明:请根据本节课的教学过程,针对一至两个具体的教学活动进行评价设计,在表格呈现您设计此项评价的目的、所采用的评价方法、及需使用的信息技术工具。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特点。
文章首先介绍了正弦函数和余弦函数在数学中的重要性,然后概述了本教案的主要内容和目的。
接着分别讨论了正弦函数和余弦函数的图像特点,包括周期、振幅、相位等。
通过具体的案例分析,帮助学生更好地理解函数图像的绘制方法和规律。
在结尾部分,对本教案进行了总结,并提出了相应的教学建议,同时展望了学生在学习正弦函数和余弦函数图像时可能取得的进展和突破。
通过本教案的学习,学生将能够掌握正弦函数和余弦函数的图像特点,提高数学学习的效率和兴趣。
【关键词】正弦函数、余弦函数、图像、教案、概述、特点、案例分析、总结、教学建议、展望。
1. 引言1.1 1.4.1《正弦函数余弦函数的图像》教案正弦函数和余弦函数是高中数学中重要的函数之一,它们在数学中有着广泛的应用。
本教案将重点讲解正弦函数和余弦函数的图像特点,帮助学生更好地理解和掌握这两个函数的性质。
在学习正弦函数的图像特点时,我们将介绍正弦函数的周期、幅值、对称轴等基本概念,并通过实例演示如何绘制正弦函数的图像。
我们也会讲解正弦函数的性质,如奇偶性、单调性等,以便学生更好地应用正弦函数解决实际问题。
通过本教案的学习,学生将能够准确绘制正弦函数和余弦函数的图像,并理解它们的基本特点。
学生还将学会如何利用正弦函数和余弦函数解决实际问题,提高数学应用能力。
希望本教案能够对学生的数学学习起到一定的帮助,让他们更加喜爱数学这门学科。
2. 正文2.1 引言在本节课程中,我们将学习正弦函数和余弦函数的图像特点。
正弦函数和余弦函数是我们在数学中经常接触到的函数,它们在几何学、物理学等领域也有广泛的应用。
通过学习它们的图像特点,我们可以更好地理解它们的性质和规律。
正弦函数是一种周期函数,它的图像呈现出波浪形状。
正弦函数的周期为2π,在每个周期内有一个最大值和一个最小值,这些点称为正弦函数的极值点。
正弦函数图象的对称性教学设计
《正弦函数图象的对称性》教学设计【教学目标】1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式(R)与(R)的几何意义,体会正弦函数的对称性.2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力.3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识.【教学重点】正弦函数图象的对称性及其代数表示形式.【教学难点】用等式表示正弦函数图象关于直线对称和关于点对称.【教学方法】教师启发引导与学生自主探究相结合.【教学手段】计算机、图形计算器(学生人手一台).【教学过程】一、复习引入对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).2.复习对称概念初中我们已经学习过轴对称图形和中心对称图形的有关概念:轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合;中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合.3.作图观察请同学们用图形计算器画出正弦函数的图象(见图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形?4.猜想图形性质经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书)如何检验猜想是否正确?我们知道,诱导公式(R),刻画了正弦曲线关于原点对称,而(R),刻画了余弦曲线关于轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明.今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题)二、探究新知分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质.(一)对于正弦曲线轴对称性的研究第一阶段,实例分析——对正弦曲线关于直线对称的研究.1.直观探索——利用图形计算器的绘图功能进行探索请同学们在同一坐标系中画出正弦曲线和直线的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见图),在直线两侧正弦函数值有什么变化规律?给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在左右对称取值时,正弦函数值相等.从直观上得到的猜想,需要从数值上进一步精确检验.2.数值检验——利用图形计算器的计算功能进行探索请同学们思考,对于上述猜想如何取值进行检验呢?教师组织学生通过合作的方式,对称地在左右自主选取适当的自变量,并计算函数值,对结果进行列表比较归纳.同时为没有思路的学生准备参考表格如下:…………给学生一定的时间进行思考、操作,根据情况进行指导并组织学生进行交流,然后请一组学生说明他们的研究过程.学生可以采用不同的数据采集方法,得到的结果如下列图表(表格中函数值精确到0.001):……… 1 …上述计算结果,初步检验了猜想,并可以把猜想用等式(R)表示.请同学们利用前面得到的数据,用图形计算器描点画图(见下图),然后进行观察比较,思考点P和P′在平面直角坐标系中有怎样的位置关系?根据画图结果,可以看出,点P和P′关于直线对称.这样,正弦曲线关于直线对称,可以用等式(R)表示.这样的计算是有限的,并受到精确度的影响,还需要对等式进行严格证明.3.严格证明——证明等式对任意R恒成立请同学们思考,证明等式的基本方法有哪些?所要证的等式左右两端有何特征?有可能选用什么样的公式?预案一:根据诱导公式,有.预案二:根据公式和,有.预案三:根据正弦函数的定义,在平面直角坐标系中,无论取任何实数,角和的终边总是关于轴对称(见图),他们的正弦值恒相等.这样我们就证明了等式对任意R恒成立,也就证明了正弦曲线关于直线对称.事实上,诱导公式也可以由等式推出,即这两个等式是等价的.因此,正弦曲线关于直线对称,是诱导公式(R)的几何意义.阶段小结:我们从几何直观获得启发,又通过数据计算进一步检验,得出正弦曲线关于直线对称可以用等式(R(R)的等价性,使我们对这一诱导公式有了新的理解.第二阶段,抽象概括——探索正弦曲线的其他对称轴.师生、生生交流,步步深入.问题一:正弦曲线还有其他对称轴吗?有多少条对称轴?对称轴方程形式有什么特点?可以发现,经过图象最大值点和最小值点且垂直于轴的直线都是正弦曲线的对称轴(教师利用课件演示),则对称轴方程的一般形式为:(Z).问题二:能用等式表示“正弦曲线关于直线(Z)对称”吗?根据前面的研究,上述对称可以用等式(Z,R)表示.请学生证明上述等式,然后组织学生交流证明思路.证明预案:.(二)对于正弦曲线中心对称性的研究我们已经知道正弦函数(R)是奇函数,即(R),反映在图象上,正弦曲线关于原点对称. 那么,正弦曲线还有其他对称中心吗?请同学们参照轴对称的研究方法,小组合作进行研究.第一阶段,对正弦曲线关于点对称的研究.1.直观探索——从图象上探索在点两侧的函数值的变化规律.2.数值检验——在左右对称地选取一组自变量,计算函数值并列表整理.3.严格证明——证明等式对任意R恒成立.预案一:根据诱导公式,有.预案二:根据诱导公式和,有.预案三:根据正弦函数的定义,在平面直角坐标系中,无论取任何实数,角和的终边总是关于轴对称(见图),他们的正弦值互为相反数.事实上,等式与诱导公式是等价的. 这样,正弦曲线关于点对称,是诱导公式(R)的几何意义.第二阶段,探索正弦曲线的其它对称中心.请同学尝试解决下列三个问题:1.归纳正弦函数图象对称中心坐标的一般形式.正弦函数图象对称中心坐标的一般形式为:(Z)(教师利用课件演示).2.用等式表示“正弦曲线关于点(Z)对称”.上述对称可以用等式(Z,R)表示.3.证明归纳出的等式. (根据课堂情况可以由学生课后完成证明)三、课堂小结1.课堂小结(1)知识上:得出了正弦函数图象对称轴方程和对称中心坐标的一般形式,研究了对称性的代数表示形式,并利用诱导公式完成了严格的理论证明. 在研究的过程中,对诱导公式与(R)有了新的理解,感受了正弦函数的对称性以及数和形的辨证统一.(2)方法上:直观→抽象,特殊→一般,体验了观察—归纳—猜想—严格证明的研究方法.2.作业(1)总结课上的研究过程和方法,尝试研究余弦函数图象的对称性,并结合自己的研究过程和结论写出研究报告,与其他同学交流收获.(2)找一个一般函数,如,R,研究它的图象及对称性;并与正弦函数的图象及对称性进行比较.(3)思考:如何用等式表示函数关于直线对称,以及关于点对称?(4)尝试证明函数的图象分别关于直线和直线对称.【教学设计说明】1.关于教学内容正弦函数和余弦函数的大部分性质是借助函数图象进行研究的.但是,在本章第五节中,借助单位圆中的三角函数线已经研究了它们的四个重要性质,并归纳为四组诱导公式,其中公式三、四、五分别刻画了两个函数图象的一部分对称性,奇偶性只是特殊的对称性.因此,本课时以正弦函数为例补充研究图象的对称性,从函数图象的特征出发,引导学生利用计算器自主探索,并最终发现与诱导公式的联系. 通过本课时的教学,可以使学生在进一步掌握图象特征的同时,加深对正弦函数及其诱导公式的理解,既是对以前所学知识的梳理,也为后面进一步学习和理解“由已知三角函数值求角”奠定基础.2.关于教学设计本课时我采用启发引导与学生自主探索相结合的教学方法.在回顾旧知识的基础上提出新的研究问题,引导学生从形象思维逐步过度到抽象思维,突破教学难点. 教学设计流程图如下:通过引导学生带着问题的主动思考、动手操作、合作交流的探究过程,力求使他们在掌握知识的同时,还能学会研究方法.3.信息技术在教学中的作用图形计算器作为学具,通过学生亲自动手,人人参与探索过程,帮助学生从图象、数据、解析式等多层次、多角度地理解所研究的内容,提高他们对图形和数据信息的处理能力,培养信息素养.图形计算器和计算机相结合,力求使技术更有效地为教学服务.《正弦函数的图像与性质》(第一课时)(教案)神木职教中心数学组刘伟教学目标:1、理解正弦函数的周期性;2、掌握用“五点法”作正弦函数的简图;3、掌握利用正弦函数的图像观察其性质;4、掌握求简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾终边相同角的诱导公式:)(sin )2sin(Z ∈=+k k απα所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2Ⅱ 新知识1、用描点法作出正弦函数在最小正周期上的图象x y sin =,[]π2,0∈x(1)、列表(2)、描点(3)、连线因为终边相同的角的三角函数值相同,所以x y sin =的图像在…,[][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相同2、正弦函数的奇偶性由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=-所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在⎥⎦⎤⎢⎣⎡++-ππππk k 22,22是增函数,在⎥⎦⎤⎢⎣⎡++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-Ⅲ 知识巩固例1 作下列函数的简图 (1)x y sin =,[]π2,0∈x (2)x y sin 1+=,[]π2,0∈x解:(1)①列表②描点 ③连线(2)①列表②描点 ③连线例2 求下列函数的单调区间(1))sin(x y -= (2))4sin(π-=x y解:(1)因x x y sin )sin(-=-=所以函数在⎥⎦⎤⎢⎣⎡++-ππππk k 22,22是减函数,在⎥⎦⎤⎢⎣⎡++ππππk k 223,22是增函数(2)由题知:πππππk x k 22422+≤-≤+-ππππk x k 24324+≤≤+-⇒ πππππk x k 223422+≤-≤+ππππk x k 247243+≤≤+⇒ 所以函数在⎥⎦⎤⎢⎣⎡++-ππππk k 243,24是增函数,在⎥⎦⎤⎢⎣⎡++ππππk k 247,243是减函数练习(师生互动,分层次提问)1. 课本第120页练习第1题 2. 求函数)4sin(π+=x y 的单调性解:由题知:πππππk x k 22422+≤+≤+-ππππk x k 24243+≤≤+-⇒ πππππk x k 223422+≤+≤+ππππk x k 24524+≤≤+⇒ 所以函数在⎥⎦⎤⎢⎣⎡++-ππππk k 24,243是增函数,在⎥⎦⎤⎢⎣⎡++ππππk k 245,24是减函数Ⅳ 小结本节课我们学习了用“五点法”作正弦函数的图像,利用正弦函数的简图可以观察到正弦函数的一些基本性质,如奇偶性、单调性、周期性等。
教学设计2:5.4.1 正弦函数、余弦函数的图象
5.4.1 正弦函数、余弦函数的图象【教学目标】1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象. 3.能利用正弦函数、余弦函数的图象解决简单问题.【要点梳理】1.正弦曲线正弦函数y =sin x ,x ∈R 的图象叫正弦曲线,是一条“波浪起伏”的连续光滑曲线.2.正弦函数图象的画法 (1)几何法①利用正弦线画出y =sin x ,x ∈[0,2π]的图象; ②将图象向左、向右平行移动(每次2π个单位长度). (2)五点法①画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0),用光滑的曲线连接;②将所得图象向左、向右平行移动(每次2π个单位长度). 3.余弦曲线余弦函数y =cos x ,x ∈R 的图象叫余弦曲线.它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.4.余弦函数图象的画法(1)要得到y =cos x 的图象,只需把y =sin x 的图象向左平移π2个单位长度即可,这是由于cos x=sin ⎝⎛⎭⎫x +π2.(2)用“五点法”:画余弦曲线y =cos x 在[0,2π]上的图象时,所取的五个关键点分别为(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1),再用光滑的曲线连接. 温馨提示:(1)“五点法”作图中的“五点”是指函数的最高点、最低点以及图象与坐标轴的交点,这是作正弦函数、余弦函数图象最常用的方法.(2)“五点法”画正弦函数、余弦函数的图象时要注意图象的对称性和凸凹方向.【思考诊断】判断正误(正确的打“√”,错误的打“×”) (1)函数y =cos x 的图象与y 轴只有一个交点.( ) (2)将正弦曲线向右平移π2个单位就得到余弦曲线.( )(3)函数y =sin x ,x ∈⎣⎡⎦⎤π2,5π2的图象与函数y =cos x ,x ∈[0,2π]的图象的形状完全一致.( ) (4)函数y =sin x ,x ∈[2k π,2(k +1)π]k ∈Z ,且k ≠0的图象与y =sin x ,x ∈[0,2π]的图象形状完全一致.( )[答案] (1)√ (2)× (3)√ (4)√【课堂探究】题型一 用“五点法”作简图【典例1】 用“五点法”作出下列函数的简图. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π].[思路导引] 利用“五点法”作函数简图时,应先列表,再描点,再连线. [解] (1)列表:描点连线,如图所示.(2)列表:描点连线,如图所示.[名师提醒]用“五点法”画函数y =A sin x +b (A ≠0)在[0,2π]上的简图的步骤 (1)列表(2)描点:在平面直角坐标系中描出下列五个点:(0,y 1),⎝⎛⎭⎫π2,y 2,(π,y 3),⎝⎛⎭⎫3π2,y 4,(2π,y 5).(3)连线:用光滑的曲线将描出的五个点连接起来. [针对训练]1.利用“五点法”作出下列函数的简图: (1)y =1+2sin x ,x ∈[0,2π]; (2)y =1-cos x ,x ∈[0,2π]. [解] (1)列表:在直角坐标系中描出五点(0,1),⎝⎛⎭⎫π2,3,(π,1),⎝⎛⎭⎫3π2, -1,(2π,1),然后用光滑曲线顺次连接起来,就得到y =1+2sin x ,x ∈[0,2π]的图象.如图.(2)列表:在直角坐标系中,描出五点(0,0),⎝⎛⎭⎫π2,1,(π,2),⎝⎛⎭⎫3π2,1,(2π,0),然后并用光滑的曲线连接起来,就得到y =1-cos x ,x ∈[0,2π]的图象.如图.题型二 正、余弦函数图象的简单应用【典例2】 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合. (1)sin x ≥12;(2)cos x ≤12.[思路导引] 先在[0,2π]上找到使等式成立的关键点,再依据图象或三角函数线找到不等式的解.[解] (1)作出正弦函数y =sin x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为⎣⎡⎦⎤π6+2k π,5π6+2k π,k ∈Z . (2)作出余弦函数y =cos x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为⎣⎡⎦⎤π3+2k π,5π3+2k π,k ∈Z . [名师提醒]用三角函数图象解三角不等式的步骤(1)作出相应的正弦函数或余弦函数在[0,2π]上的图象(也可以是[-π,π]上的图象); (2)在[0,2π]上或([-π,π]上)写出适合三角不等式的解集; (3)根据公式一写出定义域内的解集. [针对训练]2.求下列函数的定义域.(1)y =lg(-cos x );(2)y =2sin x - 2.[解] (1)为使函数有意义,则需要满足-cos x >0,即cos x <0. 由余弦函数图象可知满足条件的x 为π2+2k π<x <3π2+2k π,k ∈Z .所以原函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪π2+2k π<x <3π2+2k π,k ∈Z . (2)为使函数有意义,则需要满足2sin x -2≥0,即sin x ≥22. 由正弦函数图象可知满足条件的x 为π4+2k π≤x ≤3π4+2k π,k ∈Z .所以原函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪π4+2k π≤x ≤3π4+2k π,k ∈Z . 【课堂小结】1.本节课要牢记正、余弦函数图象中“五点”的确定y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象上的关键五点分为两类:(1)图象与x 轴的交点;(2)图象上的最高点和最低点.2.用“五点法”在[0,2π]内做出正、余弦函数的简图,再通过平移即可得到正、余弦曲线.【随堂验收】1.用“五点法”画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,12 B.⎝⎛⎭⎫π2,1 C .(π,0)D .(2π,0)[解析] 五个关键点为(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0),故选A. [答案] A2.对于余弦函数y =cos x 的图象,有以下三项描述:①向左向右无限延伸; ②与x 轴有无数多个交点;③与y =sin x 的图象形状一样,只是位置不同. 其中正确的有( ) A .0个 B .1个 C .2个 D .3个[解析] 如图所示为y =cos x 的图象.可知三项描述均正确. [答案] D3.函数y =1-sin x ,x ∈[0,2π]的大致图象是( )[解析] 列表描点与选项比较,可知选B. [答案] B4.在[0,2π]内,不等式sin x <-32的解集是( ) A .(0,π) B.⎝⎛⎭⎫π3,4π3 C.⎝⎛⎭⎫4π3,5π3D.⎝⎛⎭⎫5π3,2π[解析] 画出y =sin x ,x ∈[0,2π]的图象如下:因为sin π3=32,所以sin ⎝⎛⎭⎫π+π3=-32,sin ⎝⎛⎭⎫2π-π3=-32. 即在[0,2π]内,满足sin x =-32的是x =4π3或x =5π3. 由图可知不等式sin x <-32的解集是⎝⎛⎭⎫4π3,5π3. [答案] C5.画出函数y =1+sin x ,x ∈[0,2π]的图象,并利用图象判断与直线y =32的交点个数.[解] 在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.。
5.4.1正弦函数余弦函数的图象教学设计
引入新课观看生活中的波形视频设计问题,回归教材三角函数是我们学习的一类新的基本初等函数,类比指数函数,对数函数的研究过程,学习了三角函数的定义之后,接下来我们应该研究什么问题呢?根据教师的提问,学生进行知识衔接。
师:生活中有大量这样的波形,如果抽象成数学问题,可以用哪一类函数来刻画呢?生:三角函数师:三角函数是我们学习的一类新的基本初等函数,类比指数函数,对数函数的研究过程,学习了三角函数的定义之后,接下来我们应该研究什么问题呢?生:用定义画图象师;定义-图象-性质请同学们先看一下本节课的学习目标,复习一下定义和诱导公式.温故知新图象的形成学生探索,尝试解决问题 1.如何画出正弦函数Rxxy∈=,sin的图像呢?问题2.画函数图象的基本方法是什么?问题3.画函数xy sin=在[]π2,0上的图象如何取点呢?问题 4.在坐标系中,能准确的描出⎪⎪⎭⎫⎝⎛233,π这个点吗?问题 5.在[]π20,上任取一个值x,如何利用正弦函数的定义,确定正弦函数值sinx,并画出点问题1:生:描点法师:Rx∈,范围太大,不好操作,如何简化?生:先画[]π2,0∈x的图象师:非常好,这一特性从我们刚刚复习的正弦函数的定义和诱导公式一体现了。
问题2.生:描点法师:描点法和图象变换问题3.生:取.2332160⎪⎪⎭⎫⎝⎛,),,),(,(ππ问题4.生:不能师:如何解决这个问题呢?生:正弦函数的定义师:回答得非常好,根深叶茂,定义是一切知识的出发点,下面请同学们看问题5.问题5.生:先画个单位圆师:好,如何找到π2呢,请一位同学到前面来和老师一起动手操作。
在事先准备好的圆上找到一点,转一圈.学生找到π2,再进一步找到32πππ,,等。
这一过程体现了“曲化直”的化设置意图:为学生提供一个轻松、开放的学习环境,有助于有效地组织课堂学习,有助于带动和提高全体学习的积极性、主动性,更有助于培养学生的集体荣誉感,以及他们的竞争意识把学生推向问题的中心,让学生动手操作。
正弦型函数图象教学设计2
1.3.1(第三课时) 正弦型函数y=A sin(ωx+φ) 的图象教学目的:知识与技能目标:1理解振幅变换、相位变换和周期变换的规律;2会用“五点法”画出y=A sin(ωx+φ)的简图,明确A、ω和 对函数图象的影响作用;过程与方法目标:1.培养学生数形结合的能力。
2.培养学生发现问题、研究问题的能力,以及探究、创新的能力。
情感、态度价值观目标:通过学习过程培养学生探索与协作的精神,提高合作学习的意识。
教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx 的图象到y=Asin(ωx+φ)的图象变化过程。
这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。
学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。
所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。
教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。
因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。
学情分析:本节课在高一第二学段,学生进入高中学习已经三个月,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。
关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。
教学方法:引导学生结合作图过程理解振幅和相位变化的规律。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案一、教学目标1. 知识与技能:掌握正弦函数和余弦函数的定义和性质,能够准确地绘制正弦函数和余弦函数的图像,并用函数图像表示周期现象。
2. 过程与方法:通过观察和分析,培养学生绘制函数图像的能力,提高数学思维和分析问题的能力。
3. 情感态度和价值观:培养学生对数学知识的兴趣,增强学习数学的自信心。
二、教学重点与难点1. 教学重点:正弦函数和余弦函数的定义和性质,函数图像的绘制方法。
2. 教学难点:函数图像的周期性表现。
四、教学过程1. 引入问题为了引起学生的兴趣,可以通过提出一个问题引入正弦函数和余弦函数的教学内容,比如:在日常生活中我们经常遇到周期性的现象,比如四季更替、日升月落等,你知道如何用数学函数来描述这些现象吗?2. 理论学习教师介绍正弦函数和余弦函数的定义,及其性质,包括周期性、奇偶性、对称性等。
然后,通过示范和解释,教师讲解如何绘制正弦函数和余弦函数的图像,包括如何确定周期、振幅、相位等参数。
3. 练习与训练让学生进行简单的练习,让他们根据已知的函数,绘制相应的函数图像,加强他们的绘图能力和对函数图像的认识。
4. 拓展应用通过讲解正弦函数和余弦函数在日常生活中的具体应用,比如声音的频率、天体运动的规律等,引导学生将知识应用于实际问题中,并启发他们对数学知识的兴趣。
5. 总结反思教师对本节课的重点内容进行总结,并引导学生进行反思,总结学习方法和技巧,以及重点难点的突破方法。
五、教学手段1. 课件2. 黑板3. 教学实例4. 练习题六、教学评价1. 练习题考核通过练习题考核学生对正弦函数和余弦函数的理解和掌握程度。
2. 课堂表现评价通过观察学生的课堂表现,包括思维活跃程度、问题解决能力等来评价学生的学习情况。
七、教学反思本节课教学设计是以学生为中心的,注重培养学生的数学思维能力和实际应用能力,通过引入问题、理论学习、练习训练、拓展应用等环节,使学生能够全面地理解和掌握正弦函数和余弦函数的知识,并能在日常生活中灵活运用。
《正弦函数、余弦函数的图象》教学设计
《正弦函数、余弦函数的图象》教学设计正弦函数、余弦函数的图象一、教学目标 (一)学习目标1.会用单位圆中的三角函数线画出正弦函数图象.2.会用“五点法”作出正弦函数和余弦函数简图.3.掌握作正弦函数和余弦函数图象的特征,能利用其解决三角不等式等问题. (二)学习重点正弦函数和余弦函数图像的作法. (三)学习难点1.用单位圆中的正弦线作正弦函数的图像.2.运用图象变换法作余弦函数图象. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第30页到32页.(2)想一想:用三角函数线如何画正弦函数的图象. (3)画一画:三角函数线. 2.预习自测(1)给定角α,画出它的的正弦线、余弦线.(2)任意给定一个实数x ,有 唯一确定的值 x sin (或x cos )与之对应,由这个对应法则所确定的函数sin y x =(或cos y x =)叫作正弦函数(或余弦函数),其定义域为R .(3)用五点法作图,在正弦函数]2,0[,sin π∈=x x y 的图象上,起关键作用的5个点为:()0,0 、_,12π⎛⎫ ⎪⎝⎭____、___(),0π___、___3,12π⎛⎫- ⎪⎝⎭____、___()2,0π__.(二)课堂设计 1.知识回顾(1)正弦线、余弦线:设任意角α的终边与单位圆相交于点()P x y ,,过P 作x 轴的垂线,垂足为M ,则有向线段 PM 叫做角α的正弦线,有向线段 OM 叫做角α的余弦线.(2)函数图像的画法(描点法):列表、描点、连线. 【设计意图】回顾旧知,让探究始于思维邻近发展区. 2.问题探究探究一 如何得到正弦函数sin y x =的图象?学生方法:列表描点法.(步骤:列表,描点,连线)如果我们仍用描点法来画正弦函数图象,由于对于角的每一个取值,在计算相应的函数值时,都是利用计算机或数学用表得来的,大多是近似值,因此不易描出对应点的准确位置,画出的图象不够准确.为此我们应考虑其他方法来作正弦函数的图象. 【设计意图】利用已有知识经验解决新问题. (一)正弦函数的图象(1)几何法:用单位圆中的正弦线----几何画法;第一步:列表.在平面内建立一平面直角坐标系,然后在直角坐标系的x 轴上任意取一点1O ,以1O 为圆心作单位圆,从⊙1O 与x 轴的交点A 起把⊙1O 分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确).过⊙1O 上的各分点作x 轴的垂线,可以得到对应于0、6π、、、…2π等角的正弦线(例如有向线段1O B 对应于2π角的正弦线).第二步:描点.把x 轴上从0到2π这一段(2π≈6.28)分成12等份(例如,从原点起向右的第四个点,就是对应于2π角的点),把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合(例如,把正弦线1O B 向右平移,使点1O 与x 轴上的点2π重合).第三步:连线.把这些正弦线的终点用平滑曲线连接起来.xy2π3π2ππ2BO 1OA我们看到的这段光滑曲线就是函数sin y x =在[]0,2x π∈上的函数.因为终边相同的角有相同的三角函数值,所以函数sin y x =在221(0)x k k k Z k ππ∈∈≠[,+],且上的图象与函数sin y x =在[]0,2x π∈上的图象的形状完全一样,只是位置不同,于是我们只要将函数sin y x =,[]0,2x π∈的图象向左、右平行移动(每次π2个单位长度),就可以得到正弦函数sin y x =在x R ∈上的图象.xy5π4π3π2ππ-π-3π-2π-4x-5πO这时,我们看到的这支曲线就是正弦函数sin y x =在整个定义域上的图象,我们也可把它称为正弦曲线.【设计意图】让学生体会原有的描点法的优缺点:精确度较高但步骤繁琐.思考:用前面的方法来作图象,虽然比较精确,但不太实用,我们该如何快捷地画出正弦函数的图象呢?(2) 用五点法作正弦函数的简图在函数]2,0[,sin π∈=x x y 的图象上,起着关键作用的点只有以下五个:3()(,)()0()(,01,0212,0)2ππππ, , , -, ,事实上,描出这五个点后,函数]2,0[,sin π∈=x x y 的图象的形状就基本上确定了.因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就可得到函数的简图.今后,我们将经常使用这种近似的“五点(画图)法”.【设计意图】让学生通过前面作的正弦函数的图象,捕捉这种周期函数图象的关键信息,归纳简图作法的关键节点与图象大致走势,培养学生的图形直观,归纳总结的能力. 探究二 如何得到余弦函数cos y x =的图象?(二)余弦函数的图象●活动①:你能根据诱导公式,以正弦函数的图象为基础,通过适当的图形变换得到余弦函数的图象吗?(1)图象变换法:利用图象平移,sin()cos 2x x π+=,将正弦函数sin y x =的图象向左平移2π个单位即可得到余弦函数cos y x =的图象.由诱导公式可知:()sin()2=cossin 2y x x x ππ==++余弦函数cos y x x R =∈,与函数2)sin(y x x R π=∈+,是同一个函数.而2)sin(y x x R π=∈+,的图象可通过将正弦曲线向左平行移动2π个单位长度而得到.现在看到的曲线也就是余弦函数cos y x =在x R ∈上的图象,即余弦曲线. (2)五点法:●活动②:类似于正弦函数图象的5个关键点,请找出余弦函数的5个关键点,并填入下表,然后作出]2,0[,cos π∈=x x y 的简图x x cos同样,可发现在函数]2,0[,cos π∈=x x y 的图象上,起着关键作用的点是以下五个:0,1013()(,)()(,)()02,122ππππ, , ,-, , 与画函数]2,0[,sin π∈=x x y 的简图类似,通过这五个点,可以画出函数]2,0[,cos π∈=x x y 的简图.●活动③ 巩固基础,检查反馈 例1用“五点法”作出下列函数的简图(1) []12sin 0,2y x x π=∈+,; (2) []2cos 0,2.y x x π=+∈, 【知识点】五点法作三角函数的图象 【数学思想】数形结合x yx y o【思路点拨】在[]0,2 π上找出五个关键点,用光滑的曲线连接即可. 【解题过程】(1)列表:x 0 2ππ 32π 2π sin x 0 1 0 -1 0 12sin x +131-11在直角坐标系中描出五点 ()30,1,3,1,1,2,122()()ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, , , ,,然后用光滑曲线顺次连接起来,就得到[]12sin 0,2y x x π+∈=,的图象.(2)列表:x 0 2ππ32π2π cos x 1 0 -1 0 1 2cos x +32123描点连线,如图【设计意图】(1)巩固新知;(2)从层次上逐层深化、拾级而上,为往后学习三角函数图像的变换打下一定的基础. 同类训练用五点法作函数2cos()3y x π=+的简图.【知识点】五点法作()cos y A x ωϕ=+的函数图像 【数学思想】数形结合,函数复合 【思路点拨】令03x π+=,2π,π,32π,2π可得275-,36363x πππππ=, , , 【解题过程】(1)列表:3x π+2π π32π2π x 3π-6π 23π 76π 53π2cos 3x π⎛⎫+ ⎪⎝⎭2 0-2 0 2(2)描点连线xy5π37π62π3π6-π3O【设计意图】 在例1的基础上做变式拓展,培养整体思想与复合函数的思想. ●活动4 强化提升、灵活应用例3 画出sin y x =的简图,并根据图像写出12y ≥时x 的集合. 【知识点】三角函数线和三角函数图像的应用 【数学思想】数形结合【思路点拨】利用正弦函数与余弦函数图象或单位圆寻求满足条件的取值.【解题过程】利用“五点法”作出sin y x =的简图,过点10,2⎛⎫⎪⎝⎭作x 轴的平行线,在[]0,2π上直线12y =与正弦曲线交于1,62π⎛⎫ ⎪⎝⎭,51,62π⎛⎫ ⎪⎝⎭两点.在[]0,2π内,满足12y ≥时x 的集合为566x x ππ⎧⎫≤≤⎨⎬⎩⎭.因此,当x R ∈时,若12y ≥,则x 的集合为522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【设计意图】让学生经历利用三角函数图像和三角函数线解决实际问题,在这一过程中巩固新知,感受数形结合的魅力.例3 判断方程 04xcos x -=根的个数.【知识点】三角函数图像的应用 【数学思想】函数方程与数形结合【思路点拨】当求解的方程不是普通方程时,经常采用数形结合法求解,即分别画出两个函数图象来求方程解的个数.【解题过程】设()() 4xf xg x cos x =,=,在同一直角坐标系中画出()()f x g x 与的图象,如图:由图可知,()()f x g x 与的图象有三个交点,故方程 04xcos x -=有三个根.【设计意图】让学生经历利用三角函数图像和三角函数线解决实际问题,在这一过程中巩固新知,感受数形结合的魅力. 3. 课堂总结 知识梳理(1) 正弦函数图象的几何作图法.(2) 正弦函数图象的五点作图法(注意五点的选取). (3) 由正弦函数图象平移得到余弦函数的图象. 重难点归纳(1)正、余弦函数图象的简单应用.(难点) (2)正、余弦函数图象的区别与联系.(易混点) (三)课后作业 基础型 自主突破1.下列叙述正确的是( )①,]02[y sinx x π∈=,的图象关于点()0P π,成中心对称; ②,]02[y cosx x π∈=,的图象关于直线x π=成轴对称; ③正、余弦函数的图象不超过直线11y y =和=-所夹的范围. A.0 B.1个 C.2个 D.3个【知识点】正弦函数、余弦函数的图象的认识.【解题过程】分别画出函数,]02[y sinx x π∈=,和,]02[y cosx x π∈=,的图象,由图象观察可知①②③均正确.【思路点拨】分别画出正弦函数、余弦函数的图象即可. 【答案】D.2.用五点法作函数2sin 1y x =-的图象时,首先应指出的五点的横坐标可以是( ) A.322ππππ0,, ,,2; B.3424ππππ0, , , ,; C.ππππ0, , 2, 3,4; D.26323ππππ0, ,,,. 【知识点】五点法作图的应用【解题过程】与作函数sin y x =的图象所取的五点的横坐标一样. 【思路点拨】 结合五点法作函数sin y x =的图象即可解答. 【答案】A.3.将余弦函数cos y x = 的图象向右至少平移m 个单位,可以得到函数sin y x =-的图象,则m =( ) A.2π B. π C. 32π D. 34π 【知识点】图象变换的应用【解题过程】根据诱导公式得,33sin cos cos 22y x x x ππ⎛⎫⎛⎫=-=-=-⎪ ⎪⎝⎭⎝⎭,故欲得到sin y x =-的图象,需将cos y x =的图象向右至少平移.,32π个单位长度.【思路点拨】 利用诱导公式或函数图象左右平移方法即可解答 【答案】C.4.函数sin []0,2y x x π=∈,的图象与直线12y =-的交点有( )A.1个B.2个C.3个D.4个 【知识点】正弦函数图象的应用 【数学思想】数学结合【解题过程】在[]0,2π内使1sin 2x =-的角71166x ππ为和所以sin []0,2y x x π=∈,的图象与直线12y=-有2个交点.【思路点拨】画出sin[]0,2y x xπ=∈,的图象与直线12y=-即可解答【答案】B5. 用“五点法”作出函数(sin02)y x xπ=-≤≤的简图.【知识点】“五点法”作图【数学思想】【解题过程】列表,描点、连线,如图所示.【思路点拨】利用关键的“五点”作图【答案】上图所示能力型师生共研6.函数cos cos0,2[]y x x xπ=∈+,的大致图象为()【知识点】函数图象的应用【数学思想】分类讨论思想【解题过程】由题意得32cos,02,2230,22x x xxyπππππ≤≤≤≤<<⎧⎪=⎨⎪⎩或【思路点拨】函数解析式含绝对值,一般原则去绝对值符号,画出分段函数图象,图象问题的选择题也可利用函数性质,例如单调性,对称性等解答.【答案】D7.求函数2sin1y x=+的定义域.【知识点】函数图象的应用【数学思想】数形结合 【解题过程】要使2sin 1y x =+有意义,则必须满足2sin 10x +≥,结合正弦曲线或三角函数线,如图所示:【思路点拨】利用正弦函数图象或三角函数线法.【答案】722,66x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭8.方程2co 0s x x -=的实数解的个数是__________.【知识点】余弦函数图象应用【数学思想】数形结合思想【解题过程】作函数2cos y x y x ==与的图象,如图所示,由图象,可知原方程有两个实数解.【思路点拨】作函数2cos y x y x ==与的图象.【答案】2自助餐1.以下对于正弦函数sin y x =的图象描述不正确的是( )A.在2,22[]x k k k πππ∈∈Z +,上的图象形状相同,只是位置不同B.关于x 轴对称C.介于直线11y y =和=-之间D.与y 轴仅有一个交点【知识点】正弦函数图象的应用.【解题过程】逐一判断.【思路点拨】利用正弦函数图象【答案】B2.用“五点法”作函数cos 2y x =的图象时,首先应描出的五个点的横坐标是()A.322ππππ0, , , ,2B.3424ππππ0, , , , C.0234ππππ,, , , D.26323ππππ0,, , , 【知识点】“五点法”作余弦函数图象.【数学思想】转化与化归思想 【解题过程】令320222x ππππ=, , , 和,得30,424x ππππ=, , , 【思路点拨】利用作余弦函数图象的关键五点.【答案】B3.点,2M m π⎛⎫- ⎪⎝⎭在函数sin y x =的图象上,则m 等于( )A.0B.1C.-1 D .2【知识点】正弦函数的图象.【数学思想】【解题过程】由题意sin 1 1.2m m m π=∴-∴-,=,=-【思路点拨】点代入函数解析式.【答案】C4.在[]0,2π内,不等式3sin 2x <-的解集是( )A.(0,)πB. 4,33ππ⎛⎫ ⎪⎝⎭C. 45,33πππ⎛⎫⎪⎝⎭ D. 5,23ππ⎛⎫⎪⎝⎭【知识点】正弦函数的图象应用.【数学思想】数形结合思想【解题过程】画出[]sin 0,2y x x π=∈,的草图如下:【思路点拨】画出草图解不等式.【答案】C。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特征。
通过系统的内容安排,学生将了解到正弦函数和余弦函数的数学定义、性质以及图像特点,并明确教学重点。
教学方法包括理论讲解、示例演练和实际应用,帮助学生更好地掌握知识。
教学效果评价将从学生的表现和理解程度入手,评估教学效果。
通过学习本教案,学生将对正弦函数和余弦函数有更深刻的认识,提高数学素养和图像思维能力。
【关键词】《正弦函数余弦函数的图像》、教案、制作目的、内容安排、教学重点、教学方法、教学效果评价、引言、结论1. 引言1.1 引言在数学教学中,正弦函数和余弦函数是非常重要的函数之一,它们在图像和性质上有很多有趣的特点。
通过学习正弦函数和余弦函数的图像,可以帮助学生更深入地理解这两个函数的规律和变化。
在本节课中,我们将围绕正弦函数和余弦函数的图像展开教学,通过直观的图像展示和实际计算,让学生更加直观地理解正弦函数和余弦函数的性质。
正弦函数和余弦函数是周期函数,它们的图像呈现出明显的周期性和对称性。
通过分析正弦函数和余弦函数在不同参数下的图像变化,可以帮助学生建立起对这两个函数的直观认识,并且深入理解它们的数学性质。
在本节课中,我们将通过实际的例题和练习来帮助学生掌握正弦函数和余弦函数的图像特点,培养他们的数学思维和分析能力。
希望通过本节课的学习,学生能够更加深入地理解正弦函数和余弦函数的图像,为以后的学习打下良好的基础。
2. 正文2.1 1.4.1《正弦函数余弦函数的图像》教案的制作目的本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特征,以及它们在数学中的应用。
通过学习本教案,学生将能够掌握正弦函数和余弦函数的周期、振幅、相位和对称性等重要概念,并能够准确绘制它们的图像。
本教案还旨在培养学生的数学思维能力和图形绘制能力,提高他们对数学的兴趣和自信心。
通过实际练习和应用案例的引导,学生将能够更好地理解正弦函数和余弦函数在现实生活中的应用,进而提高他们的数学解决问题的能力和应用能力。
《正弦函数的图像》教学设计
《正弦函数的图像》教学设计方案教学阶段教学内容师生活动设计意图及时间引入课题一、首先让学生观看动画单摆的简谐运动形成的曲线,然后告诉学生这条美妙的曲线就是本节课我们将要研究的正弦函数的图像,引出课题。
教师用多媒体呈现教学内容,学生观看多媒体课件展示的动画。
3分钟这样引出课题的过程既让学生感知正弦函数来源于生活,同时激发了学生学习的兴趣。
讲授新课合作探究一:正弦函数的周期性的探讨环节一:完成表格x…ππ46-ππ26-6πππ26+ππ46+…xsin……环节二:回答问题串问题1:口答当时Rx∈,()?2sin=+κπx若设(),sin xxf=则上式还可以写成其它的什么形式?问题2:对比()()0,2≠∈=+κκκπ且Zxfxf与()()x fTxf=+的形式上的相似之处。
问题3:回答问题串:函数xy sin=是周期函数吗?周期T有哪些?最小正周期T是多少?合作探究二:“五点法”作正弦函数[]π2,0,sin∈=xxy的图像的探究活动1:多媒体演示描点法作图。
①借助 excel软件演示作出正弦函数图像的过程;②用多媒体演示描点法作出正弦函数[]π2,0,sin∈=xxy的图像的过程。
列表学生通过计算特殊角的正弦值完成下面的表格。
学生小组合作探究,根据小组讨论结果回答问题,教师补充说明。
学生观看多媒体演示图像形成过程。
回答观察后的想法,思考如果动手画函数图像会出现哪些困20分钟完成表格的过程唤起了学生对诱导公式的回忆。
通过对问题串的梳理,使学生对正弦函数的周期有了比较清晰的认识,为研究正弦函数的图像埋下伏笔。
通过比较多媒体演示的两种作图法导学案附后正弦函数x的图像导学案y sin班级:__________ 小组:___________姓名:_____________学习目标:一.【三维目标】知识目标:通过引导反复观察正弦函数[]π2,0,sin ∈=x x y 的图像直观找到“五个关键点”,并会使用“五点法”作正弦函数在[]π2,0 上的简图。
【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册
课题:5.4.1 正弦函数、余弦函数的图像(第一课时)一、教学内容:正弦函数、余弦函数的图像二、教学目标:(一)、了解正弦函数、余弦函数图象的来历,掌握“五点法”画出正弦函数、余弦函数的图象的方法.达成上述目标的标志是:学生能先根据正弦函数的定义绘制一个点,再绘制正弦函数在一个周期[0,2π]内的图象,最后通过平移得到正弦函数的图象;学生能用图象变换的方法,由正弦函数的图象绘制余弦函数的图象,并能就一个具体的点清晰地解释图象的变换方式及原因;能说出正弦函数、余弦函数图象的五个特殊点,并能用五点法绘制正弦函数的图象.(二)、正、余弦函数图象的区别与联系达成上述目标的标志是:先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到只要将函数y=sinx图象上的点向左平移π2个单位长度,即可得到函数y=cosx的图象.(三)、正、余弦函数图象的简单应用.达成上述目标的标志是:会用“五点法”作出与正、余弦函数相关的函数简图.三、教学重点及难点(一)重点:正弦函数、余弦函数的图象.(二)难点:用单位圆中的正弦线作正弦函数的图象的方法;探究正、余弦函数图象间的联系.四、教学过程设计问题1:三角函数是我们学习的一类新的基本初等函数,按照函数研究的方法,学习了三角函数的定义之后,接下来应该研究什么问题?怎样研究?追问:(1)研究指数函数、对数函数图象与性质的思路是怎样的?(2)绘制一个新函数图象的基本方法是什么?(3)根据三角函数的定义,需要绘制正弦函数在整个定义域上的函数图象吗?选择哪一个区间即可?师生活动:教师提出问题,学生回忆函数研究的路线图,师生共同交流、规划,完善方案. 预设的答案如下.研究的线路图:函数的定义——函数的图象——函数的性质.绘制一个新函数图象的基本方法是描点法.对于三角函数,单位圆上任意一点在圆周上旋转一周又回到原来的位置,这一特性已经用公式一表示,据此,可以简化对正弦函数、余弦函数图象与性质的研究过程,比如可以先画函数y=sinx,x∈[0,2π]的图象,再画正弦函数y=sinx,x∈R的图象.设计意图:规划研究方案,构建本单元的研究路径,以便从整体上掌握整个内容的学习进程,形成整体观念.问题2:在[0,2π]上任取一个值x0,如何利用正弦函数的定义,确定正弦函数值sinx0并画出点T(x0,sinx0)?师生活动:方法1:一起作图探讨,如图5.4.1,在直角坐标系中画出以原点O为圆心的单位圆,⊙O与x轴正半轴的交点为A(1,0).在单位圆上,将点A绕着点O旋转x0弧度至点B,根据正弦函数的定义,点B的纵坐标y0=sinx0.由此,以x0为横坐标,y0为纵坐标画点,即得到函数图象上的点T(x0,sinx0).追问:如何科学地将单位圆上每一点对应的图像画出?师生活动:若把x轴上从0到2π这一段分成12等份,使x0的值分别为0,π6, π3, π2,…,2π,它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点T(x0,sinx0)的方法,就可画出自变量取这些值时对应的函数图象上的点(图5.4.2).方法2:利用信息技术,可使x0在区间[0,2π]上取到足够多的值而画出足够多的点T(x0,sinx0),将这些点用光滑的曲线连接起来,可得到比较精确的函数y=sinx,x∈[0,2π]的图象.设计意图:通过正弦函数的定义,得到点的坐标,通过分析点的坐标的几何意义,准确描点.进一步熟悉,描点连线成图,即点动成线的作图过程.问题3:根据函数y=sinx,x∈[0,2π]的图象,你能想象函数y=sinx,x∈R 的图象吗?师生活动:由诱导公式一可知,函数y=sinx,x∈[2kπ,2(k+1)π ],k∈Z且k≠0的图象与y=sinx,x∈[0,2π]的图象形状完全一致.因此将函数y =sinx , x ∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得到正弦函数y =sinx , x ∈R 的图象(图5.4.4).知识梳理:正弦函数的图象叫做正弦曲线(sinecueve ),是一条“波浪起伏”的连续光滑曲线.追问:确定正弦函数的图象形状时,应抓住哪些关键点?师生活动:观察图5.4.3,在函数y =sinx , x ∈[0,2π]的图象上,以下五个点:(0,0),(π2,1),(π,0),(3π2,−1),(2π,0) 在确定图象形状时起关键作用.描出这五个点,函数数y =sinx , x ∈[0,2π]的图象形状就基本确定了.知识梳理:在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图方法近似地称为“五点(画图)法”,今后作简图是非常实用的.设计意图:观察函数图象,概括其特征,获得“五点法”画图的简便画法.问题4:由三角函数的定义可知,正弦函数、余弦函数是一对密切关联的函数.你能利用这种关系,借助正弦函数的图象画出余弦函数的图象吗?师生活动:学生先用排除法观察诱导公式,选择简洁的公式,作为正弦函数、余弦函数关系 研究的依据.教师引导学生通过比较进行选择.从数的角度看,对于函数y=cosx,由诱导公式cosx=sin(x+π2)得,y=cosx=sin(x+π2),x∈R.追问1:你认为应该利用正弦函数和余弦函数的哪些关系,通过怎样的图形变换,才能将正弦函数的图象变换为余弦函数的图象?师生活动:函数y=sin(x+π2),x∈R 的图象可以通过正弦函数y=sinx,x∈R 的图象向左平移π2个单位长度而得到.将正弦函数的图象向左平移π2个单位长度,就得到余弦函数的图象,如图5.4.5 所示.知识梳理:余弦函数y=cosx,x∈R的图象叫做余弦曲线(cosinecurve).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.追问2:你能在两个函数图象上选择一对具体的点,解释这种平移变换吗?师生活动:这是教学的难点,教师要首先进行示范.教师可以先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到图象之后还可以再利用图象进行验证.设(x0,y0)是函数y=cosx图象上任意一点,则有y0=cosx0=sin(x0+π2).令x0+π2=t0,则y0=sinxt0,即在函数y=sinx图象上有对应点(t0,y0).比较两个点:(x0,y0)与(t0,y0).因为x0+π2 =t0即x0=t0-π2.所以点(x 0,y 0)可以看做是点(t 0,y 0)向左平移π2个单位得到的,只要将函数y =sinx 图象上的点向左平移π2个单位长度,即可得到函数y =cosx 的图象,如图5.4.5 所示.知识梳理:余弦函数y =cosx ,x ∈R 的图象叫做余弦曲线(cosinecurve ).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.设计意图:利用诱导公式,通过图象变换,由正弦函数的图象获得余弦函数图象;增强对两 个函数图象之间的联系性的认识.问题5:类似于用“五点法”画正弦函数的图象,你能找出余弦函数在区间[-π,π]上相应的五个关键点吗?可以画出y =cosx ,x ∈[-π,π]的简图吗?师生活动:画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).用光滑曲线顺次连接这五个点,得到余弦曲线的简图.设计意图:观察余弦函数图象,掌握其特征,获得“五点法”. 问题6:例题分析:如何用“五点法”作出下列函数的简图?(1)y =1+sin x ,x ∈[0,2π];(2)y =-cos x ,x ∈[0,2π].师生活动:老师点拨:在[0,2π]上找出五个关键点,用光滑的曲线连接即可.预设学生:在直角坐标系中描出五点,然后用光滑曲线顺次连接起来,就得到y=1+sin x,x∈[0,2π]的图象.追问:你能利用函数y=sin x,x∈[0,2π]的图象,通过图象变换得到y=1+sin x,x∈[0,2π]的图象吗?同样地,利用函数y=cos x,x∈[0,2π] 图象,通过怎样的图象变换就能得到函数y=-cos x,x∈[0,2π] 的图象?师生活动:学生先独立完成,然后就解题思路和结果进行展示交流,教师点评并给出规范的解答.设计意图:巩固学生对正弦函数、余弦函数图象特征的掌握,熟练“五点法"画图,掌握画图的基本技能.通过分析图象变换,深化对函数图象关系的理解,并为后续的学习作好铺垫.五、课堂小结1.正弦函数和余弦函数的图象.正、余弦函数的图象每相隔2π个单位重复出现,因此,只要记住它们在[0,2π]内的图象形态,就可以画出正弦曲线和余弦曲线.2.“五点法”是作三角函数图象的常用方法,“五点”即函数最高点、最低点与x轴的交点.3.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点.六、目标检测设计(一)课前预习整理1、正弦曲线和余弦曲线1.可以利用单位圆中的______线作y=sin x,x∈[0,2π]的图象.2.y=sin x,x∈[0,2π]的图象向____、____平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象.3.正弦函数y=sin x,x∈R的图象和余弦函数y=cos x,x∈R的图象分别叫做__________和__________.整理2、正弦曲线和余弦曲线“五点法”作图 “五点法”作图的一般步骤是______⇒______⇒______. 设计意图:预习知识,引发思考.(二)课堂检测1.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是( )A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π32.用“五点法”画出y =cos (3π2-x ),x ∈[0,2π]的简图.设计意图:强化知识目标3 课后作业:(1)教科书第200页练习题.(2)习题5.4/1.设计意图:巩固知识,提升动手操作能力.七、教学反思。
正弦函数的图象与性质 正弦型函数 教学设计
1.3.1正弦函数的图象与性质3.正弦型函数y=Asin(@:+e)(一)学习目标1.了解正弦型函数y=Asin(〃+0)的定义及其参数A包0对函数图象变化的影响;2.会用“图象变换法”作出正弦型函数y=Asin(5+°)的图象;3.会利用正弦函数的性质解决正弦型函数的最值,单调性,及对称轴和对称中心等性质.(二)重点难点重点:正弦型函数的定义,图象变换的规律,正弦型函数的性质;难点:图象变换规律的总结与应用,正弦型函数的单调区间和最值的求法.(三)合作探究学习目标一:了解正弦型函数y=ASin(明+9)的定义及其参数人外。
对函数图象变化的影响.A⑷4的物理意义当y=Asin(tyχ+e),x∈[(),÷oo)(其中A>0,0>0)表示一个振动量时;A表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的,往复振动一次需要的时间称为这个振动的,单位时间内往复振动的次数/=1=乌,称为振动的___________ O69X+9称为_______ >X=O时的T2冗相位0称为O学习目标二:会用“图象变换法”作出正弦型函数y=Asin(s+e)的图象.例1在同一坐标系中作函数¥=25皿工及〉=25111X的简图。
' "2结论: ............ .................................结论:_____________________________________________例3在同一坐标系中作函数y=sin2x及y=singx的简图结论:_____________________________________________例4作函数》=3sin(2x+9的简图,说明它是由y=sinx的图象如何变换得到的?①y=sinX图象上所有点移2个单位,得至Uy=sin(x+§的图象上;②再把图象上所有点的横坐标到原来的(纵坐标不变),得到y=sin(2x+?)的图象;③再把图象上所有点的纵坐标到原来的(横坐标不变),得到y=3sin(2x+y)的图象。
正弦函数图像教学设计
正弦函数图像教学设计教学目标1、知识与技能(1)利用正弦线画出正弦函数的图像;(2)正弦函数图像与余弦函数图像的变换关系;(3)用五点法作出正弦函数和余弦函数的简图。
2、过程与方法(1)能利用正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函的图象。
(2)会用“五点法”画正弦函数、余弦数的图象。
3、情感态度与价值观通过本节课的学习学会善于寻找,观察数学知识之间的内在联系.培养学生从特殊到一般与从一般到特殊的辩证思想方法。
重点和难点:(1)利用正弦线画出正弦函数y=Sinx 的图象;(2)利用正弦曲线和诱导公式画出余弦曲线。
教学过程:(一)、导入.提出问题(1) 求方程lg 3x x =-+的解的个数(2) 求方程lg sin x x =的解的个数学生思考,讨论师:第1小题我们是通过构造两个函数lg y x =与3y x =-+,把方程解的个数的问题转化成两个函数图像的交点个数问题.那么第二小题可以采用同样的思路吗?怎样做呢? 学生思考,发现问题[设计意图: 有意义的学习是建立在学生原有的认识基础上的,学生原有的知识结构是知识正确迁移的一个关键因素。
通过两个问题的比较,让学生自己发现问题,激发学生的解决问题的热情。
并以此让学生明白学习正弦函数图像的重要性](二)、新课探究1、设问质疑,启发探究:师:如何画一般函数的图象?学生回答作图步骤:(Ⅰ)列表; (Ⅱ)描点 (Ⅲ)连线。
师:那我们能否通过描点法画正弦函数在[0,2]π内的图像,学生尝试描点法画图.师: 描点法在取函数值时,有时不能确定精确值,这样很难认识正弦函数图像的真实面貌.那么今天我们来学习一种新的方法来画函数图像。
2.利用正弦线画点(,sin )αα 师:在单位圆中画6π角的正弦线,并在直角坐标系中画点A (,sin )66ππ[设计意图:回顾正弦线的概念,加强学生的对正弦线的应用意识]师:(2)能否借助上面作点A 的方法在直角坐标系中作出正弦函数y=sinx ,x ∈[0,2π]的图象呢?3.利用正弦线画y =Sinx ,x ∈[0,2π]的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数图像教学设计
一、内容分析:
1、教材得地位与作用
《正弦函数得图象与性质》就是高中《数学》必修四第二章第二节得内容得内容,其主要内容就是正弦函数得图象与性质。
过去学生已经学习了一次函数、二次函数、指数函数与对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数得图象与性质,为今后余弦函数、正切函数得图象与性质、函数图象得研究打好基础。
因此,本节得学习有着极其重要得地位。
本节共分两个课时,本课为第一课时,主要就是利用正弦线画出,得图象,考察图象得特点,介绍“五点作图法”,再利用图象感知正弦函数得主要特征。
2、教学重点与难点
教学重点:用“五点作图法”画长度为一个周期得闭区间上得正弦函数图象、
教学难点:利用单位圆画正弦函数图象
二、目标分析
根据《高中数学教学大纲》得要求与教学内容得结构特征,依据学生学习得心理规律与素质教育得要求,结合学生得实际水平,制定本节课得教学目标如下:
1、知识目标:正弦函数得图象
2、能力目标:
(1)会用单位圆中得正弦线画出正弦函数图象;
(2)掌握正弦函数图象得“五点作图法”;
(3)培养观察能力、分析能力、归纳能力与表达能力等;
(4)培养数形结合与化归转化得数学思想方法。
3、德育目标:
(1)渗透由抽象到具体得思想,使学生理解动与静得辩证关系,培养辩证唯物主义观点;
(2)培养学生勇于探索、勤于思考得精神;
(3)培养学生合作学习与数学交流得能力;
(4)使学生懂得数学就是源于生活,服务于生活得数学特点。
三、教法分析
根据上述教材分析与目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体得教学思想,深化课堂教学改革,确定本课主要得教法为:
1、计算机辅助教学
借助多媒体教学手段引导学生理解利用单位圆中得正弦线画出正弦函数得图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美得函数图象,给人以美得享受。
2、讨论式教学
通过观察课件得演示,让学生分组讨论、交流、总结,说出正弦函数得主要特征与函数,得图象中起着关键作用得点(不同层次得组员回答,教师给予评价不同)。
3、讲议结合教学
教师耐心引导、分析、讲解与提问,并及时对学生得意见进行肯定与评议。
4、分层教学
提问分层、评价分层、作业分层,注意面向全体学生,充分调动不同层次学生得积极性。
四、学法分析
引导学生认真观察教学课件得演示,指导学生进行分组讨论交流,促进学生知识体系得建构与数学思想方法得形成,注意面向全体学生,培养学生勇于探索、勤于思考得精神,提高学生合作学习与数学交流得能力。
ⅲ作各分点关于x轴得垂线,得到对应于各角得正弦线;
ⅳ找横坐标:把轴上从0到2π这一段分成12等份;
ⅴ找纵坐标:把各角得正弦线向右平移,使它得起点与x轴上对应得点重合,从而得到12条正弦线得12个终点;
ⅵ连线:用平滑得曲线将12个点依次从左至右连接起来,即得y=sinx x∈[0,2π]得图象。
2、如何作正弦函数在R上得图象?
因为终边相同得角有相同得三角函数值,所以函数在,,得图象与函数,得图象得形状完全一样,只就是位置不同,于就是只要将它向左、右平行移动(每次个单位长度),就可以得到正弦函数,得图象,即正弦曲线。
回想我们就是如何作出正弦函数在间得图象得?
①列表描点法误差大
②几何作图法精确但步骤繁
思考:在精确度要求不太高时,如何作出正弦函数得图象?
3、五点作图法
问题:
ⅰ函数,得图象中起着关键作用得点就是哪些点?
ⅱ几何作图法虽然比较精确,但就是不太实用,如何快捷地画出正弦函数得图象呢?
五个关键点:
事实上,描出这五个点,函数,得图象得形状就基本确定了。
今后在精确度要求不太高时,常常先找出这五个关键点,用光滑曲线将它们连结起来即可得到函数得简图,我们把这种方法称为“五点作图法”。
(三)范例:
例1用五点法作函数与得图象、得思想,促进学生数学思想方法得形成,引导学生确实掌握“数形结合”得思想方法。
终边相同得角得同一三角函数值相等。
提出问题,培养学生认真观察与勇于探索、勤于思考得精神。
提问学生,由学生小结,然后教师重新演示课件,进行总结与补充。
学生通过观察正弦函数图象得特点,分组完成了正弦函数得主要性质得建构。
培养学生学生合作学习与数学交流得能力。
图象中起关键作用得五点,学生可能说不全,应进行耐心引导。
“五点作图法”得一般步骤:列表、描点、连线。
应注意在图中标出关键点得横、纵坐标。
学生自主完成、相互评价,教师巡视并参与学生得探索过程。
根据不同层次得学生得回答,教师给予不同得评价。
作业布置注意分层,满足不同层次学生得需要。
解:按五个关键点列表
利用正弦函数得特征描点画图:
例2 用五点法作函数得图象、
解:按五个关键点列表
利用正弦函数得特征描点画图:
(四)课堂练习:
用五点法作函数得图象、(五)课堂小结:
(六)布置作业:
P34第1、2题
学习动机就是学生学习系统中重要得动力因素、但学生得动力不会无缘无故地产生、需要老师在交往中激发、“目标激励法”“鼓励促进法”友好交往法等都就是好得激励学习动机得方法、本节课以提问导入,从解决问题得需要出发自然引出新得知识点。
目得就是激发学生学习得兴趣与热情。
课堂上采用得教学方法就是观察与启发相结合。
因为:“观察”遵循了从具体到抽象得认识规律,为抽象概括奠定了基础。
作图时,让学生在观察与实践中发现问题、解决问题,这样印象较深,记得牢。
而实行启发式教学得关键,在于使学生有思考问题、发现问题、解决问题得要求,教师得责任就就是创造条件,使学生成为学习得主人。
这样整堂课体现了以学生为主体,以老师为主导得教学理念。