用列举法求概率练习题
用列举法求概率
解:由题意得两次抽取共有36种等可能出现的结果,
第二次取出的数字能够整除第一次取出的数字的结果
有14种,即有(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,2),
(4,4),(5,1),(5,5),(6,1),(6,2),(6,3),(6,6) ,
学时经过的每个路口都是绿灯,此事件发生的概率是
多少?
这个问题能用直接列表法和列表法解
决吗?有什么简单的解决办法吗?
解:根据题意画树状图如下:
黄
红
第1路口
第2路口
红
黄
绿 红
黄
绿
绿
红
黄
绿
第3路口 红 黄 绿 红 黄 绿红 黄 绿红 黄 绿红 黄 绿红 黄 绿 红 黄 绿红 黄 绿红 黄 绿
红 红 红红 红 红红 红 红黄 黄 黄黄 黄 黄黄 黄 黄 绿 绿 绿绿 绿 绿绿 绿 绿
3
.
关键是不重不漏地
解:由2, 3, 4这三个数字组成的无重复数字的所有三位数为234,
列举出由2,3,4组成
的无重复数字的所
243, 324, 342, 432, 423,共6种情况, 而“V”数有324和423,共2
有的三位数.
种情况,
故从2, 3, 4这三个数字组成的无重复数字的三位数中任意抽取一
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称
为“V数”, 如756, 326 , 那么从2, 3, 4这三个数字组成的无重复数
人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)
25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。
人教版 九年级数学 25.2 用列举法求概率 培优训练(含答案)
人教版 九年级数学 25.2 用列举法求概率 培优训练一、选择题(本大题共8道小题) 1. 2019·大连 不透明袋子中装有红、绿小球各一个,这些小球除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A.23B.12C.13D.142. 小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么小李获胜的概率为( )A.1325B.1225C.425D.123. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.234. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π45. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.346. 从长度分别为2,3,4,5的4条线段中任取三条,能构成直角三角形的概率为( ) A.34B.12C.13D.147. 从如图所示图形中任取一个,是中心对称图形的概率是()A.14B.12C.34D .18. 从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax2+4x +c =0有实数解的概率为( ) A.14B.13C.12D.23二、填空题(本大题共8道小题)9. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________.10. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是________.11.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.12. (2019·浙江台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________.13. 一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子一次,向上一面的点数是4的概率是________.14. 如图,在3×3的方格中,点A,B,C,D,E,F均位于格点上,从C,D,E,F四点中任取一点,与点A,B一起作为顶点构造三角形,则所构造的三角形为等腰三角形的概率是________.15. 如图所示,一只蚂蚁从点A出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么蚂蚁从点A 出发到达E处的概率是________.16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.三、解答题(本大题共4道小题)17. 在甲、乙两个不透明的口袋中装有大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,2,3,4,乙袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中任意摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)的可能的结果;(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,他们两人谁获胜的概率大?18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况; (2)小美玩一次游戏,得到小兔玩具的机会有多大? (3)假设有125人玩此游戏,估计游戏设计者可赚多少元.人教版 九年级数学 25.2 用列举法求概率 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】D2. 【答案】A[解析] 画树状图如下:共有25种等可能的结果,两人出拳的手指数之和为偶数的结果有13种,所以小李获胜的概率为1325.故选A.3. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.4. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.5. 【答案】A6. 【答案】D[解析] 一共有四种可能,分别是2,3,4;2,3,5;2,4,5;3,4,5.其中只有长度分别是3,4,5的三条线段能构成直角三角形,所以能构成直角三角形的概率为14.7. 【答案】C[解析] 因为共有4种等可能的结果,任取一个,是中心对称图形的有3种结果,所以任取一个,是中心对称图形的概率是34.故选C.8. 【答案】C[解析] 列表如下:共有12种等可能的结果,其中关于x 的一元二次方程ax2+4x +c =0有实数解的结果有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P =612=12.故选C.二、填空题(本大题共8道小题)9. 【答案】1210. 【答案】13 [解析] 若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M 在第二象限的概率是13.11.【答案】13【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有下列两种情况:乙、丙、甲;丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率=26=13.12. 【答案】【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ∴两次摸出的小球颜色不同的概率为;故答案为:.13. 【答案】16 [解析] 抛掷骰子一次,向上一面的点数可能是1,2,3,4,5,6,一共有6种等可能的结果,其中向上一面的点数是4的结果有1种,所以P(向上一面的点数是4)=16.14. 【答案】34 [解析] 从C ,D ,E ,F 四个点中任意取一点,一共有4种可能,当选取点D ,C ,F 时,所构造的三角形是等腰三角形,故P(所构造的三角形是等腰三角形)=34.15. 【答案】12 [解析] 画树状图如图所示:由树状图知,共有4种等可能的结果,蚂蚁从点A 出发到达E 处的结果有2种, 所以蚂蚁从点A 出发到达E 处的概率是24=12.16. 【答案】47 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.三、解答题(本大题共4道小题)17. 【答案】解:(1)画树状图如图所示:(2)因为解方程x2-5x +6=0,得x =2或x =3.由树状图得共有12种等可能的结果,其中m ,n 都是方程x2-5x +6=0的解的结果有4种,m ,n 都不是方程x2-5x +6=0的解的结果有2种, 所以小明获胜的概率为412=13,小利获胜的概率为212=16, 所以小明获胜的概率大.18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B 手中的结果只有1种, ∴两次传球后,球恰好在B 手中的概率为14. (2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A 手中的结果有2种, ∴三次传球后,球恰好在A 手中的概率为28=14.20. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15. (3)125×(3×45-4×15)=200(元). 答:估计游戏设计者可赚200元.。
人教版数学九年级上册:25.2 用列举法求概率 同步练习(附答案)
25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。
用列举法求概率专题训练
奖 1 , 等奖 1 个 一 O个 , 等 奖 10个 . 某 二 0 若 人购 物 刚好 满 1 0元 ,那 么他 中一 等 奖 的 0 概率 是 ( ) .
c三 .
4
D1
.
2 设有 1 型号相 同 的杯 子 ,其 中一 等 品 7 . 2只 只 , 等 品 3只 , 等 品 2只 , 二 三 则从 中任 意
概率是 (
A. 2 C.
4
) .
B. — — 1
—
个 黄球 。 们 除颜 色 不 同外 , 余 均 相 同. 它 其
若从 中随机 摸 出一个 球 . 到 黄球 的 概率 摸
是 . 凡 则 :
5
3 D. 5
参考警
’
一
-
' 。
’
4 百 一 ‘
5
2
( 2— ) . ,2
7
( ) 76
( -) 7,2
C 7 7,)
(( ).2两和于 ). 两 嗣= (( 大 l吾 )数 ÷ )数 o P P =
利用频率估计概 率专题调练( 题在第 4 7页)
用到举法求概率专题溯练
1 随机 掷一 枚均 匀 的硬 币两 次 . 两 次正 面都 . 朝上 的概率 是 (
A. 4
5 某商 店举 办 有 奖销 售活 动 , 物满 1 . 购 0元者
发对 奖 券 一 张. 10 0张奖 券 中 。 特等 在 00 设
) .
B. 2
字. 同时 自由转 动两 个 转 盘 . 盘 停 止 后 , 转
色不 同 的乒乓球 , 匀 后 , 得从 袋 中任 意 搅 使 摸 出一个 乒 乓 球是 黄 色 的概 率 是 , 以 可 怎 样放 球 — — ( 只写 一种) .
用列举法求概率
B
正
正正 反正
正
反
正反 ቤተ መጻሕፍቲ ባይዱ反
正 反
第一枚
还能用其它方法列举 所有结果吗?
反
第二枚
正
反
正
反
共4种可能的结果 此图类似于树的形状,所以称为 “树形图”。
例2:如图,甲转盘的三个等分区域分别写有数字1、2、 3,乙转盘的四个等分区域分别写有数字4、5、6、7。 现分别转动两个转盘,求指针所指数字之和为偶数的 概率。
6
1×6=6
2×6=12
3×6=18
4×6=24
5×6=30
6×6=36
2
3 4 5
1×2=2
1×3=3 1×4=4 1×5=5
2×2=4
2×3=6 2×4=8 2×5=10
3×2=6
3×3=9 3×4=12 3×5=15
4×2=8
4×3=12 4×4=16 4×5=20
5×2=10
5×3=15 5×4=20 5×5=25
6×2=12
6×3=18 6×4=24 6×5=30
1 3
.
A
2、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。 连续投10次,谁得分高,谁就获胜。 (1)请你想一想,谁获胜的机会大?并说明理由; (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。
列出所有可能的结果:
1 1 1×1=1 2 2×1=2 3 3×1=3 4 4×1=4 5 5×1=5 6 6×1=6
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
用列举法求概率
列举法就是把可能出现的结果一一列举出来分析 求解的方法.
探究
• 问题1.掷一枚一硬币,正面向上的概率是多少? • 问题2.抛掷一个骰子,它落地时向上的点数为 ① 2的概率是多少? ②落地时向上的数是3的倍数的概率是多少? ③点数为奇数的概率是多少? ④点数大于2且小于5的数的概率是多少?
该踩在A区还是B区?
P134.练习1
在线段上表示出不同的概率情况
(1)太阳每天从东方升起 (2)斗门今天下大雪 (3)掷一枚硬币,正面朝上 (4)掷 一枚骰子,落地点数为6
0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
1.设有12只型号相同的杯子,其中一等品7只, 二等品3只,三等品2只.则从中任意取1只,是 二等品的概率等于( ).
互动环节,是一种竞猜游戏,游戏规则如
下:在20个商标中,有5个商标牌的背面注
明了一定的奖金额,其余商标的背面是一
张苦脸,若翻到它就不得奖。参加这个游
戏的观众有三次翻牌的机会。某观众前两
次翻牌均得若干奖金,如果翻过的牌不能
再翻,那么这位观众第三次翻牌获奖的概
率是( ).
A. 1 B. 1
6
5
C. 3
20
性相等。
(1)满足指向红色有3种结果,
P(红色)=_____
(2)満足指向红色或黄色一共有5种
结果,P( 红或黄)=_______
(3)满足不指向红色有4种结果
P( 不指红)= ________
能不能把结果分为红、绿、
黄三种可能,再用P(A)
=m/n求概率
解:A区有8格3个雷,
如图:计算机扫雷游
ห้องสมุดไป่ตู้
25.2用列举法求概率-使用(共38张)
第9页,共38页。
复习
例题5
用列举法求概率
思考一 例题6
思考二 课堂小结 中考点击
甲口袋中装有2个相同的小球,它们分别写有字母(zìmǔ)A和B; 乙 口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋 中装有2个相同的小球,它们分别写有字母H和I。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) P(A)= 14= 7
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
36 18
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9
(3)至少有一个骰子的点数为2
第6页,共38页。
用列举法求概率
复 习 例题5
思考一 例题6 思考二 课堂小结 中考点击
同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9 (3)至少(zhìshǎo)有一个骰子的点数为2
果较多时,为不重复不遗漏地列出所有可能的
当一次试验涉及3个因素或3个以上的 因素时,列表法就不方便了,为不重复不遗
结果,通常用列表法
漏地列出所有可能的结果,通常用树形图
第12页,共38页。
复习
例题5
用列举法求概率
思考一 例题6 思考二
课堂小结 中考点击
巩固练习:在一个盒子中有质地均匀的3个小球,其中两个小球 都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选 用哪种方法更方便?
3用列举法求概率(1)
7 10-3 = P(在B区域踩中地雷)= 9×9-9 72
3 7 > ∵ 8 72
∴第二步应踩在B区域
例2、 抛两枚硬币
思考
① 正 正 反 反 ② 正 反 正 反
“同时掷两枚硬 币”,与“先后两次 掷一枚硬币”,这两 种试验的所有可能结 果一样吗?
一样
(1)思考:共有几种可能的结果? 共有4种可能的结果 (2)求下列事件发生的概率:
1 ①P(两枚硬币全部正面向上)=____ 4 1 ②P(两枚硬币全部反面向上)=____ 4
1 ③P(一枚硬币正面向上,一枚硬币反面向上)=____ 2
5 例3、如图,A、B、C、D四张卡片上分别写有-2, 3 , ,π四 7 个实数,从中任取两张卡片.
-2
A
3
B
5 7
C
π
D
(1)请列举出所有可能的结果(用字母A、B、C、D表示); BC BD CD AB AC AD (2)求取到的两个数都是无理数的概率. 1 P(取到的两个数都是无理数)= 6 像这样,把所有可能的结果都列出来,通过分析进 而得出相应事件发生的概率的方法,叫做列举法.
第一轮
(书本 P134 练习:1、2)
第二轮
1、甲、乙、丙三人随意地排成一排,甲排在乙后面的概率
1 为_____. 2
2、从1、2、3、4、5的5个数中任取2个,它们的和是偶数的
2 概率为_____. 5
3、有5件衬衫,其中两件是次品,从中任取两件,求下列
事件发生的概率:
3 ①P(都是正品)=____ 10
3、书本:P137—138 习题:1、2、4 (5分钟)
1、会用列举的方法计算一些简单事件发生的概率. 2、体会在生活实际中概率的应用. 3、提高自己分析问题的能力,激发学习数学的兴趣.
(完整版)初三数学用列举法求概率综合练习试题
初三数学用列举法求概率综合练习题一、课前预习(5分钟训练)1•在一个不透明的袋子里放入除颜色外完全相同的2个红球和2个黄球,摇匀后摸出一个记下颜色,放回后摇匀,再摸出一个,则两次摸出的球均是红球的概率为()111 3A. B. C. D.—4 3 2 42填空:(1) 现有六条线段,长度分别为1,3,5,7,9,10,从中任取三条,能构成三角形的概率是⑵一副扑克牌抽出大小王后,只剩下红桃、黑桃、方块、梅花四种花色52张,则任取一张是红桃的概率是_________ ;(3)抛掷两枚普通的骰子,出现数字之积为奇数的概率是_____________ ,出现数字之积为偶数的概率是________ .3.抛掷两枚硬币观察出现两个正面的试验中,随着试验次数的增加,出现两个正面的频率将趋于稳定在__r _____ 左右.4•冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()5 3 15 17A. B. — C. D.-32 8 32 321. 判断题1(1) 某彩票的中奖概率是,那么某人买了22张彩票,肯定有一张中奖.( )22⑵抛掷一枚质量均匀的硬币,出现正面”和反面”的概率相等,因此抛 1 000次的话,一定有500次正” 500次反”.()(3)世界乒乓球冠军王楠,预定在亚运会上夺冠的概率为100 % .( )2. —个均匀的立方体六个面上分别标有数1,2,3,4,5,6.图25-2-1是这个立方体表面的展开图1抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()24•四张大小、质地均相同的卡片上分别标有数字 1,2,3,4,现将标有数字的一面朝下扣在桌子上 从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张•⑴用画树状图的方法,列出前后两次抽得的卡片上所标有数字的所有可能情况 ;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?1•随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 ()113A.—B.C, 一D.14 2 42•—个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为 ( )1111A.—B.-C. _D.-2 3 4 63•—张圆桌旁有四个坐位, A 先坐在如图25-2-2所示的坐位上,B 、C 、D 三人随机坐到其 他三个坐位上•则A 与B 不相邻而坐的概率是 ______________1 A.-61 B.-31 C.—22 D.-33•两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中 摸出一个球,请用列表法表示出可能出现的情况, 并求出摸出的球颜色相同的概率•图25-2-24•袋子中装有白球3个和红球2个共5个球,每个除颜色外都相同,从袋子中任意摸出一个球.(1) __________________ P(摸到白球)= ________ ,P(摸到红球)= ,P(摸到绿球)= _______ ,P(摸到白球或红球)= ________ ;(2) __________________ P(摸到白球)P(摸到红球)(“〉”或<”=”).5. —副扑克牌,任意从中抽一张.(1)抽到大王的概率;(2)抽到A的概率;(3)抽到红桃的概率;(4)抽到红牌的概率;⑸抽到红牌或黑牌的概率.6. 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?7. 小明和小刚用如图25-2-3的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?图25-2-38•如图25-2-4是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树状图加以分析说明图25-2-4初三数学用列举法求概率综合练习试题38 32 32参考答案一、课前预习(5分钟训练)1•在一个不透明的袋子里放入除颜色外完全相同的2个红球和2个黄球,摇匀后摸出一个记下颜色,放回后摇匀,再摸出一个,则两次摸出的球均是红球的概率为 ( ) 111 3 A.B. —C. —D.-4324思路解析:可以通过列举,知所有可能有4种,分别是红黄、红红、黄红、黄黄,而发生两1次都是红球的可能只有一种,所以所求概率为 .4答案:A 2填空:(1) 现有六条线段,长度分别为 1,3,5,7,9,10,从中任取三条,能构成三角形的概 率是 ________ .(2) 一副扑克牌抽出大小王后,只剩下红桃、黑桃、方块、梅花四种花色 52张,则任取一张是红桃的概率是 __________ ;(3) _____________________________________________________ 抛掷两枚普通的骰子,出现数字之积为奇数的概率是 ________________________________________ ,出现数字之积为偶数的概率是 ________ .思路解析:(1)六条线段中任取三条共有 20种取法,其中能构成三角形的有 7种;(2) — 副扑克牌抽出大小王后,剩下的 52张牌中,红桃、黑桃、方块、梅花四种花色的数量 相同都是13张;(3)抛掷两枚普通的骰子,所有可能性共有36种,其中数字之积为奇数的有9个,数字之积为偶数的有 27个.趋于稳定在__r ______ 左右.思路解析:通过试验可得出出现两个正面的频率将趋于稳定在 25%左右.答案:25%左右4•冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐答案:⑴7201 1 ⑵ 1 (3)13•抛掷两枚硬币观察出现两个正面的试验中, 随着试验次数的增加,出现两个正面的频率将和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料 ,该饮料含有咖啡因的概率是()5 A.-325 12 17思路解析:随机取一瓶饮料,都均有可能,•••+ — =.32 32 32答案:D二、课中强化(10分钟训练)1•判断题1(1)某彩票的中奖概率是,那么某人买了22张彩票,肯定有一张中奖.( )22⑵抛掷一枚质量均匀的硬币,出现正面”和反面”的概率相等,因此抛 1 000次的话,一定有500次正”,500次反”.()(3) 世界乒乓球冠军王楠,预定在亚运会上夺冠的概率为100 % .( )1思路解析:(1)虽然某彩票的中奖机会是—,但是每次都是一个随机事件,即使买了2222张彩票,也不一定中奖;(2)虽然抛掷一枚质量均匀的硬币,出现正面”和反面”的概率相等,抛1 000次的话,不一定有500次正”,500次反” ;(3王楠是世界乒乓球冠军,她在亚运会上夺冠是一个随机事件,不一定夺冠,只是夺冠的可能性较大答案:(1) )(2) )(3) X2•—个均匀的立方体六个面上分别标有数1,2,3,4,5,6.图25-2-1是这个立方体表面的展开图抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的D.21 1 1A. —B. —C.-6 3 2思路解析:此题综合考查了概率的求法及立体几何知识•首先要清楚立方体哪些面是对立面•可以动手操作一下,知1与4、6与3、5与2是对立面,所有可能情况有6种,其中符合1的只有当3在上时,所以所求概率为1 .6答案:A3•两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率•思路分析:由题意可列下表:袋1袋2白白黑八、、白(白,白)(白,白)(白,黑)白(白,白)(白,白)(黑黑)\ 八、、j 里八、、(黑,白)(黑,白)(黑黑)\ 八、、j)解:P(同)=6 =2 .9 3 4•四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张•⑴用画树状图的方法,列出前后两次抽得的卡片上所标有数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?112 1思路解析:(1)画树状图;(2)可得奇数积是1X3和3X1所以 +丄= =丄.12 12 12 6答案:(1)木/R木木2 3 41 3 41 3 4 12 3(2)P(数字之积为奇数)=1 .6三、课后巩固(30分钟训练)1•随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()1 1 3A. B. C. 一 D.14 2 4思路解析:我们把掷一枚均匀的硬币两次所能产生的结果全部列举出来,它们是:正正,反反,反正,正反,所有的可能结果共有4个,并且这四个结果出现的可能性相等•其中两次正面都朝上的结1果只有一个,所以其概率为丄.4答案:A2•—个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为()1 1 1 1A. B. C. D. 一2 3 4 6思路解析:可设两红色珠子分别为a i、生,两蓝色珠子分别为b i、b2,由题意可画出下面的树形图:第一次%a2b、b,/|\ /l\ /1\ /|\彌二杵:殆血b. fl, b\ bw a. hg a2 b、从上面的树形图可以看出,所有可能性的结果共有12个,2 1其中都是蓝色珠子的有2个结果,所以其概率为—=-.12 6答案:A3•—张圆桌旁有四个坐位,A先坐在如图25-2-2所示的坐位上,B、C、D三人随机坐到其他三个坐位上•则A与B不相邻而坐的概率是 _______________________ .思路解析:由题意可画出下列树形图:A A A/\/\/\H C B I) C H\/\/\/不相邻[)C DA A A/\/\/\相邻 C D D a D C\/\/\/C B从上面的树形图可以看出,所有可能性的结果共有6个,其中A与B不相邻而坐的有21个结果,所以其概率为丄.31答案:丄34•袋子中装有白球3个和红球2个共5个球,每个除颜色外都相同,从袋子中任意摸出一个球•(1)_________________ P(摸到白球)= _________ ,P(摸到红球)= ,P(摸到绿球)= _______ ,P(摸到白球或红球)= _________ ;(2)_________________ P(摸到白球) P(摸到红球)(“〉”或<”=”).思路解析:所有可能出现的结果:1号球、2号球、3号球、4号球、5号球,5种可能;摸到白球可能出现的结果:1号球、2号球、3号球,三种可能;摸到红球可能出现的结果:4号球、5号球两种可能.3 2答案:(1)0 1 (2)>5 55•—副扑克牌,任意从中抽一张.(1)抽到大王的概率;(2)抽到A的概率;(3)抽到红桃的概率;(4)抽到红牌的概率;⑸抽到红牌或黑牌的概率•思路分析:一副牌只有54张,大、小王各一张,红桃、方块、梅花、黑桃各13张,红牌即红桃和方块,黑牌即黑桃和梅花,除大、小王外,一张牌有4种花色•1 4 13解:P(抽大王)= ,P(抽A)= ,P(抽红桃)=54 54 54P(抽红牌)=13 13 = 26,P(抽红牌或黑牌)=52 .54 54 546•某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛•八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?思路分析:由题意可列下表:由表可看出能够组成小娟与小强、小敏与小强、小华与小强、小娟与小明、小敏与小明、1 小华与小明,共6对;恰好选出小敏和小强参赛的结果共一个,其概率为-•67•小明和小刚用如图25-2-3的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分•这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?思路分析:P(积为奇数)=1, P(积为偶数)=2.3 3123112322461 2 、、、X2=1 X—这个游戏对双方公平.3 38.如图25-2-4是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树状图加以分析说明图25-2-4C2解:列表如下:234(2,2)(2,3)(2,4)23(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)2所以,摸出的两张牌的牌面数字之和等于5的概率是2 .9。
用列举法求概率(2)
第13页,共17页。
链接中考
3、两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车 (票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过 来的顺序.两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆 车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状 况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第 三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解 决下面的问题:
甲
BA
乙 ECDE
丙 HHH II
第4页,共17页。
探索新知
这些结果出现的可能性相等.
(1)只有一个元音字母的结果(红色)有5个,即ACH,ADH,BCI,
BDI,BEH,所以P(一个元音)=
5
12
有两个元音字母的结果(绿色)有4个,即ACI,ADI,AEH,BEI,所以
P(两个元音)=
4 1 12 3
P(A)14 7 36 18
第10页,共17页。
同步练习
生男孩与生女孩的可能性相同.如果一对夫妻准备
生3胎。 (1)求3个孩子都是男孩的概率; (2)求有2个男孩和1个女孩的概率; (3)求至少有一个男孩的概率.
第11页,共17页。
链接中考
1、在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小 明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下 数字为y. (1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率. (2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy <6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则 。
用列举法求概率-列表法
另一
个因素 所包含 的可能
两个因素所组合的 所有可能情况,即n
情况
在所有可能情况n中,再找到满足条件的事件的个
数m,最后代入公式计算.
用心领“悟”
在盒子中有三张卡片,随机抽取两张,可能拼出 菱形(两张三角形)也可能拼出房子(一张三角形 和一张正方形)。游戏规则是: 若拼成菱形,甲胜;若拼成房子,乙胜。 你认为这个游戏公平吗?不公平的话,如何修 改规则才公平?
课堂小结
当一次试验要涉及两个因素,并且可能出现 的结果数目较多时,为了不重不漏的列出所有可 能的结果,通常采用列表法.
正好是一套白色的概率___1______3 9
达标检测
2、一个袋子中装有2个红球和2个绿球, 任意摸出一球,记录颜色放回,再任意摸 出一球,记录颜色放回,请你估计两次都
摸到红球的概率是____1____。如果摸出 一球后不放回,再任意4摸出一球,那么两 次都摸到红球的概率是___1_____
12
思考:拓展提升
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
甲 乙
石头
石头
剪子
布
(石,石) (石,剪) (石,布)
剪子 (剪,石) (剪,剪) (剪,布)
布
(布,石) (布,剪) (布,布)
人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案
人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案一、选择题1.连续掷三枚质地均与的硬币,三枚硬币都是正面朝上的概率是()A.12B.14C.18D.192.有三张正面分别写有数字1,2,−3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是()A.12B.13C.23D.593.盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是()A.23B.13C.29D.124.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.595.有三张正面分别写有数字﹣2,3,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为点P的横坐标,然后放回再从这三张卡片中随机抽取一张,以其正面的数字作为点P的纵坐标,则点P在第三象限的概率是()A.49B.13C.19D.296.骰子是一种正方体玩具,它的六个面上各写有1,2,3,4,5,6,每面写一个数,每个数写一面,且相对两面的两个数的和为7.用七颗骰子投掷后,规定向上的七个面上的数的和是10时甲胜,如果向上的七个面上的数的和是39时则乙胜.则甲乙二人获胜的可能性是()A.甲大B.乙大C.同样大D.无法确定谁大7.王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是()A.13B.49C.59D.238.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.13B.12C.23D.34二、填空题9.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除颜色外其他均相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的可能结果有种.10.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.11.某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是.12.从1,2,3,4四个数中,随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率是.13.“双减”政策后,各校积极探索“课内提质增效,课后丰富多彩”的有效策略,某校的课后服务活动设置了四大板块课程:A.体育活动;B劳动技能;C经典阅读;D科普活动.若小明和小亮两人随机选择一个板块课程,则两人所选的板块课程恰好相同的概率是.三、解答题14.一个纸箱内装有三张正面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.15.在学校组织的国学比赛中,小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中抽取一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示);第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示).求小明参加总决赛抽取题目都是成语题目(成语故事,成语接龙,成语听写)的概率.16.将5个完全相同的小球分装在甲.乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上的数之和为5的概率.(2)摸出的两个球上的数之和为多少时的概率最大?17.我校开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;补全条形统计图;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,请用列表法或画树状图法分析甲和乙同学同时被选中的概率.参考答案1.C2.D3.B4.B5.C6.C7.C8.C9.210.1311.2312.1213.1414.解:列树状图如下所示:由树状图可知一共有9种等可能性的结果数∵|−4|=4,|4|=4,|6|=6∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等∴由树状图可知两次取得数字的绝对值相等的结果数有5种.∴P两次取得数字的绝对值相等=5915.解:画树状图如下:共有12种等可能的结果,其中小明参加总决赛抽取题目都是成语题目的结果有2种∴小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率为212=16.16.(1)解:根据题意画出树状图如下:所有等可能的结果总数为6,其中和为5的结果为1种所以摸出的两个球上的数之和为5的概率为16;(2)解:所有可能的结果总数为6,其中和为5的结果为1种,和为4的结果为1种,和为6的结果为2种,和为7的结果为1种,和为8的结果为1种∴摸出的两个球上的数之和为6的概率最大.17.(1)解:100;选择“足球”的人数为35%×100=35(名).补全条形统计图如下:(2)18°(3)解:画树状图如下:共有12种等可能的结果,其中甲和乙同学同时被选中的结果有2种∴甲和乙同学同时被选中的概率为212=16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用列举法求概率练习题
易错点击
*例小明将一黑一白两双相同尺码的袜子(不分左右脚)一只一只放在抽屉里,当他随意从抽屉里取出两只袜子时,恰好成双的概率与不成双的概率哪个大?
【点拨】用列举法求概率时随机事件发生的各种结果必须是等可能的.
温馨提示
1.用列举法求随机事件的概率时要考虑周全,做到不重不漏.
2.若一个随机事件的发生需要两个条件,第一个条件发生的概率为A,第二个条件发生的概率为B,则这个随机事件发生的概率为A?B.
3.几何概型的概率:概率的大小与面积的大小相关,事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积.几何概型的概率实质上能够看作是将图形等分成若干份,那么事件A发生的概率等于此事件所有可能结果所组成的图形所占的份数除以总份数.
课前预习
1.在一次试验中,如果可能出现的结果只有个,并且各种结果发生的可能性____,那么我们能够采用法求出概率.
2.-个家庭有两个孩子,则所有可能的事件有( )
A.(男,男),(男,男),(女,女)B.(男,女),(女,男)
C.(男,男),(男,女)(女,男),(女,女)D.(男,男),(女,女)
基础巩固
知识点1 用列举法求简单事件的概率
1.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( )
2.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页,数学2页,英语6页,他随机地从讲义夹中抽出1页,抽出试卷恰好是数学试卷的概率为( )
3.(2010.内蒙古呼和浩特)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到红球的概率是( )
4.三男一女共4人同行,从其中任意选出两人性别不同的概率为( )
5.高速公路上有A、B、C三个出口,A、B之间的路程为mkm,B、C之间的路程为nkm,决定在A、C之间的任意一处增设一个生活服务区,则此生活服务区设在A、B之间的概率为( ) 6.同时抛掷两枚1元的硬币,菊花图案都朝上的概率是( )
7.甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是。
水平提升
11.从标有l、3、4、6、8的五张卡片中随机抽取两张,和为奇数的概率是多少?
12.掷一枚正方体的骰子,各个面上分别标有1,2,3,4,5,6,求下列事件发生的概率:
(1)事件A:朝上的数字是6;
(2)事件B:朝上的数字是奇数;
(3)事件C:朝上的数字不是3的倍数;
(4)事件D:朝上的数字不小于5.
13.已知一纸箱中放有大小均匀的x只白球和y只黄球,从箱中随机地取出一只白球的概率是2/5.
(1)试写出y与x的函数关系式;
(2)当x=10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P.
1.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是( )
A、
1
8
B、
1
3
C、
3
8
D、
3
5
2.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )
A、
1
4
B、
1
3
C、
1
2
D、
2
3
3.一辆汽车在一笔直的公路上行驶,途中要经过两个十字路口.那么在两个十字路口都能直接通过(都是绿灯)的概率是_____________.
4.袋子内装有除颜色外其余都相同的3个小球,其中一个红球,两个黄球.现连续从中摸两次(不放回),则两次都摸到黄球的概率是____________.
5. A、B两个口袋中均有3个分别标有数字1、2、3的相同的球,甲、乙两人实行玩球游戏.游戏规则是:甲从A袋中随机摸一个球,乙从B袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?
6.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手能够出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.
(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?
(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?
(3)妞妞和爸爸出相同手势的概率是多少? 7.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.
8.桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中随机抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中随机抽出一张,记下卡片上的数字,然后将这两数相加;
(1)请用列表或画树形图的方法求两数和为5的概率;
(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?。