高中数学优秀教案 分享

合集下载

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。

教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

高中数学教案(优秀7篇)

高中数学教案(优秀7篇)

高中数学教案(优秀7篇)一般地,从m个不同的元素中,任取n(n≤m)个元素为一组,叫作从m个不同元素中取出n个元素的一个组合。

下面是小编帮大伙儿找到的高中数学教案(优秀7篇),希望对大家有一些参考价值。

高中数学教案篇一教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列较相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)

优秀高中数学教案模板(优秀11篇)优秀高中数学教案模板篇一教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

(2)进一步理解曲线的方程和方程的曲线。

(3)初步掌握求曲线方程的方法。

(4)通过本节内容的教学,培养学生分析问题和转化的能力。

教学重点、难点:求曲线的方程。

教学用具:计算机。

教学方法:启发引导法,讨论法。

教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线。

学生思考并回答。

教师强调。

2.坐标法和解析几何的意义、基本问题。

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。

解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

事实上,在前边所学的直线方程的理论中也有这样两个基本问题。

而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。

本节课就初步研究曲线方程的求法。

【问题】如何根据已知条件,求出曲线的方程。

【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决。

可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解。

设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解。

(2)以这个方程的解为坐标的点都是曲线上的点。

设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上。

综合(1)、(2),①是所求直线的方程。

高中数学教案(精选15篇)

高中数学教案(精选15篇)

高中数学教案(精选15篇)高中数学教案11.课题填写课题名称(高中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;(2)过程与方法:通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4.教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5.教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。

可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。

设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。

)(3)课堂小结教师提问,学生回答本节课的收获。

(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书2.高中数学教案格式一.课题(说明本课名称)二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)三.课型(说明属新授课,还是复习课)四.课时(说明属第几课时)五.教学重点(说明本课所必须解决的关键性问题)六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)七.教学方法要根据学生实际,注重引导自学,注重启发思维八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)九.作业处理(说明如何布置书面或口头作业)十.板书设计(说明上课时准备写在黑板上的内容)十一.教具(或称教具准备,说明辅助教学手段使用的工具)十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)3.高中数学教案范文【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

教案高中数学【优秀5篇】

教案高中数学【优秀5篇】

教案高中数学【优秀5篇】篇一:高中数学优秀教案篇一教学目标:1、结合实际问题情景,理解分层抽样的必要性和重要性;2、学会用分层抽样的方法从总体中抽取样本;3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:通过实例理解分层抽样的方法。

教学难点:分层抽样的步骤。

教学过程:一、问题情境1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是。

即40,32,28。

三、建构数学1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

2、三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3、分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。

高中数学优秀教案范例5篇

高中数学优秀教案范例5篇

高中数学优秀教案范例5篇数学是一门日常都要使用的学科,所以要拥有好的教案才能充分教育同学们如何使用数学,这里给大家共享一些关于高中数学优秀教案范例,便利大家学习。

关于高中数学优秀教案范例篇1一、教学目标:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:向量的性质及相关学问的综合应用。

三、教学过程:(一)主要学问:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略四、小结:1、进一步娴熟有关向量的运算和证明;能运用解三角形的学问解决有关应用问题,2、渗透数学建模的思想,切实培育分析和解决问题的力量。

关于高中数学优秀教案范例篇2一、教学目标1.把握菱形的判定.2.通过运用菱形学问解决详细问题,提高分析力量和观看力量.3.通过教具的演示培育同学的学习爱好.4.依据平行四边形与矩形、菱形的附属关系,通过画图向同学渗透集合思想.二、教法设计观看分析商量相结合的方法三、重点·难点·疑点及解决方法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时支配1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计老师演示教具、创设情境,引入新课,同学观看商量;同学分析论证方法,老师适时点拨七、教学步骤复习提问1.表达菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱相互垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线相互垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由同学口述证明)证明时让同学注意线段垂直平分线在这里的应用,师问:对角线相互垂直的四边形是菱形吗?为什么?可画出图,明显对角线,但都不是菱形.菱形常用的判定方法归纳为(同学商量归纳后,由老师板书):注意:(2)与(4)的题设也是从四边形动身,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区分与联系.2.思索题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13关于高中数学优秀教案范例篇3教学目标1.把握平面对量的数量积及其几何意义;2.把握平面对量数量积的重要性质及运算律;3.了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4.把握向量垂直的条件.教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请同学回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

高中数学教学设计优秀14篇

高中数学教学设计优秀14篇

高中数学教学设计优秀14篇高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。

强调斜二测画法的步骤。

练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

最新-高中数学优秀教案优秀6篇

最新-高中数学优秀教案优秀6篇

高中数学优秀教案优秀6篇教案对于教师在熟悉不过吧,看一下怎么写吧。

作为一位杰出的老师,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。

我们应该怎么写教案呢?旧书不厌百回读,熟读精思子自知,本文是爱岗的小编给家人们收集的高中数学优秀教案优秀6篇,欢迎借鉴。

高中数学优秀教案篇一第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。

(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

高中数学教案(精选10篇)

高中数学教案(精选10篇)

高中数学教案(精选10篇)一、函数与方程教案一:一次函数与二次函数的区别学科:数学年级:高中教学目标:了解一次函数与二次函数的特点与区别,掌握两者的图像表示及性质。

教学步骤:1. 引导学生回顾函数的概念和一次函数的定义。

2. 介绍二次函数的定义以及与一次函数的区别。

3. 讲解二次函数的图像表示及基本性质。

4. 进行实例演练,帮助学生巩固所学知识。

教学要点:1. 一次函数的特点与图像。

2. 二次函数的特点与图像。

3. 了解一次函数与二次函数在现实生活中的应用。

教学辅助材料:教案附件一、教案附件二教案二:方程的解法(一元一次方程、一元二次方程)学科:数学年级:高中教学目标:掌握一元一次方程和一元二次方程的常见解法,能够独立解题。

教学步骤:1. 引入一元一次方程的概念,介绍常见解法。

2. 引入一元二次方程的概念,介绍常见解法。

3. 进行实例演练,帮助学生理解和掌握解题方法。

教学要点:1. 一元一次方程的解法。

2. 一元二次方程的解法。

3. 理解方程的实际应用。

教学辅助材料:教案附件三、教案附件四二、平面几何教案三:三角形的性质和分类学科:数学年级:高中教学目标:了解三角形的定义、性质和分类,能够独立判断和作图。

1. 引导学生回顾直角三角形的定义和判定方法。

2. 介绍三角形的基本性质和分类。

3. 进行实例演练,帮助学生巩固所学知识。

教学要点:1. 三角形的定义和基本性质。

2. 三角形的分类。

3. 利用三角形的性质解决实际问题。

教学辅助材料:教案附件五、教案附件六教案四:圆的性质和相关定理学科:数学年级:高中教学目标:了解圆的定义、性质和相关定理,能够应用定理解决实际问题。

教学步骤:1. 引导学生回顾圆的基本概念和性质。

2. 介绍圆的相关定理,如切线定理、相切定理等。

3. 进行实例演练,帮助学生理解和掌握定理的应用。

1. 圆的定义和基本性质。

2. 圆的相关定理。

3. 利用圆的性质解决实际问题。

教学辅助材料:教案附件七、教案附件八三、立体几何教案五:正方体和长方体的性质学科:数学年级:高中教学目标:了解正方体和长方体的定义、性质和计算方法,能够应用所学知识解决实际问题。

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例【精彩9篇】高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。

教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。

二。

学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。

三。

教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。

(1)认真把握“标准”的教学要求。

(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。

(3)关注现代信息技术的运用。

(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。

平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。

这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。

2、以老师的精心备课与充满激情的教学,换取学生学习高效率。

3.将学校和教研组安排的有关工作落到实处。

高中数学教学设计案例篇二1.把握菱形的判定。

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3.通过教具的演示培养学生的学习爱好。

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法。

2.教学难点:菱形判定方法的综合应用。

四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质。

高中数学优质课教案5篇

高中数学优质课教案5篇

高中数学优质课教案5篇高中数学优质课教案1教学目标知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2) 从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3) 依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。

即:导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。

在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。

在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

高中数学教学优秀教案(精选4篇)

高中数学教学优秀教案(精选4篇)

高中数学教学优秀教案(精选4篇)高中数学教案篇一1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2、能根据几何结构特征对空间物体进行分类。

3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

1、情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2、展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?5、典型例题例1:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

高中数学教案教学设计10篇

高中数学教案教学设计10篇

高中数学教案教学设计10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学教案教学设计10篇作为学校的一名老师,经常需要准备一份优秀的教案,借助教案可以让教学工作更科学化。

高中数学优秀教案(优秀7篇)

高中数学优秀教案(优秀7篇)

高中数学优秀教案(优秀7篇)高中数学优秀教案篇一一、教材分析1、教材的地位和作用算术平均数与几何平均数是不等式这一章的核心,对于不等式的证明及利用均值不等式求最值等应用问题都起到工具性作用。

通过本章的学习有利于学生对后面不等式的证明及前面函数的一些最值值域进一步研究,起到承前启后的作用。

2、教学内容本节课的主要教学内容是通过现实问题进行数学实验猜想,构造数学模型,得到均值不等式;并通过在学习算术平均数与几何平均数的定义基础上,理解均值不等式的几何解释;与此同时在推理论证的基础上学会应用。

3、教学目标教学目标是基于对教材,教学大纲和学生学情的分析相应制定的。

在新课程理念的指导下,更为关注学生的合作交流能力的培养,关注学生探究问题的习惯和意识的培养。

因此,结合本节课内容与实验,设计本节课教学目标如下:知识与技能:对于算术平均数与几何平均数的理解以及定理的掌握;过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯;引导学生通过问题设计,模型转化,类比猜想实现定理的发现,体验知识与规律的形成过程;通过模型对比,多个角度,多种方法求解,拓宽学生的思路,优化学生的思维方式,提高学生综合创新与创造能力。

情感态度价值观:培养学生生活问题数学化,并注重运用数学解决生活中实际问题的习惯,有利于数学生活化,大众化;同时通过学生自身的探索研究领略获取新知的喜悦。

教学重点:算术平均数与几何平均数的理解以及定理的掌握;教学难点:算术平均数与几何平均数以及定理发现探索过程的构建及应用;教学关键:学生对于实验的实践及函数模型的构建。

教学模式:探究式合作式二、学情分析学生已经掌握了不等式的基本性质,高中的学生已经具有较好的逻辑思维能力,因此他们希望能够自己探索,发现问题和解决问题。

现在经历课改的学生不仅仅停留在接受学习的框框内,他们更需要充满活力与创造发现的课堂。

课堂实验可能存在问题:对EXEL软件不够熟练。

对于模型构造思路不够清晰。

高中数学优秀教案10篇

高中数学优秀教案10篇

高中数学优秀教案10篇第一篇:《直线与圆的位置关系》这篇教案以直观的图形入手,通过动态演示软件展现直线与圆相交、相切、相离的不同情况,引导学生探究其中的几何条件。

教案设计了多个实际问题让学生动手操作,深化理解并巩固知识点。

第二篇:《三角函数的图像与性质》此教案巧妙地运用多媒体工具展示三角函数的图像变化规律,辅以板书推导关键性质。

学生通过观察、归纳、证明的过程,逐步建立起对三角函数性质的深刻印象。

第三篇:《概率的基本概念与计算》针对概率这一抽象概念,该教案采用生活实例作为引入,如抛硬币、掷骰子等,让学生在参与中感受随机事件的可能性。

随后,通过具体案例分析教授概率的计算方法,提高学生的实际应用能力。

第四篇:《立体几何的空间想象能力培养》考虑到立体几何对学生空间想象能力的要求较高,这篇教案设计了系列空间模型搭建活动,鼓励学生亲手制作模型,通过触摸和操作加深对空间图形的认识。

第五篇:《解析几何中的坐标方法》解析几何部分着重于坐标法的应用,该教案从简单的点线关系出发,逐渐过渡到复杂的曲线方程。

通过分层次练习题,训练学生运用坐标法解决问题的技巧。

第六篇:《数列的递推与通项公式》数列章节通常包含多个公式和解题技巧,这份教案以典型例题为主导,结合历史故事和现实情境,激发学生的学习兴趣,同时引导他们掌握数列递推关系的求解方法。

第七篇:《导数的概念及其运算规则》导数作为微积分的起点,其概念的理解至关重要。

这篇教案从速度、加速度的实际背景切入,逐步介绍导数的定义和运算法则,强调数学建模的思想。

第八篇:《不等式的解法与证明》不等式题型多变,该教案系统总结了一元二次不等式、分式不等式等多种类型的解题策略,并通过比较法、综合法等不同证明方法的训练,提升学生的逻辑推理能力。

第九篇:《复数与复平面》复数部分往往令学生感到困惑,此教案利用动画演示复平面内点的移动,形象地解释复数加法、乘法的几何意义。

还设计了基于复数应用的问题情景,如电路分析等,增强知识的实用性。

高中数学教案优秀5篇

高中数学教案优秀5篇

高中数学教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!高中数学教案优秀5篇作为一位杰出的老师,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

高中数学优秀教案5篇

高中数学优秀教案5篇

高中数学优秀教案5篇教学目标:学生能够掌握解一元一次方程的方法,能够熟练应用到实际问题中解决问题。

教学重点:解一元一次方程的基本步骤和方法。

教学难点:解决实际问题中的方程。

教学准备:黑板、彩色粉笔、课件、作业册。

教学过程:一、引入:通过实例引入解一元一次方程的方法。

二、学习:讲解解一元一次方程的基本步骤和方法。

三、练习:让学生在黑板上解决几个练习题。

四、拓展:提出一些实际问题,让学生灵活运用解方程的方法解决问题。

五、归纳:总结解一元一次方程的基本方法。

六、作业:布置作业,巩固学生的解方程能力。

教案二:三角函数教学目标:学生能够掌握三角函数的基本概念和性质,能够熟练计算三角函数的值。

教学重点:三角函数的定义和性质。

教学难点:解决与三角函数相关的实际问题。

教学准备:黑板、彩色粉笔、课件、作业册。

教学过程:一、引入:通过实例引入三角函数的概念。

二、学习:讲解三角函数的定义和性质。

三、练习:让学生在黑板上计算几个三角函数的值。

四、拓展:提出一些实际问题,让学生灵活运用三角函数解决问题。

五、归纳:总结三角函数的性质和计算方法。

六、作业:布置作业,巩固学生的三角函数能力。

教案三:圆的性质教学目标:学生能够掌握圆的基本性质,能够灵活运用圆的性质解决问题。

教学重点:圆的周长、面积和圆心角的性质。

教学难点:解决与圆相关的实际问题。

教学准备:黑板、彩色粉笔、课件、作业册。

教学过程:一、引入:通过实例引入圆的性质。

二、学习:讲解圆的周长、面积和圆心角的性质。

三、练习:让学生在黑板上计算几个圆的周长和面积。

四、拓展:提出一些实际问题,让学生灵活运用圆的性质解决问题。

五、归纳:总结圆的性质和计算方法。

六、作业:布置作业,巩固学生的圆的性质能力。

教案四:导数教学目标:学生能够掌握导数的定义和性质,能够灵活运用导数解决问题。

教学重点:导数的定义和性质。

教学难点:解决与导数相关的实际问题。

教学准备:黑板、彩色粉笔、课件、作业册。

高中数学优秀教学设计【精选10篇】

高中数学优秀教学设计【精选10篇】

高中数学优秀教学设计【精选10篇】高中数学优秀教学设计【篇1】【教学目的】(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义【重点难点】教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪【内容分析】1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明【教学过程】一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N__或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N__或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是 -2,0,24、由实数x,-x,|x|, 所组成的集合,最多含( A )(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:(1) 当x∈N时, x∈G;(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0__ = a+b ∈G,即x∈G证明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)∴x+y=( a+b )+( c+d )=(a+c)+(b+d)∵a∈Z, b∈Z,c∈Z, d∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d) ∈G,又∵ =且不一定都是整数,∴ = 不一定属于集合G【小结】1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法高中数学优秀教学设计【篇2】学习目标明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.学习过程一、学前准备复习:1.(课本P28A13)填空:(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;(3)5名工人要在3天中各自选择1天休息,不同方法的`种数是 ;(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是 ;二、新课导学探究新知(复习教材P14~P25,找出疑惑之处)问题1:判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?应用示例例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.(1) 甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙必须相邻,且丙不能站在排头和排尾;(5)甲、乙、丙相邻;(6)甲、乙不相邻;(7)甲、乙、丙两两不相邻。

高中数学教案(优秀4篇)

高中数学教案(优秀4篇)

高中数学教案(优秀4篇)高中数学教学设计篇一一、课程说明(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。

辅导内容为第一章第二节等差数列。

前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。

以及了解到什么是递增数列,什么是递减数列。

通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。

而我也是在这些基础上为她讲解第二节等差数列。

(二)学生分析:此次所带学生是一名高二的学生。

聪明但是不踏实,做题浮躁。

基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。

每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。

遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。

就由略不会变成不会。

但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

(三)教学目标:1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。

并且能够灵活运用。

3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。

耐心地解决问题。

5、让她在学习中发现数学的独特的美,能够爱上数学这门课。

并且认真对待,自主学习。

(四)教学重点:1、让学生正确掌握等差数列及其通项公式,以及其性质。

并能独立的推导。

2、能够灵活运用公式并且能把相应公式与题相结合。

(五)教学难点:1、让学生掌握公式的推导及其意义。

2、如何把所学知识运用到相应的题中。

二、课前准备(一)教学器材对于一对一教教采用传统讲课。

一张挂历。

(二)教学方法通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。

从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:7.5曲线和方程(一)曲线和方程教学目标:1.了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理2.在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神教学重点:理解曲线与方程的有关概念与相互联系教学难点:定义中规定两个关系(纯粹性和完备性)授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教材分析:曲线属于“形”的范畴,方程则属于“数”的范畴,它们通过直角坐标系而联系在一起,“曲线和方程”这节教材,揭示了几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础.这正体现了几何的基本思想,对解析几何教学有着深远的影响.曲线与方程的相互转化,是数学方法论上的一次飞跃.本节教材中把曲线看成是动点的轨迹,蕴涵了用运动的观点看问题的思想方法;把曲线看成方程的几何表示,方程看作曲线的代数反映,又包含了对应与转化的思想方法由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径.求曲线的方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一根据大纲要求,本节内容分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”与“方程与曲线”的概念及其关系;第二课时讲解求曲线方程的一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识,并解决与曲线交点有关的问题。

考虑到本节内容的基础性和灵活性,可以对课本例题和练习作适当的调整,或进行变式训练针对第一课时概念强、思维量大、例题习题不多的特点,整节课以启发学生观察思考、分析讨论为主。

当学生观察例题回答不出“为什么”时,可以举几个点的坐标作检验,这就是“从特殊到一般”的方法;或引导学生看图,这就是“从具体(直观)到抽象”的方法;或引导学生回到最简单的情形,这就是以简驭繁;或引导学生看(举)反例,这就是正反对比,总之,要使启发方法符合学生的认知规律教学过程:一、复习引入:温故知新,揭示课题问题: (1)求如图所示的AB的垂直平分线的方程;(2)画出方程0y=所表示的曲线x和方程2x=+y观察、思考,求得(1)的方程为xy=,(2)题画图如下讲解:第(1)题是从曲线到方程,曲线C(即AB 的垂直平分线)⇒点的坐标(x,y)⇒方程f(x,y)=0第(2)题是从方程到曲线,即方程f(x,y)=0⇒ 解(x,y)(即点的坐标)⇒曲线C . 教师在此基础上揭示课题,并提出下面的问题让学生思考问题:方程f(x,y)=0的解与曲线C 上的点的坐标,应具备怎样的关系,才叫方程的曲线,曲线的方程?设计意图:通过复习以前的知识来引入新课,然后提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求二、讲解新课: 1. 运用反例,揭示内涵由上面得出:“曲线上的点的坐标都是方程的解”和“以方程的解为坐标的点都在曲线上”后,不急于抛物线定义,而是让学生判断辨别问题:下列方程表示如图所示的直线C ,对吗?为什么? (1)0=-y x ;(2)022=-y x ;(3)|x|-y=0.上题供学生思考,口答.方程(1)、(2)、(3)都不是表示曲线C 的方程. 第(1)题中曲线C 上的点不全都是方程0=-y x 的解,如点(-1,-1)等,即不符合“曲线上的点的坐标都是方程的解”这一结论;第(2)题中,尽管“曲线C 上的坐标都是方程的解”,但以方程022=-y x 的解为坐标的点不全在曲线C 上,如点(2,-2)等,即不符合“以方程的解为坐标的点都在曲线上”这一结论;第(3)题中,类似(1)(2)得出不符合“曲线上的点的坐标都是方程的解”,“以方程的解为坐标的点都在曲线上”.事实上,(1)(2)(3)中各方程表示的曲线应该是下图的三种情况:上面我们既观察、分析了完整地用方程表示曲线,用曲线表示方程的例子,又观察、分析了以上问题中所出现的方程和曲线间所建立的不完整的对应关系. 2.讨论归纳,得出定义讨论题:在下定义时,针对(1)0=-y x 中“曲线上有的点的坐标不是方程的解”以及(2)022=-y x 中“以方程的解为坐标的点不在曲线上”的情况,对“曲线的方程应作何规定?学生口答,老师顺其自然地给出定义.这样,我们可以对“曲线的方程”和“方程的曲线”下这样的定义:在直角坐标系中,如果某曲线C 上的点与一个二元方程0),(=y x f 的实数解建立了如下关系: (1)曲线上的点的坐标都是这个方程的解;(纯粹性)(2)以这个方程的解为坐标的点都是曲线上的点.(完备性) 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线设计意图:上述概念是本课的重点和难点,让学生自己通过讨论归纳出来,老师再说清楚这两大性质(纯粹性和完备性)的含义,使学生初步理解这个概念3.变换表达,强化理解曲线可以看作是由点组成的集合,记作C ;一个关于x,y 的二元方程的解可以作为点的坐标,因而二元方程的解也描述了一个点集,记作F请大家思考:如何用集合C 和点集F 间的关系来表达“曲线的方程”和“方程的曲线”定义中的两个关系,进而重新表述以上定义关系(1)指集合C 是点集F 的子集,关系(2)指点集F 是点集合C 的子集.这样根据集合的性质,可以用集合相等的概念来定义“曲线的方程”与“方程的曲线”,即:F C C F F C =⇔⎭⎬⎫⊆⊆)2()1(设计意图:通过集合的表述,使学生对曲线和方程的关系的理解得到加深和强化,在记忆中上也趋于简化 三、讲解范例:例1 解答下列问题,且说出各依据了曲线的方程和方程的曲线定义中的哪一个关系?(1)点)2,52(),4,3(21--M M 是否在方程为2522=+y x 的圆上?(2)已知方程为2522=+y x 的圆过点),7(3m M ,求m 的值. 学生练习,口答;教师纠错、小结依据关系(1),可知点1M 在圆上,2M 不在圆上. 依据关系(2),求得23±=m例2 证明以坐标原点为圆心,半径等于5的圆的方程是2522=+y x . 由学生自己阅读课本解答,教师适时插话,强调证明要紧扣定义,分两步进行. 给出推论,升华定义:(1)两曲线0),(:,0),(:2211==y x f C y x f C 的交点的坐标必为方程组⎩⎨⎧==0),(0),(21y x f y x f 的实根(2)两曲线)(:),(:21x y C x f y C φ==的交点的横坐标必为方程)()(x x f φ=的实根四、课堂练习:1.如果曲线C 上的点满足方程F (x ,y )=0,则以下说法正确的是( ) A.曲线C 的方程是F (x ,y )=0 B.方程F (x ,y )=0的曲线是CC.坐标满足方程F (x ,y )=0的点在曲线C 上D.坐标不满足方程F (x ,y )=0的点不在曲线C 上分析:判定曲线和方程的对应关系,必须注意两点:(1)曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”称为纯粹性;(2)以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称为完备性,只有点和解一一对应,才能说曲线的方程,方程和曲线解:由已知条件,只能说具备纯粹性,但不一定具备完备性.故选D2.判断下列结论的正误,并说明理由.(1)过点A (3,0)且垂直于x 轴的直线的方程为x =0; (2)到x 轴距离为2的点的直线方程为y =-2;(3)到两坐标轴的距离乘积等于1的点的轨迹方程为xy =1;(4)△ABC 的顶点A (0,-3),B (1,0),C (-1,0),D 为BC 中点,则中线AD 的方程为x =0分析:判断所给问题的正误,主要依据是曲线的方程及方程的曲线的定义,即考查曲线上的点的纯粹性和完备性.解:(1)满足曲线方程的定义.∴结论正确(2)因到x 轴距离为2的点的直线方程还有一个;y =2,即不具备完备性. ∴结论错误.(3)到两坐标轴的距离的乘积等于1的点的轨迹方程应为|x |·|y |=1,即xy =±1.∴所给问题不具备完备性∴结论错误(4)中线AD 是一条线段,而不是直线, ∴x =0(-3≤y ≤0), ∴所给问题不具备纯粹性. ∴结论错误.3.方程(3x -4y -12)·[l og 2(x +2y )-3]=0的曲线经过点A (0,-3)、B (0,4)、C (47,35 )、D (4,0)中的( )A.0个B.1个C.2个D.3个分析:方程表示的两条直线3x -4y -12=0和x +2y -9=0,但应注意对数的真数大于0,∴x +2y >0解:由对数的真数大于0,得x +2y >0. ∴A (0,-3)、C (47,35-)不合要求将B (0,4)代入方程检验,不合要求. 将D (4,0)代入方程检验,合乎要求. 故选B.4.已知点A (-3,0),B (0,5),C (4,-335),D (3sec θ, 5tan θ),其中在曲线459522=-y x 上的点的个数为( )A.1B.2C.3D.4分析:由曲线上的点与方程的解的关系,只要把点的坐标代入方程,若满足这个方程,说明这是这个方程的解,这个点就在该方程表示的曲线上.解:将点A (-3,0)、B (0,5)、C (4,-335)、D (3sec θ, 5 tan θ)代入方程459522=-y x 459522=-y x 检验,只有点A 和点B 满足方程.故选B .5.如果两条曲线的方程F 1(x ,y )=0和F 2(x ,y )=0,它们的交点M (x 0,y 0),求证:方程F 1(x ,y )+λF 2(x ,y )=0表示的曲线也经过M 点.(λ为任意常数)分析:只要将M 点的坐标代入方程.F 1(x ,y )+λF 2(x ,y )=0,看点M 的坐标是否满足方程即可证明:∵M (x 0,y 0)是曲线F 1(x ,y )=0和F 2(x ,y )=0的交点, ∴F 1(x 0,y 0)=0,F 2(x 0,y 0)=0. ∴F 1(x 0,y 0)+λF 2(x 0,y 0)=0(λ∈R )∴M (x 0,y 0)在方程F 1(x ,y )+λF 2(x ,y )=0所表示的曲线上.评述:方程F 1(x ,y )+λF 2(x ,y )=0也称为过曲线F 1(x ,y )=0和F 2(x ,y )=0的交点的曲线系方程五、小结 : “曲线的方程”、“方程的曲线”的定义.在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件.两者满足了,“曲线的方程”和“方程的曲线”才具备充分性.只有符合关系(1)、(2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题.这种“以数论形”的思想是解析几何的基本思想和基本方法六、课后作业:1.点A(1,-2)、B(2,-3)、C(3,10)是否在方程0122=++-y xy x 的图形上?2.(1)在什么情况下,方程c bx ax y ++=2的曲线经过原点? (2)在什么情况下,方程222)()(r b y a x =-+-的曲线经过原点? 3.证明以C(a ,b)为圆心,r 为半径的圆的方程为222)()(r b y a x =-+-.4.证明动点P(x ,y)到定点M(-a ,0)的距离等于a(a >0)的轨迹方程是0222=++ax y x作业答案:1.点A(1,-2)、C(3,10)在方程0122=++-y xy x 的图形上;点B(2,-3)不在图形上2.(1)c=0, (2) 222r b a =+ 3、4.仿照课本例子,分两种情况易证七、板书设计(略)八、课后记:。

相关文档
最新文档