控制系统的数学建模

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控ห้องสมุดไป่ตู้原理 姚佩阳 清华大学出版社、北京大学出版社



3.1.1概述 控制系统数学模型是描述系统内部各物理量(或变量) 之间关系的数学表达式。静态条件(变量的各阶导数 为0)描述各变量之间的关系的数学方程是静态模型; 动态过程用微分方程描述,建立动态模型。 本章研究动态模型 常见的数学模型建立法:分析法、实践法 分析法:利用控制系统或其组成元件所依据的物理或化 学规律来建立模型并加以实验验证。 实践法:通过对实际控制系统或元件作用一定形式的 输入信号,求取孔子系统或元件的输出相应的方法。

整理:
零初始条件:输入作用是t=0以后才作用于 系统;输入信号作用于系统前系统相对静止, 0-时导数为0





3.2.2传递函数的几点说明 1传递函数是描述系统输入变量与输出变量之间的数学 表达式,利用拉氏变换推导得出。 2传递函数是复变量s的有理真分式函数,分子多项式阶 数m低于或等于分母多项式阶数n,且所有系数均为实 数。n≥m由于系统中总会有惯性元件以及受系统能源 限制。 3传递函数只取决系统结构、元件参数,与外作用形式 无关。 4传递函数实在零初始条件下定义的,故传递函数在原 则上不能反映非零初始条件下系统的全部运动规律。 5传递函数的几种表现形式(如下)。

性质:叠加性、均匀性(齐次性)
输入量r1+r2对应输 出量c1+c2 输入量ar1对应输出 量ac1



3.2.1传递函数概念 线性定长系统传递函数定义:在零初始条件下,输 出量与输入量的拉氏变换之比。 对应微分方程: 零初始条件:

C(s)为c(t)的拉氏变换; R(s)为r(t)的拉氏变换
3.1.2线性控制系统数学建模的建立 一般步骤 (1)根据系统或元件的工作原理确定系统输入/输出变 量 (2)从输入端开始按信号传递顺序,依照各变量遵循的 物理或化学定律,按技术要求忽略次要因素,并考虑相 邻元件的彼此影响,列出微分方程式或方程组。 (3)消去中间变量,求得描述输入量和输出量关系的微 分方程式。 (4)标准化。
3.3.3结构图的等效变换 1函数方框等效 串联等效 G(s)=G1(s)G2(s)…Gn(s) C(s)= G1(s)G2(s)…Gn(s)R(s) 并联等效 G(s)=G1(s)±G2(s) ±…±Gn(s) C(s)= C1(s)±C2(s) ±…±Cn(s) 反馈等效

其传递函数为


3.3.3结构图的等效变换 2信号综合点和分离点的移动和互换 (1)一般情况下综合点和分离点在移动前后应保持 所变换的信号在变换前后的等效性,一般情况下综 合电荷分离点之间的位置不宜交换,比较符号-不能 超过综合点、分离点。 (2)信号综合点的移动:原信号不变,在信号综合 点移动后保证信号相加的代数和不变。



3.4.1信号流图及其组成 节点(。)——输入节点(X1)、输出节点(X1, X6) 、混合节点( X2到 X5 ) 支路——先前通路、回路、不接触回路



3.4.2信号流图的绘制 1,根据系统微分方程式或微分方程式组绘制信号 流图。 2,利用系统结构图绘制信号流图。

3.4.3梅逊增益公式



3.2.3典型环节及其传递函数 典型环节框图 比例环节 惯性环节 积分环节



振荡环节
微分环节
理想微分环节

一阶微分环节
二阶微分环节


3.3.1结构图的组成 四种基本单元:信号线、引出点、比较点、方框




3.3.2结构图的建立 1列出控制系统中各元件的微分方程式或方程组 2对所列方程进行拉式变换,得到反映输入变量和输 出变量的传递函数,并将其写入方框 3按系统中各变量传递顺序依次将各元件的传递函 数方框用带箭头线段连接起来,将系统输入变量置于 左端,输出变量置于右端

3.4.4闭环控制系统的传递函数 (1)闭环控制系统的开环传递函数。 (2)闭环控制系统的传递函数。 (3)干扰作用下的闭环传递函数。

3.3.3结构图的等效变换 2信号综合点和分离点的移动和互换 (3)信号分离点的移动:保证原各点信号不变,在信 号分离点移动后保证该分支信号不变。


(4)信号综合点的互换:根据加法交换律,两个或两 个以上信号综合点位置可换。 (5)信号分离点的互换:两个或两个以上相邻的信号 分离点位置互换。
相关文档
最新文档