Multisim在测控电路教学中的应用共6页文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Multisim在测控电路教学中的应用
Abstract: The paper disucsses the teaching method of using multisim10 simulation technology to do the virtual experiment in circuit measure and control. The method is not only can enhance the teaching effect by applying multisim10 simulation technology in instrument amplifier to do the vivid simulation and analysis, but also can cultivate the innovate consciousness and design ability of students. From the practice result, this simulation application made a good effect in teaching and experiment reform of circuit measure and control.
0引言
《测控电路》是电子、测控、机电一体化等专业的一门综合性和实践性都很强的专业课,主要涉及到信号测量与调理、调制与解调、滤波、转换、细分和控制等。这门课程教学目标要求理论与应用统一,如果没有动手实践来支撑,理论教学很难达到教学目标。若在讲授理论知识的同时,辅助实验演示或实验,可以大大提高课堂教学效率,收到事半功倍的效果。本文介绍了利用 Multisim10进行仪表放大器的仿真教学和实验思路,为学
生学习提供一个应用范例。
1Multisim10仿真软件的特点
采用直观的电路图输入方式,界面友好、操作方便、简单易学。该软件采用直观的图形界面创建电路, 在屏幕上模仿真实实验室的工作台,简单直观。该软件具有 1600多种元件模型和多达17台虚拟仪器,而且仪器
的操作开关、按键与实际仪器仪表极为相似,可以对模拟、数字电路和混合电路进行仿真,实时显示测量结果。
2Multisim10 仿真技术在测控电路教学中的应用
在测控电路教学中,一般只能从原理的角度来教学,如果学生动手不多,很难理解相应理论。虽然都有实验,大多为验证性实验,而且课时有限,并且往往做实验时忘了理论分析,难以实现即时验证理论。应用
Multisim10仿真软件辅助教学,能够快速、完整地构建出实验的原理图,并且能够完美地进行实验过程仿真,实时显示实验结果,是提高教学效率和效果的好方法。另外,由于实验设备和耗材昂贵,所以有相当一部分实验项目是只能在理论上学习,不能实际开设的。这在很大程度上扼杀了学生的创造能力的发展,而应用 Multisim10仿真软件,学生不必担心元器件的损坏,大大提高了学生敢于尝试的信心和积极创新的能力。同时由于Multisim10 仿真软件能够用低成本搭建高档次的实验室,也大大减轻了学校的经济负担。另外,丰富的虚拟仪器和仪表和功能也是现实所难以具备的。
3典型仪表放大器原理分析
测量放大电路是测控电路教学和实验中的重要内容,它是获取传感器信号的常用方式。在一个典型的测控系统中,通过传感器所采集到的电信号常为差模小信号,且与电路之间的连接具有一定的距离,还往往伴随着很大共模电压(包含干扰电压)。由于多数传感器的等效内阻随被测物理量的变化而变化。因此,放大这类信号的放大器应具有高输入阻抗、低输出阻抗、高增益和高共模抑制比的特点,由三运放组成的仪表放大器就能满
足上述要求。
图1是目前广泛应用的高共模抑制比放大电路。它由三个集成运算放大器组成,其中A1和A2为两个性能一致(主要指输入阻抗、共模抑制比和增益)的同相输入通用集成运算放大器,构成平衡对称差动放大输入级。A3构成双端输入差动放大电路,用来进一步抑制A1、A2的共模信号,并适应接地负载的需要。
根据运算放大器的基本分析方法,容易得到A3的输出
u=(u-u)=1+(u-u)(1)
由式(1)可以看出,u与(u-u)成正比,故电路放大差模信号,抑制共模
信号。
4仪表放大器的实例应用与仿真
设计一个传感器放大器,如图2所示。其中R5代表传感器,当R5相对于其他桥臂的偏差为1%时,放大器产生±5V的输出电压。稳压管电压
VD=5.1V,ID=10mA,电桥电压基准为7.5V;运放的电源电压为15V;电桥中电阻均为100kΩ,R5=100(1+δ) kΩ,其中浮动范围δ≤±1%;电源电压15V。
从上图可以看出,电路分三部分:U3A、D2等组成稳压电路,它由5.1V 的稳压管产生7.5V的稳定电压,为传感器所在的桥式电路提供一个稳定的基准电压。由后面的理论设计可知,该电压直接影响桥式电路的输出电压。三个电阻R4、R6、R7和传感器R5组成桥式电路,将R的变化转化为输出电压。U3B、U3C、U3D等组成仪表放大器,对桥式电路的输出电压进一步放大,并提高共模抑制比。
4.1 基准电压设计
从图2可以看出
R===1KΩ(2)
若R2取10kΩ,由
=1+(3)
可计算得R3=4.656kΩ。
4.2 仪表放大器设计
对于传感器所在的桥式电路,有
V=-V≈-V≈V(4)
当V1=7.5V,δ=1%时,桥式电路最大输出电压Vo1max=0.01875V。
根据设计要求,Vo=5V,则放大器增益为
A=≈≈266.7(5)
根据仪表增益公式(1)有
=1+(6)
一般来说,R14/R12与R9/R8具有相同的数量级。为了尽量减少电阻规格,并且采用最常用电阻,可以取R14、R9为100 kΩ,取R12为10 kΩ,理论可计算得R8=7.7912 kΩ。此时,R5为99 kΩ(δ=1%,5为101 kΩ
时,Vo=-5V)。实际仿真调试时,当R8=7.832 kΩ时,输出电压为5V,如图2中所示,与理论计算结果有一定的误差。此时的仿真结果见图2所示。
5系统仿真测试效果
通过multisim10的软件parameter sweep analysis功能获得图3所示数据。该数据不够直观,因此再通过软件画图得到图4所示的图形效果。
从图4所示的图形效果可见,由三运放组成的仪表放大器的线性度较