多晶体金属变形的特性
机械工程材料第二章金属塑性变形与再结晶
4. 再结晶与重结晶
相同点:晶粒形核、长大的过程。
不同点: (1)再结晶转变前后的晶格类型没有发生变化, 重结晶时晶格类型发生改变。 (2)再结晶是对冷塑性变形的金属而言的,没有 发生冷塑性变形的金属不存在再结晶问题。
三、晶粒长大 再结晶刚刚完成后的晶粒是无畸变的等轴晶粒, 如果继续升高温度或延长保温时间,晶粒之间就 会通过晶界的迁移相互吞并而长大。
➢ 产生残余应力。
(二)其他性能
塑性变形影响金属的物理、化学性能, 如电阻增大,导磁率下降,耐腐蚀性能 降低。 密度、导热系数下降。
三、残余应力(约占变形功的10%)
(一)宏观内应力(第一类内应力) 原因:由工件不同部位的宏观变形不均匀而引起的。 作用范围:作用于整个工件。
金属棒弯曲变形后 的残余应力
正火组织
带状组织
金属冷拉拔后 的残余应力
(二)微观内应力(第二类内应力) 原因:晶粒或亚晶粒之间的变形不均匀引起的。 作用范围:与晶粒尺寸相当。
(三)点阵畸变(第三类内应力)80-90%
原因:晶体缺陷而引起的畸变应力。 作用范围:约几百到几千个原子范围内。
金属强化 主要原因
➢第一类、第二类残余应力: 弊:对金属材料的性二、塑性变形对金属性能的影响
(一)力学性能 加工硬化(形变强化):随着冷塑性变形量 的增加,金属的强度、硬度升高,塑性、韧 性下降的现象。
工业纯铜
45钢
➢加工硬化是强化金属的重要手段之一。
对于不能热处理强化的金属和合金尤为重要。
链条板的轧制
材料为Q345(16Mn) 钢 的自行车链条经过五 次轧制,厚度由3.5mm压缩到1.2mm,总变形 量为65%。
原始横截面积的百分比。
Ψ=
金属的塑性变形与再结晶(3)
同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影
第5章 金属的塑性变形
塑性变形及随后的加热,对金属材料组织和性能有 显著的影响。了解塑性变形的本质、塑性变形及加 热时组织的变化,有助于发挥金属的性能潜力,正 确确定加工工艺
单晶体的塑性变形 多晶体的塑性变形 变形后金属的回复与再结晶 金属的热塑性变形
1
第一节 单晶体的塑性变形 一、单晶体纯金属的塑性变形
T再与ε的关系
如Fe:T再=(1538+273)×0.4–273=451℃
39
2)、金属的纯度 金属中的微量杂质或合金元素,尤其高熔点元素, 起阻碍扩散和晶界迁移作用,使再结晶温度显著 提高。
40
3)、再结晶加热速度和加热时间 提高加热速度会使再结晶推迟到较高温度发生;
延长加热时间,使原子扩散充分,再结晶温度降低。
3、产生织构:金属中的晶粒的取向一般是无规则的随机排列,尽管每个 晶粒是各向异性的,宏观性能表现出各向同性。当金属经受大量(70% 以上)的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面 (晶向)在某个方向出现的几率明 显高于其他方向。金属大变形后形成的这种有序化结构叫做变形织构, 它使金属材料表现出明显的各向异性。 24
在应力低于弹性极限σ e时, 材料发生的变形为弹性变形; 应力在σ e到σ b之间将发生的变 形为均匀塑性变形;在σ b之后 将发生颈缩;在K点发生断裂。
s e
弹性变形的实质是:在应力的作用下,材料内部的原子偏离了平衡位 置,但未超过其原子间的结合力。晶格发生了伸长(缩短)或歪扭。 原子的相邻关系未发生改变,故外力去除后,原子间结合力便可 2 以使变形的塑性:fcc>bcc>chp
8
哪个滑移系先滑移?
当作用于滑移面上滑移方向的切应力分量c(分切应力)大于等于一定的 临界值(临界切应力,决定于原子间结合力),才可进行。
金属单晶体与多晶体的塑性变形
1. 弹性变形与塑性变形弹性变形金属如果受应力较低,金属内原子间的方位与距离只产生微小的变化,当外力去除后原子会自行返回原位,变形随即消失。
塑性变形:当金属所受应力达到和超过某临界值(屈服强度),除了产生弹性变形外,还会产生卸载后不可恢复的永久变形。
滑移在外力作用下,晶体中一部分晶体相对于另一部分晶体沿着一定晶面产生相对滑动。
金属最重要的塑性变形机制。
滑移孪生孪生在外力作用下,晶体中一部分晶体相对于另一部分晶体沿着一定晶面产生相对转动。
1)滑移在超过某临界值的切应力下发生。
2)滑移常常沿晶体中最密排面及最密排方向发生。
此时原子间距最大,结合力最弱。
晶面间距示意图有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)滑移系: 滑移面(密排晶面)+滑移方向(密排晶向)较多的滑移系意味着有较好的塑性实际晶体的滑移机制: 依靠位错滑移。
如果晶体中存在位错,那么塑性变形 依靠位错的滑移进行,比依靠滑移面两侧晶体的整体滑动,阻力小得多。
塑性变形的位错滑移机制示意图3)滑移在晶体表面形成滑移线和滑移带滑移线和滑移带示意图滑移带金相照片有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)2. 单晶体塑性变形:孪生机制孪生孪生面孪晶密排立方和体心立方的金属容易发生孪生变形;一般金属在低温和冲击载荷下容易发生孪生变形。
3. 多晶体的塑性变形•各晶粒在变形过程中相互约束;•大量晶界的存在对位错运动形成障碍。
3. 多晶体的塑性变形:晶粒取向对塑性变形的影响•软取向晶粒在一定的外加应力下能够滑移变形的晶粒;•硬取向晶粒在一定的外加应力下不能滑移变形的晶粒多晶体的塑性变形存在很大的微观不均匀性,并且变形抗力明显高于单晶体。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)3. 多晶体的塑性变形:晶界对塑性变形的影响细晶强化(晶界强化)晶界阻碍位错的通过,产生强化效果。
晶界越多,即晶粒越细小,不仅材料强度越高,而且由于增加晶粒数量,使得软取向晶粒更多,分布更均匀,改善微观变形的不均匀性,从而改善材料的塑性。
§9-3 多晶体的塑性变形
2. 多晶体的加工硬化
多晶体晶粒各取向不同, 不可能一个滑移系滑移, 所以,没有典型单晶体的 第Ⅰ阶段--易滑移阶段。 因为多晶体各晶粒变形需 相互协调,至少有5个独 立的滑移系开动,滑移系 启动困难,加工硬化率明 显高于单晶体。
锌的单晶与多晶的应力-应变曲线
K
n
n=0.1-0.5:加工硬化指数
金属强度与位错密度的关系
1. 单晶体的加工硬化 应力-应变曲线明显可分为 三个阶段: I. 易滑移阶段:发生单 滑移,位错移动和增殖所遇 到的阻力很小,θI 很低, 约为10-4G数量级。 II.线性硬化阶段:发生多 系滑移,位错运动困难,θII 远大于θI约为 G/100G/300 ,并接近于常数。
fcc金属
轧制极图 (a)经95%轧制纯铜的{111}极图 (b)Cu-30%Al黄铜经96%轧制的{111}极图
bcc金属
纯铁经98.5%轧制的{200}极图
hcp金属
基面平行于轧面的{0002}极图 (a)镁 (b)锌 (c)钛
无织构 制耳的形成
有织构
Thanks
2. 阻塞作用
晶界90%以上是大角度晶界,其结构复杂,由 约几个纳米厚的原子排列紊乱的区域与原子排列较 整齐的区域交替相间而成,这种晶界本身特性使滑 移受阻而不易直接传到相邻晶粒。现象是竹节效应, 原因是位错滑移不能穿过晶界。
竹节效应
Ni3Al+0.1%B合金拉伸 时滑移带终止于晶界
二. 多晶体变形的特点 不同时性:在外力作用下,软取向晶粒首先达到 临界分切应力,开始变形,随着晶体的转动,软硬 取向易位,硬取向晶粒开始变形。
§9-3 多晶体的塑性变形 一. 多晶体变形时晶界的作用 1. 协调作用 多晶体的变形中要保持晶界处的连续性,即晶界处的 原子既不能堆积也不能出现空隙或裂缝,晶界两边的变形 需要达到互相协调。 为了满足变形协调,理论计算本应有6个独立的滑移 系,以保证6个独立的应变分量使晶粒的形状自由变化, 在体积不变的情况下,有实际只有5个变量是独立的。 为了适应变形协调,要求多系滑移,对fcc和bcc, 容易满足,hcp有两种方式:一种是在晶界附近区域,基 面滑移加柱面或棱锥面等较难滑移的晶面滑移;另一种是 孪晶,孪晶和滑移结合起来,连续地进行变形。
多晶体、单晶体金属的塑性变形
(3) bcc 滑移方向为<111>,可能出现的滑移面有 {110}、{112}、{123}如果三组滑移面都能启 动,则潜在的滑移系数目为
临界分切应力 (1)最大分切应力正好落在与外力轴成45o 角的晶面以及与外力轴成45o角的滑移方向上。 假设对一个单晶圆柱体试样作拉伸试验 ,滑 移面的面积 作用在此滑移面上的力
• 处于有利位向的晶粒开始发生塑性变形,说明它 的滑移面上的位错源已经开动,位错沿滑移面向 晶界移动,在晶界处受阻,形成位错的塞积群。 位错的赛积群会在其前沿区域造成很大的应力集 中,随着外加载荷的增大,应力集中也随之增大。 这一应力集中值与外加应力共同作用,会使附近 晶粒的某些滑移系上的分切应力达到临界切应力 值,于是位错源开动,开始塑性变形。同时,由 于先滑移晶粒在发生滑移的同时会出现晶体的转 动,为了与先变形晶粒相协调,就要求相邻晶粒 的滑移应该在几个滑移系同时进行,保证其形状 作相应的改变。晶粒之间也要作相对的滑动来进 行协调。
压缩 压缩时晶体的滑移面, 力图转至与压力方向 垂直的位置。
• 孪生 • 塑性变形的另一种重要形式是孪生。它是晶体在 切应力的作用下,晶体的一部分沿一定的结晶面 (孪晶面或孪生面)和一定的晶向(孪生方向) 相对于另一部分晶体作均匀地切变的现象。在切 变区域内,与孪晶面平行的每层原子的切变量与 它距孪晶面的距离成正比,并且不是原子间距的 整数倍。这种切变不会改变晶体的点阵类型,但 可以使变形部分的位向发生变化,并与未变形部 分的晶体以孪晶面为分界面构成了镜面对称的 位 向关系。
• 由吕德斯带形成过程可知,它的产生必须 具备下列条件: (1)金属有屈服现象,即金属处于退火状态。 (2)冲压加工时,金属在屈服阶段产生较小 的变形量。
非均匀屈服理论
吉林大学工程材料第2章 金属的塑性变形和再结晶
1、晶粒正常长大: 再结晶后的晶粒均匀、稳速地长大的现象。发生在
再结晶晶粒细小且均匀时。(希望的长大方式)
2、晶粒异常长大:
再结晶后的晶粒不均匀,急剧长大的现象。在再结晶 粒大小不均时,大晶粒吞并小晶粒,将得到异常粗大的 晶粒,也称“二次再结晶”。
d晶↑ 晶界面积↓ 能量↓∴晶粒长大是自发的 过程。因为粗晶是弱化,所以要避免晶粒长大,特别要
方向 σb(MPa) σ0.2(MPa) δ(%) ψ(%) αk(KJ/M2)
平行 701 垂直 659
460
17.5 62.8
608
431
10.0 31.0
294
34
四 、热加工的不足
在实际生产中,热加工与冷加工相比也有不足处
(1)热加工需要加热,不如冷加工简单易行。 (2)热加工制品的组织与性能不如冷加工均匀和易 于控制。
目的:1. 消除加工硬化 使、σ、HB↓ δ%、 %、ak↑ 2. 消除内应力,但保留加工硬化,使理化性能↑
对于冷加工后的金属,由于10%的变形能储存在 金属中,在加热时,随着温度的升高,原子活动能力 提高,在变形能的作用下,就要发生组织和性能的变 化,其主要包括三个阶段:回复、再结晶及晶粒长大。
18
底面对角线
1 面×3 方向=3
7
4、滑移机理
临界切应力(c): 能够发生滑移的最小切应
力叫做为)。当切应力()满足 c时滑移才 能发生。
铜的滑移临界切应力:理论计算 1500 Mpa 实际测试 1 MPa
滑移是由于滑移面上的位错运动造成的。
8
位错运动造成滑移示意图
9
10
二、 多晶体金属的塑性变形
700℃
金属塑性成形原理
金属塑性成形原理1:试述塑性成型的一般分类。
1按成形特点分;块料和板料成形。
其中块料成形分为一次加工和2次加工。
一次加工包括轧制、挤压、拉拔等加工方法。
二次加工包括自由锻、模锻等加工方法。
2按成形时工件的温度分为热成形,冷成形,温成形。
2:在冷态下塑性变形的主要形式是什么?为什么?1在冷态条件下,多晶体的塑性变形是晶内变形,而晶内变形的主要方式是滑移。
2这是因为晶界存在各种缺陷,能量较高,在外力作用下不易变形,在冷态下条件下,晶界强度高于晶内,其变形比晶内困难,还由于晶粒在生成过程中,各晶粒相互接触,形成犬牙交错状态,造成对晶界滑移机械的阻碍作用,如果晶界变形,容易引起晶界结构的破坏,和裂纹产生,因此晶间变形只能很小。
3:多晶体金属塑性变形的特点是什么?1各晶粒变形的不同时性,2,各晶粒变形具有相互协调性。
3晶粒与晶粒之间,晶粒内部与晶界附近区域之间的变形具有不均匀性。
4:细晶对变形抗力的影响?1,滑移是由一个晶粒转移到另一个晶粒,主要取决于晶粒、晶界附近位错塞积群产生的产力场是否能够激发相晶粒中的位错源开动起来,以进行协调性的次滑移,而位错塞积群应力场的强弱与塞积位错数目n有关,n越大,应力场就越大,位错源开动的时间就越长,位错数也就越大,因此,粗晶金属的变形比较容易,而细晶粒则需要更大的外力作用才能使相邻晶粒发生塑性变形,即晶粒越细小,金属的变形抗力越大。
5:细晶对金属塑性的影响?1,在一定的体积内,细晶粒的数目多于粗晶粒的数目,因而塑性变形是位向有利的晶粒也较多,变形能均匀地分散到各个晶粒上。
2从每个晶粒的应变分布来看,细晶粒时,晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异性减小,细晶粒金属的变形不均匀性也较小,因此引起的应力集中必然减小,内应力较均匀,因而金属断裂前可以承受塑性变形量更大。
6:冷塑性变形对金属组织的影响?1,晶粒形状的变化,金属经冷变形加工后,晶粒形状变化趋势与金属宏观变形一致,2,晶粒内部产生亚结构,3晶粒位向改变,产生变形织构。
多晶体金属的塑性变形
多晶体金属的塑性变形
本质上,与单晶体无区别。
实际上,存在晶界及晶粒之间的位向差,变形过程复杂,变形抗力高的多。
一、晶粒取向的影响
多晶体相邻晶粒位向不同,导致多晶体金属塑性变形有以下两个特点:各晶粒变形的不同时性;
各晶粒变形的相互协调性。
各晶粒变形的不同时性
软取向的晶粒,首先开始滑移;
周围晶粒位向不同,滑移系取向不同,运动的位错不能越过晶界,在晶界处产生位错塞积。
位错塞积造成很高的应力集中,使相邻晶粒中某些滑移系开动,使应力集中松弛,变形从一个晶粒传向另一个晶粒。
随着变形,各晶粒发生转动和旋转,原软取向→硬取向,而停止滑移,同时原硬取向→软取向,而发生滑移。
随外力的持续,多晶体金属中的晶粒分批地、逐步地发生塑性变形。
各晶粒变形的相互协调性
多晶体的每个晶粒都处于其他晶粒的包围之中。
第三章 金属的塑性变形
纯金属的最低再结晶温度 与其熔点之间的近似关系: T再≈0.4T熔 其中T再、T熔为绝对温度.
金属熔点越高, T再也越高.
T再与ε的关系
T再℃ = (T熔℃+273)×0.4–273,如Fe的T再=(1538+273)×0.4–273=451℃
影响再结晶退火后晶粒度的因素
钛合金六方相中的形变孪晶
奥氏体不锈钢中退火孪晶
二、单晶体的塑性变形 分析单晶体的塑性变形,实际上就是分析 晶内变形。 单晶体塑性变形的主要方式有滑移和孪晶。 根据晶体结构 理论,任何一块单 晶体都包含有若干 不同方向的晶面。
外 力 在 晶 面 上 的 分 解 切 应 力 作 用 下 的 变 形 锌 单 晶 的 拉 伸 照 片
580º C保温8秒后的组织
580º C保温15分后的组织 700º C保温10分后的组织
第四节
金属的热加工
• 一、冷加工与热加工的区别
• 在金属学中,冷热加工的界限是以再结晶温
度来划分的。低于再结晶温度的加工称为冷 加工,而高于再结晶温度的加工称为热加工。
轧制
模锻
拉拔
• 如 Fe 的再结晶温度为451℃,其在400℃ 以下的加 工仍为冷加工。而 Sn 的再结晶温度为-71℃,则其 在室温下的加工为热加工。 • 热加工时产生的加工硬化很快被再结晶产生的软化 所抵消,因而热加工不会带来加工硬化效果。
铁素体变形80%
碎拉长的晶粒变为完整
的等轴晶粒。
650℃加热
• 这种冷变形组织在加热
时重新彻底改组的过程
称再结晶。
670℃加热
• 再结晶也是一个晶核形成 和长大的过程,但不是相 变过程,再结晶前后新旧 晶粒的晶格类型和成分完 全相同。
多晶体的塑性变形
多晶体的塑性变形塑性变形过程由于各晶粒间存在位相差,在外力作用下,位向最有利的少数晶粒开始发生塑形变形,随后这些已变形晶粒中的平面位错群在晶界塞积导致应力集中,这一应力集中和外力叠加,使相邻晶粒的位错源开动,驱动相邻晶粒进行协调的(多滑移)塑形变形。
多晶体塑性变形特点:①各晶粒的变形不是同时进行的;②为了协调先发生塑性变形的晶粒形状的改变,相邻各晶粒必须进行多滑移,其中包括取向并不有利的滑移系上同时进行滑移,这样才能保证其形状作各种相应地改变.根据理论计算,每个晶粒至少需要5个独立的滑移系启动;③受晶界及各晶粒位向不同的影响,各晶粒间、晶粒内的变形是不均匀的。
细晶强化①由于晶界的存在,使变形晶粒中的位错在晶界处受阻,滑移带终止于晶界;②由于各晶粒间存在位相差,为了协调变形,要求每个晶粒必须进行多滑移,而滑移时必然要发生位错的相互交割.这两者均将大大提高金属材料的强度.显然,晶界越多,即晶粒越细小,则其强化效果越显著。
这种用细化晶粒增加晶界提高金属强度的方法称为细晶强化。
多晶体的塑性变形与单晶体塑性变形的区别单晶体产生塑性变形,只与其晶体内部位错滑移有关;多晶体不仅需要考虑晶粒内部的位错滑移,还要考虑晶粒之间的变形协调,即要考虑晶间变形。
晶界在塑性变形中的作用可分2个部分来说:协调作用,多晶体在塑性变形时,各晶粒都要通过滑移或孪生而变形,而个晶粒的变形不能是任意的,必须相互协调,以保证晶界处变形的连续;阻碍作用,晶界之间存在位相差,阻碍位错的运动;多晶体的塑性变形受到晶界的阻碍和不同位向晶粒的影响,使得其变形抗力比单晶体高得多。
但是归根到底,其塑性变形方式仍是滑移和孪生。
细化晶粒的方法1、增加过冷度:过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。
在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。
2、变质处理:向金属液中添加少量活性物质,促进液体金属内部生核或改变晶体成长过程的一种方法,生产中常用的变质剂有形核变质剂和吸附变质剂。
最新2019-62多晶体的塑性变形-PPT课件
形的晶粒数目也越
多,变形越均匀,
脆性 材料
使在断裂前发生较
塑性材料
大的塑性变形。强
度和塑性同时增加,
金属在断裂前消耗
的功也大,因而其
韧性也比较好。
应变
35
通过细化晶粒来同时 提高金属的强度、硬 度、塑性和韧性的方 法称细晶强化。
36
等强温度
当温度升高时,随着原子活动性的加强,晶界也变得 逐渐不稳定,这将导致其强化效果逐渐减弱,甚至出现晶 界弱化的现象。当温度低于等强温度时,晶界强度高于晶 内强度,反之则晶界强度小于晶内强度。
等强温度示意图
37
本节要点
概念:多滑移、交滑移、孪生、孪晶、细晶强化、 等强温度
多晶体变形的特点
细晶强化的机制(强度、塑性、韧性)
Hall-Petch公式
1
s 0 kd 2
下节内容:合金的塑性变形
38
例1:若单晶铜的表面恰好为{100}晶面,假设晶体可以在各 个滑移系上滑移,试讨论表面上可能看到的滑移线的形貌 (滑移线的方位和他们之间的夹角)。若单晶体表面为 {111}面呢?
取向因子的变化 几何硬化:,远离45,滑移变得困难; 几何软化:,接近45,滑移变得容易。
11
多滑移
滑移过程沿两个以上滑移系同时或交替进行,这种 滑移过程就称为称多滑移。
12
交滑移
交滑移:晶体在两个或多个不同滑移面上沿同一滑移方 向进行的滑移。 双交滑移:交滑移后的螺位错再转回到与原滑移面平行 的平面滑移。
讨论:在讨论晶体表面滑移线形貌时,只要考虑晶体的滑移 面与表面的交线形貌就可以。
39
例2:铝单晶体在室温时的临界分切应力为7.9×105Pa,若室 温下对铝单晶试样作拉伸实验时,拉力轴为[123]方向,可能 开动的滑移系为(111)[101],求引起试样屈服所需要加的力。 解:铝晶体为面心立方点阵,其滑移系为{111}<110>,
多晶体的塑性变形包括各个单晶体的塑性变形
1..多晶体的塑性变形包括各个单晶体的塑性变形,(称为晶内变形)和各晶粒之间的变形(称为晶间变形)。
2.铸造性。
包括1.充形能力(影响充型能力的因素人以下三方面;1.充型能力,2.温度和压力,3.铸型填充条件)2.收缩。
3.铸件的最后凝固处,而固态收缩会因冷却不均匀或受到阻碍而产生热应力或机械阻碍应力,应力过大引起铸件变形,甚至开裂而报废。
可锻性常用金属的塑性和变形抗力来综合衡量。
塑性越高,变形抗力越小,则可以为金属的可锻性好。
反之则差。
4.整体热处理方法;退火,正火,淬火,回火。
5.选择浇注位置。
选择浇注位置应遵循如下原则:(1)铸件的重要工作面或加工面应朝下或呈则立状态。
(2)铸件上的大平面结构或薄壁结构应朝下或呈则立状态。
(3)选择浇注位置应有利于补缩,防止在铸件中产生缩孔。
6.拔模斜度;铸件上垂直分型面的各个侧面具有斜度,以把模样(或型芯)从砂型中(或从芯盒中)取出,并避免破坏型腔(或型芯)此斜度称为拔模斜度。
7.灰口铸铁件的可铸孔直径25mm,铸钢件可铸孔直径应大于35mm,有色金属件可铸件直径应大于15mm。
型芯按照其在型腔中所处的状态,一般分为水平型芯和垂直型芯两大类。
型芯头是型芯的重要组成部分,在浇注时型芯头不与液体金属相接触,起到定位和支撑型芯及引导型芯中气体排出的作用。
8.金属型铸造是用金属材料(铸铁或钢)制作铸型生产铸件的方法。
金属型可使用的次数很多(可达上千次),故又称为永久型铸造。
金属型铸造保证质量;1.喷刷涂料,2.保持合适的工作温度,3.严格控制开型时间,4.浇注灰口铸铁件要防止产生白口组织。
9.压力铸造是指液态金属在高压(5~150MPa)下,快速(充型时间0.001~0.2s)充填铸型,并在压力下结晶,获得铸件的工艺方法。
首先把涂料喷刷在型腔表面上,起保护型腔和减小摩擦阻力作用。
10.设计铸件应合理的确定结构斜度。
11.离心铸造是指液体金属在商速旋转(250-1500r/min)的铸型中,在离心力作用下成形,以获得铸件的工艺方法。
第三章 金属材料的塑性变形
二、再结晶 1. 再结晶过程及其对金属组织、性能的影 响 变形后的金属在较高温度加热时,由于原 子扩散能力增大,被拉长(或压扁)、破碎的 晶粒通过重新生核、长大变成新的均匀、细小 的等轴晶。这个过程称为再结晶。变形金属进 行再结晶后,金属的强度和硬度明显降低,而 塑性和韧性大大提高,加工硬化现象被消除, 此时内应力全部消失,物理、化学性能基本上 恢复到变形以前的水平。再结晶生成的新的晶 粒的晶格类型与变形前、变形后的晶格类型均 一样。
二、再结晶 1. 再结晶过程及其对金属组织、性能的影 响 变形后的金属在较高温度加热时,由于原 子扩散能力增大,被拉长(或压扁)、破碎的 晶粒通过重新生核、长大变成新的均匀、细小 的等轴晶。这个过程称为再结晶。变形金属进 行再结晶后,金属的强度和硬度明显降低,而 塑性和韧性大大提高,加工硬化现象被消除, 此时内应力全部消失,物理、化学性能基本上 恢复到变形以前的水平。再结晶生成的新的晶 粒的晶格类型与变形前、变形后的晶格类型均 一样。
3.3 塑性变形后的金属在加热时组织和性能的 变化 金属经塑性变形后,组织结构和性能发生 很大的变化。如果对变形后的金属进行加热, 金属的组织结构和性能又会发生变化。随着加 热温度的提高,变形金属将相继发生回复、再 结晶和晶粒长大过程。
一、回复 变形后的金属在较低温度进行加热,会发生回复 过程。 产生回复的温度T回复为: T回复=(0.25~0.3)T熔点 式中T熔点表示该金属的熔点, 单位为绝对温度 (K)。 由于加热温度不高, 原子扩散能力不很大, 只是 晶粒内部位错、空位、间隙原子等缺陷通过移动、复 合消失而大大减少,而晶粒仍保持变形后的形态, 变 形金属的显微组织不发生明显的变化。此时材料的强 度和硬度只略有降低,塑性有增高,但残余应力则大 大降低。工业上常利用回复过程对变形金属进行去应 力退火、以降低残余内应力,保留加工硬化效果。
金属的塑性变形
五、金属变形程度
常用锻造比表示 Y=F0/F F0表示变形前面积 F表示变形后面积
钢锭Y=2-3 合金钢Y=3-4 高速钢Y=5-12
六、冷、热变形比较
热变形特点:
(1)均匀、细化晶粒 (2)消除加工硬化
(3)高温、塑性好 (4)氧化严重
(5)精度差
(6)设备贵,维修费高
冷变形特点:
(1)不加热
(2)精度、表面质量好
单晶体的滑移
多晶体
二、冷变形后的金属组织与性能 塑Байду номын сангаас变形后:
(1)产生纤维组织,引起各向异性 (2)晶格扭曲 (3)晶粒间产生碎晶 使金属的强度、硬度增加,塑性、韧性 下降,即加工硬化。增加滑移阻力,使金 属形变强化
1.纤维组织 2.加工硬化 3.残余内应力
2.加工硬化(形变硬化、冷作硬化)
(3)硬度、强度高 (4)材料有方向性
(5)设备贵,存在残余应力,易产生裂纹。
§1-2 锻前加热与锻后冷却
一、锻造前加热目的及方法
目的: 提高金属塑性,降低变形抗力.易于锻造成形 并获得好的锻后组织.
按加热热源不同可分为:
1.火焰加热,燃料来源方便,炉子修造简单,加热费 用低适应范围广。用于各种大、中、小型坯料的加热。 劳动条件差,加热速度慢,加热质量难于控制。
§1-1 金属的塑性变形
压力加工:在外力作用下,使金属产生塑性变形,获得一定几 何形状、尺寸和力学性能毛坯,原材料或零件的加工方法。压 力加工有自由锻、模锻、板料冲压、轧制、挤压、拉拔等。
一、塑性变形实质 1、单晶体塑性变形 (1)当无外力,晶格正常排列。 (2)外力作用使原子离开平衡位置,晶格变形。 (3)当剪应力足够大,沿晶面移动一个或几个原子距离。 2、多晶体塑性变形 多晶体是多个位向不同变形总和。特点: (1)变形过程复杂。 (2)变形抗力比单晶体大的多。
多晶体金属的塑性变形
多晶体金属的塑性变形本质上,与单晶体无区别。
实际上,存在晶界及晶粒之间的位向差,变形过程复杂,变形抗力高的多。
一、晶粒取向的影响多晶体相邻晶粒位向不同,导致多晶体金属塑性变形有以下两个特点: 各晶粒变形的不同时性;各晶粒变形的相互协调性。
各晶粒变形的不同时性软取向的晶粒,首先开始滑移;周围晶粒位向不同,滑移系取向不同,运动的位错不能越过晶界,在晶界处产生位错塞积。
位错塞积造成很高的应力集中,使相邻晶粒中某些滑移系开动,使应力集中松弛,变形从一个晶粒传向另一个晶粒。
随着变形,各晶粒发生转动和旋转,原软取向→硬取向,而停止滑移,同时原硬取向→软取向,而发生滑移。
随外力的持续,多晶体金属中的晶粒分批地、逐步地发生塑性变形。
各晶粒变形的相互协调性多晶体的每个晶粒都处于其他晶粒的包围之中。
要保持晶粒之间的结合和整个晶体的连续性,其变形必须与周围的晶粒相互协调,就使多晶体的塑性变形较单晶体困难,其屈服应力也高于单晶体。
独立滑移系多晶体塑性变形时,要求晶粒至少能在5个独立的滑移系上进行滑移,才能使各晶粒间的变形得到很好的协调。
独立滑移系:指它所产生的晶体形状改变是不能借别的滑移系组合作用而同样得到。
任何变形都可用6个应变分量来表示。
由于塑性变形时体积不变,只有5个独立的应变分量。
独立的应变分量由一个独立的滑移系来产生,需要5个独立滑移系产生5个独立应变分量,以保证晶粒间变形的协调和晶体的连续。
面心立方和体心立方金属滑移系多,能满足,有较好的塑性。
而密排六方金属滑移系少,晶粒间的应变协调性差。
密排六方单晶体处于软取向时,应变可达100% ~200%,但多晶体塑性都很差,强度则较高。
二、晶界(晶粒大小)的影响双晶粒试样变形后,晶界处呈竹节状。
晶界附近滑移受阻,变形量较小。
晶界阻碍位错的通过,即晶界对塑性变形起阻碍作用。
多晶体的强度随晶粒细化而提高。
细晶强化:用细化晶粒来提高材料强度的方法。
细晶强化本质:晶界提高了位错运动的阻力,晶界越多,即晶粒越细,材料的强度越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶体金属变形的特性
多晶体金属变形的一个重要特点是构成多晶体金属的
所有晶体变形具有非同时性。
由无数同相晶粒或不同相晶粒构成的金属。
由于各晶体的取向不同,在外力作用下,它们的变形不可能同时开始,而是那些滑移面阳适宜滑动的晶粒最先开始发生塑性变形,因此变形总是从那些比较弱的晶粒率先开始。
多晶体拉伸变形曲线变形的不均一性是多晶体塑性变形的第二个特点。
这种变形的不均一性不仅体现在同相不同晶粒之间,也表现在不同相之间。
即基体金属晶粒和第二相晶粒之间。
更进一步说,即使在同一晶粒几部变形也不均匀。
多晶体模型
时间性是多晶体金属塑性变形的第三个特点。
正国为多晶体金属塑性变形行为具有时间性,因此,对高温条件下服役的金属,通常采用应力、应变和时间三个变形来来描述金属的失效行为。
多晶体塑性变形模型
多晶体金属在塑性变形过程中,金属的机械性能和其它性能变化是多金属晶体变形的第四个特点,最突出的现象就是加工硬化现象。
位错的透射电镜形貌多晶体塑性变形的第五个特点是晶界所表现的行为,在低温条件多晶体金属发生塑性变形时,变形通常在晶内进行。
高温时晶粒会沿着晶界动力,甚至导致开裂。
多晶体金属塑性变形开裂,孪晶界开裂。