碳捕捉与封存ccs

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CCS(Carbon Capture and Storage)技术示意图

CCS是稳定大气温室气体浓度的减缓行动组合中的一种选择方案。 CCS具有减少整体减缓成本以及增加实现温室气体减排灵活性的潜力。CCS的广泛应用取决于技术成熟性、成本、整体潜力、在发展中国家的技术普及和转让及其应用技术的能力、法规因素、环境问题和公众反应。CO2的捕获可用于大点源。CO2将被压缩、输送并封存在地质构造、海洋、碳酸盐矿石中,或是用于工业流程。CO2大点源包括大型化石燃料或生物能源设施、主要CO2排放型工业、天然气生产、合成燃料工厂以及基于化石燃料的制氢工厂。潜在的技术封存方式有:地质封存(在地质构造中,例如石油和天然气田、不可开采的煤田以及深盐沼池构造),海洋封存(直接释放到海洋水体中或海底)以及将CO2固化成无机碳酸盐。

碳捕集

CCS(Carbon Capture and Storage)技术示意图

CCS技术由碳捕集和碳封存两个部分组成。其中,碳捕集技术最早应用于炼油、化工等行业。由于这些行业排放的CO2浓度高、压力大,捕集成本并不高。而在燃煤电厂排放的CO2则恰好相反,捕集能耗和成本较高。现阶段的碳捕集技术尚无法解决这一问题。

碳捕集技术目前大体上分作三种:燃烧前捕集、燃烧后捕集和富氧燃烧捕集。三者各有优势,却又各有技术难题尚待解决,目前呈并行发展之势。哪一种先取得突破,哪一种就会成为未来的主流。

燃烧前捕集技术以IGCC(整体煤气化联合循环)技术为基础:先将煤炭气化成清洁气体能源,从而把CO2在燃烧前就分离出来,不进入燃烧过程。而且,CO2的浓度和压力会因此提高,分离起来较方便,是目前运行成本最廉价的捕集技术,其前景为学界所看好。问题在于,传统电厂无法应用这项技术,而是需要重新建造专门的IGCC电站,其建造成本是现有传统发电厂的两倍以上。

燃烧后捕集可以直接应用于传统电厂,北京高碑店热电厂所采用的就是这条技术路线。这一技术路线对传统电厂烟气中的CO2进行捕集,投入相对较少。这项技术分支较多,可以分为化学吸收法、物理吸附法、膜分离法、化学链分离法等等。其中,化学吸收法被认为市场前景最好,受厂商重视程度也最高,但设备运行的能耗和成本较高。

事实上,由于传统电厂排放的CO2浓度低、压力低,无论采用哪种燃烧后捕集技术,能耗和成本都难以降低。如果说,燃烧前捕集技术的建设成本高、运行成本低,那么燃烧后捕集技术则是建设成本低、运行成本高。

富氧燃烧捕集技术试图综合前两种技术的优点,做到既可以在传统电厂中应用,排出的CO2的浓度和压力也较高。由于该技术主要着力在燃烧过程中,也被看作是燃烧中捕集技术。与

传统电厂直接用空气助燃的燃烧技术不同,富氧燃烧是用纯度非常高的氧气助燃,同时在锅炉内加压,使排出的CO2在浓度和压力上与IGCC差不多,再用燃烧后的捕集技术进行捕集,从而降低了前期投入和捕集成本。但看似完美无缺的解决方案,却有一个巨大的技术难题——制氧成本太高,这也使得富氧燃烧捕集技术在经济性上并没有太大优势。

碳封存

若把CCS作为一个系统来看,碳捕集的成本要占到2/3,碳封存的成本占1/3。碳封存技术相对于碳捕集技术也更加成熟,主要有三种:海洋封存、油气层封存和煤气层封存。与碳捕集技术多路线并行发展不同,碳封存技术路线主次分明,方向明确。

海洋封存有两种潜在的实施途径:一种是经固定管道或移动船只将CO2注入并溶解到水体中(以1000米以下最为典型),另一种则是经由固定的管道或者安装在深度3000米以下的海床上的沿海平台将其沉淀,此处的CO2比水更为密集,预计将形成一个“湖”,从而延缓CO2分解在周围环境中。海洋封存及其生态影响尚处于研究阶段。

油气层封存分为废弃油气层封存和现有油气层封存。国际上有企业在研究利用废弃油气层的可行性,但并不被看好。主要原因在于目前人类对油气层的开采率只能达到30%—40%,随着技术进步,存在着将剩余的60%—70%的油气资源开采出来的可能性。所以,世界上尚不存在真正意义上的废气油气田。

通过利用现有油气田封存CO2被认为是未来的主流方向,这项技术被称为CO2强化采油技术,即将CO2注入油气层起到驱油作用,既可以提高采收率,又实现了碳封存,兼顾了经济效益和减排效果。这项技术起步较早,最近10年发展很快,实际应用效果得到了肯定,也是中国优先发展的技术方向。

煤层气封存技术是指将CO2注入比较深的煤层当中,置换出含有甲烷的煤层气,所以这项技术也具有一定的经济性。但必须选在较深的煤层中,以保证不会因开采而造成泄漏。中国已经和加拿大合作开发了示范项目,投资高、效果不错。问题在于CO2进入煤气层后发生融胀反应,导致煤气层的空隙变小、注入CO2会越来越难,逐渐再也无法注入。所以,该技术并不为研究人员看好。

效率

对人为的和自然界的类似情况的观测和模式都表明在适当选择并进行管理的地质封存储层中,被保留的部分很可能25在100年时间里维持在99%以上,并且也有可能191,000年中维持在99%以上。海洋封存的CO2其释放将是逐渐的,会延续几百年。在矿石碳化的情况下,已封存的CO2不会向大气释放。

运输

运输成本在CCS技术系统当中所比重相当小。主要有两种方式:管道运输和灌装运输,技术上问题不大。

管道运输是一种成熟的市场技术,也是运输CO2最常用的方法。一次性投资较大,适宜运输距离较远、运输量较大的情况。灌装运输主要通过铁路或公路进行运输,仅适合短途、小量

在大多数CCS系统中,捕获(包括压缩)的成本是最大的成本部分。能源和经济模式指出CCS系统对于减缓气候变化的主要贡献将来自于其在电力行业的发展。正如本报告估计的那样,大多数模拟结果表明当CO2价格开始达到大约25-30美元/吨CO2时,CCS系统才开始出现在显著的部署规模。

在2002年的状况下,估计CCS在产电方面的应用将使产电成本增加大约0.01-0.05美元16/千瓦时(US$/kWh),具体成本将取决于燃料、特定技术、场地以及国家环境。将EOR

的利益包含在内,会使CCS造成的额外电力生产成本降低大约0.01-0.02美元/千瓦时17。用于产电的燃料市场价格的上升通常会使CCS的成本增加。石油价格对于CCS的量化影响尚不确定。然而,来自于EOR的收入通常随石油价格升高而上升。CCS在小规模的基于生物质的电力生产中的应用会大幅度增加用电成本,在一家较大的具备CCS的煤电厂中进行生物质复合燃烧将更有成本效益。与新建一个采用捕获系统的电厂相比,预计用CO2捕获系统改装现有电厂将产生较高的成本并显著降低总体效率。对于一些刚建不久和效率高的现有电厂

英国正在帮助中国和印度开发CCS技术,图中所示是一所CCS示范工厂的透视图

世界上有很多的CCS项目正在运行中,其中较有代表性的有三个,即挪威国家石油公司在北海的Sleipne项目、阿尔及利亚的In Salah项目和加拿大Weyburn项目。这些项目有些将二氧化碳注入海底或地下,有些注入油田,以提高油田的采收率。

日本

日本最大的煤用户“日本电力”(J-Power)是日本与澳大利亚合作研究CCS技术项目的一部分,据称该小组是世界首个全面运用CCS技术的项目,以削减碳排放。

相关文档
最新文档