静态工作点稳定电路

合集下载

静态工作点稳定的放大电路

静态工作点稳定的放大电路

1、声音洪亮 2、语言精简 3、点评步骤: 判断正误-规 范思路-征求 意见
基础知识探究
1、写出分压式偏置放大电路稳定工作点的过程?
探究案展示点评
展示内容 任务二 任务二 任务三 任务三 展示人员 展示要求 点评人员 点评要求
1、书面展示 2、动作迅速 3、书写规范 4、格式正确 5、声音洪亮 6、尽量脱稿
21b2ccbqbbrrrvv???cqbqii?eqbebqeqcqrvvii???vceqvccicqrcre分压式偏置放大电路的直流通路2交流参数估算电压放大倍数输入电阻rirb1rb2rbe输出电阻rorc分压式偏置放大电路的交流通路??要确保分压偏置电路的静态工作点稳定应满足两个条件
静态工作点稳定的放大电路
2.稳定静态工作点
3.电路参数估算 (1)静态工作点的估算 分压式偏置放大电路的直流通路 图所示,可推导出下列静态工作点的估算公式。
VBQ VCC
I BQ I CQ
Rb2 Rb1 Rb 2

I CQ I EQ
分压式偏置放大电路的直流通路
VBQ VBE Q Re
VCEQ≈VCC-ICQ(Rc+Re)
(三)集电极—基极偏置放大电路 1.电路组成 电路的组成特点:Rb跨接在放大管 的c极和b极之间。
2.稳定静态工作点的原理
集电极—基极偏置放大电路
探究案展示点评
展示内容 任务一 任务一 展示人员 展示要求 点评人员 点评要求
1、书面展示 2、动作迅速 3、书写规范 4、格式正确 5、声音洪亮 6、尽量脱稿
2、根据下图,试写出集电极-基极偏置放大电路稳定工作点 的过程?
3、某放大电路的上限截止频率为10KHz,下限截止频率为 500Hz,则其通频带为 。 4、已知两共射极放大电路空载时电压放大倍数绝对值分别 为A和A,若将它们接成两级放大电路,则其放大倍数绝 对值( )。 A.Au1Au2 B. Au1+Au2 C. 大于Au1Au2 D. 小于Au1Au2 5、某放大器输入电压为10mv时,输出电压为7V;输入电压 为15mv时, 输出电压为6.5V,则该放大器的电压放大倍数 为( ) 。 A. 100 B. 700 C. -100 D. 433

差动放大电路稳定静态工作点的原理和抑制共模信号的原理一样。

差动放大电路稳定静态工作点的原理和抑制共模信号的原理一样。

差动放大电路稳定静态工作点的原理和抑制共模信号的原理一样。

下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!差动放大电路稳定静态工作点的原理与抑制共模信号的方法1. 简介在电子电路中,差动放大电路是一种常见的电路拓扑结构,用于放大差分信号并抑制共模信号。

静态工作点稳定偏置电路、共集基

静态工作点稳定偏置电路、共集基

设计原则与步骤
3. 设计偏置电路
根据设计原则,设计出能够稳定静态工作点的偏置电路。
4. 仿真验证
使用仿真软件对设计的偏置电路进行验证,检查其性能是否满足 要求。
5. 实际测试
搭建实际电路,进行测试以验证设计的有效性。
参数选择与优化
元件参数
电源电压和电流
根据电路性能需求,选择合适的电阻、电容、 电感等元件参数。
https://
静态工作点稳定偏置 电路与共集基
xx年xx月xx日
• 静态工作点稳定偏置电路概述 • 共集基的应用与特性 • 静态工作点稳定偏置电路与共集
基的关系 • 静态工作点稳定偏置电路的设计
与优化 • 共集基的未来发展与展望
目录
01
静态工作点稳定偏置电路 概述
共集基在新型电子设备中的应用前景
物联网设备
共集基在物联网设备中具有广泛的应用前景,如传感器、无线通信 模块等,能够提供高效、低功耗的信号处理解决方案。
人工智能硬件
共集基在人工智能硬件中可用于实现神经网络加速器、信号处理器 等,有助于提高人工智能系统的计算效率和能效比。
生物医疗电子设备
共集基在生物医疗电子设备中具有重要应用价值,如生理信号监测、 药物释放等,能够提供高精度、低噪声的信号处理解决方案。
电路
1. 搭建实际电路,确保元件安装正确、连线无误。
03
2. 对电路进行初步测试,检查是否存在明显的故障或问题。
电路调试与测试
3. 使用调试工具对电路进行细致的调 试,解决存在的问题。
4. 记录调试过程中的问题和解决方法, 为后续设计和优化提供参考。
电路调试与测试
01
https://
静态工作点稳定偏置电路对共集基的影响

晶体管静态工作点的稳定电路

晶体管静态工作点的稳定电路

课程论文题目:晶体管静态工作点的稳定电路作者:铁虎所在学院:信息科学与工程学院专业年级:通信08-2班指导教师:李新刚职称:讲师2010年 1 月 6 日晶体管的静态工作点稳定电路摘要: Multisim10.0是一种专门用于电子线路仿真与设计的EDA工具软件,本文给出了使用该软件对模拟电路中的单管共射放大电路进行仿真的设计方法,采用多种分析手段对电路性能进行动态测试,通过反馈数据改进电路以达到设计要求,最后总结了电子设计中使用EDA技术的优点。

使用Multisim10.0对电路进行分析,可以使复杂的计算变得非常简便、直观,便于学生在建模仿真过程中更加深刻的理解和掌握所学知识。

关键词:电路结构、静态、动态、分析、稳定放大电路1 前言电子线路是一门实践性很强的课程,实验在电子线路的教学中占有非常重要的地位。

传统的实验都是在真实的实验室中完成的,随着现代教育技术的发展和仿真软件的问世,使得实验可以在虚拟实验室中完成。

真实实验和仿真实验相结合,能使实验达到最佳的教学效果。

通过实验学生能更好地掌握理论知识,同时锻炼学生的动手能力。

放大电路的多项重要指标均与静态工作点的设置密切相关。

如果静态工作点不稳定,则放大电路的性能指标也将发生变动。

因此,如何使静态工作点保持稳定,是一个十分重要的问题。

Multisim10.0是National Instruments Electronics workbench Group 公司 2007年推出的以Windows 为系统平台的仿真工具,适用于板级的模拟数字电路的设计工作,是非常有用的 EDA设计套件,可以帮助用户完成电路设计主要工作。

Multisim10.0包含了电路原理的图形输入,模拟电路仿真,数字电路仿真,混合模式电路仿真,高频电路仿真,PCB布局等功能,并支持VHDL、Verilog 语言的电路仿真与设计,以及与其他软件间的接口。

另外 Multisim10.0MCU 模块增加了微控制器的协同仿真功能,用于完成整个系统的模拟验证。

10-2稳定静态工作点的典型电路及其原理

10-2稳定静态工作点的典型电路及其原理
基极电位基本恒定,不随温度变化。
T
分压偏置共射放大电路
IC
VE VB 固定 UBE
IC
IB
稳定静态工作点的典型电路及其原理
(3)引入负反馈和温度补偿稳定Q点
+Vcc
Rb1
Rc
C2
C1
+
RT
ui Rb2 t
-
Rb3
+
RL
uo
Re Ce
-
T
UD
VB
IC
VE
UBE
IB
IC
IB Rb
IB

VT(℃)
IC
β
IB
IC
稳定静态工作点的典型电路及其原理
RB1
CV1+B
+
RS eS–+
ui RB2 –
I1
IC
+UCC
RC IB
+C2 引入直+流
I2 RE
VE +
R负L 反u馈o
CE

合理选择RB1和RB2,使得满足: I2 >>IB , VB >>UBE
稳定静态工作点的典型电路及其原理
稳定静态工作点的典型电路及其原理
(1)二极管温度补偿电路
I Rb
VCC UBEQ Rb
VCC Rb
IRb IR IB
I Rb
IB
IR
稳定静态工作点的典型电路及其原理
(2) 直流负反馈Q点稳定电路
Rb
直流电压负反馈
直流电流负反馈
稳定静态工作点的典型电路及其原理

放大电路静态工作点的稳定、放大电路的三种接法

放大电路静态工作点的稳定、放大电路的三种接法
升高、 IC增加时,能够自动减少IB,从而抑制Q点
的变化,保持Q点稳定。
常采用分压式偏置电路来稳定静态工作点
继续
2. 静态工作点稳定的放大器 (p105)
Rb1 Cb1
+VCC
Rc
I1
IC Cb2
IB
(1) 结构 及工作原理
+
T
+
+
u i
Rb2
I2 Re
IE RL
u o
-
-
+
选I2=(5~10)IB ∴I1 I2

β
R
L
rbe (1 β )Re
继续
输入电阻:
ii
+
+
ui
Rb1
-
+
Ri
ib b
c ic
+
rbe
e
Rb2
β ib
+
RC
RL
u o
R
-
+
Ri
Ro
Ri=
ui ib

rbe
(1 β )Re
Ri Ri // Rb1 // Rb2
输出电阻:
Ro Rc
[rbe (1 β )Re ]// Rb1 // Rb2
3. ICBO 改变。温度每升高 10C ,ICBQ 大致将增加一 倍,说明 ICBQ 将随温度按指数规律上升。
温度升高,最终将导致 IC 增大,Q 上移。波形容易失真。
iC
VCC RC
T = 20 C
T = 50 C
Q
iB
Q
O VCC uCE
温度对 Q 点和输出波形的影响

稳定静态工作点和三种放大电路

稳定静态工作点和三种放大电路

若 (1)Re rb, e A 则 uR RL e'
三、稳定静态工作点的方法
• 引入直流负反馈 • 温度补偿:利用对温度敏
感的元件,在温度变化时 直接影响输入回路。 • 例如,Rb1或Rb2采用热敏 电阻。 它们的温度系数?
T (℃ ) ICU EU B E IB IC R b 1 U B
哪种场效应管能够采用这种电路形式设置Q点?
3. 分压式偏置电路
即典型的Q点稳定电路
UGQ
UAQ

Rg1 Rg1Rg2
VDD
USQ IDQRs
IDQIDO(UUGGSS(Qt h)1)2
U DS V Q D D ID(Q R dR s)
为什么加Rg3?其数值应大些小些?
哪种场效应管能够采用这种电路形式设置Q点?
静态工作点的稳定
一、温度对静态工作点的影响 二、静态工作点稳定的典型电路 三、稳定静态工作点的方法
一、温度对静态工作点的影响
T( ℃ )→β↑→ICQ↑ →Q’
Q’
ICEO↑
若UBEQ不变IBQ↑
若温度升高时要Q’回到Q, 则只有减小IBQ
所谓Q点稳定,是指ICQ和UCEQ在温度变化时基本不变, 这是靠IBQ的变化得来的。
输出特性
iD f (uDS)UGS常量
预夹断轨迹,uGD=UGS(off)
IDSS
g-s电压控

制d-s的等 效电阻
ΔiD
变 电 阻
恒 流


低频跨导:
夹断区(截止区)
iD几乎仅决 定于uGS
击 穿 区
夹断电压
gm

iD uGS
UDS常量

静态工作点稳定偏置电路共集基

静态工作点稳定偏置电路共集基
第30页/共39页
4.6 组合放大电路
共射—共基放大电路 共集—共集放大电路
第31页/共39页
共射—共基放大电路
共射-共基放大电路
第32页/共39页
共射—共基放大电路
电压增益
Av
vo vi
vo1 vi

vo vo1
Av1 • Av2
其中
Av1
β1 RL rbe1
β1rbe2 rbe1(1 β2 )
Av
vo vi
β ib (Rc // RL ) ib[rbe (1 β)Re ]
β ( Rc // RL ) rbe (1 β)Re
(可作为公式用)
第6页/共39页
(2)放大电路指标分析
③输入电阻
vi ib[rbe (1 β)Re ]
ii ib iRb
vi
vi vi
rbe (1 )Re Rb1 Rb2
VCC
ICQ
IEQ
VBQ
VB EQ Re
VCEQ VCC ICQ Rc IEQ Re VCC ICQ ( Rc Re )
IBQ
ICQ β
不再先求IBQ
VBQ VEQ , I EQ , ICQ VCEQ , I BQ
第4页/共39页
(2)放大电路指标分析
②电压增益 <A>画小信号等效电路
第17页/共39页
直流通路
共集电极放大电路 2.动态分析
①小信号等效电路
第18页/共39页
共集电极放大电路
2.动态分析
②电压增益
输入回路:
vi ibrbe ib (1 β)RL
其中 RL Re // RL
输出回路: vo ib (1 β)RL

静态工作点的稳定及其偏置电路wzl

静态工作点的稳定及其偏置电路wzl

在模拟计算电路中,如模拟乘法器、 对数放大器等,静态工作点的设置和 偏置电路的设计对于提高计算精度和 稳定性具有重要作用。需要根据具体 电路的特点和要求,合理选择和调整 静态工作点及偏置电路参数。
THANKS
感谢您的观看
集电极-基极偏置电路
通过改变集电极电阻或电源电压来 调整晶体管的静态工作点,适用于 需要大范围调整工作点的场合。
Part
03
静态工作点稳定性分析
温度对静态工作点影响
温度升高会导致半导体器件的参数发生变化,如晶体管的 电流放大系数增大,基极-发射极间电压降减小等,从而使 得静态工作点发生偏移。
温度的变化还会影响电路中的其它元件,如电阻的阻值随 温度升高而增大,电容的容值随温度升高而减小等,这些 变化也会对静态工作点产生影响。
常见偏置电路类型
固定偏置电路
采用固定电阻为晶体管提供基极 偏置电流,适用于温度变化不大 且对稳定性要求不高的场合。
发射极偏置电路
在发射极回路中接入电阻或稳压管来稳 定发射极电流,从而提高晶体管的稳定 性,适用于对稳定性要求较高的场合。
分压式偏置电路
采用电阻分压器为晶体管提供基极 偏置电压,具有较好的稳定性,适 用于温度变化较大的场合。
重要性
静态工作点的设置直接影响到放大器的性能,如线性度、失真度、效率等。合理的静态 工作点设置是确保放大器正常工作的基础。
影响因素及稳定性要求
电源电压波动
电源电压的波动会导致静态工作 点的偏移,进而影响放大器的性 能。
温度变化
温度变化会影响半导体器件的参 数,如电阻、电容等,从而导致 静态工作点的漂移。
为了减小电源电压波动对静态工作点的影响,可以采用稳压电源或电源滤 波电路。

第2章 基本放大电路(5)2.4静态工作点稳定电路

第2章 基本放大电路(5)2.4静态工作点稳定电路

Ri Rb1 // Rb2 //rbe (1 ) Re RO RC
2 - 4 - 27
电路的动态参数: (1 ) R r e be
RL ' RL ' ( R ' R // R ) L C L Au rbe (1 ) Re Re
2 - 4 - 36
解:空载时根据电路的输入回路得到:IBQ VBB UBE 20A Rb 确定ICQ=2mA A ICQ Q

IBQ B
UCEQ 根据电路的输出回路电压方程画出输出负载线A-B, 确定Q: IBQ=20μ A,ICQ=2mA, UCEQ=6V.
2 - 4 - 37
空载时最大不失真输出电压幅值约为 6-0.7=5.3V, A ICQ Q
按要求画图
注意
2 - 4 - 33
2.2 画出如图所示各电路的直流通路和交流通路。设所 有电容对交流信号均可视为短路。 解:将电 容开路 即为直 流通路。
2 - 4 - 34
各电路的交流通路如图所示;
2 - 4 - 35
2.4电路如图(a)所示,图(b)是晶体管的输出特 性,静态时UBEQ=0.7V。 利用图解法分别求出RL =∞和RL =3kΩ 时的静态工 作点和最大不失真输出电压Uom(有效值)。
iC iC 交流负载线
iB Q 0 t 0 0 u CE u CE
(a) t
2-4-9
Q点偏高产生的非线性失真-------饱和失真(对于uO 底部平顶失真)
iC iC Q iB
交流负载线 0 t 0 0 (b) u CE u CE
t
2 - 4 - 10
为了保证放大电路的正常工作,必须有 合适的、稳定的静态工作点。电源电压的 波动、元件的老化以及因温度变化所引起 晶体管参数的变化,都会造成静态工作点 的不稳定。其中温度对晶体管参数的影响 是最主要。 UBE

分压式静态工作点稳定电路实验报告

分压式静态工作点稳定电路实验报告

分压式静态工作点稳定电路实验报告1. 引言静态工作点是指电子元件或电路在无交流信号输入时的直流电流和电压值,是电路中的重要参数之一。

在理想情况下,我们希望静态工作点稳定,以保证电路正常工作。

本实验旨在通过分压式静态工作点稳定电路的搭建和实验验证,探究分压式电路对静态工作点的影响以及其稳定性。

2. 实验原理(1) 分压式静态工作点稳定电路:该电路由电压分压器和负载电阻组成。

其中,电压分压器由两个电阻串联而成,并与电源相连,负载电阻则与电压分压器并联连接。

(2) 分压式电路原理:将输入电源的电压通过电压分压器分配给负载电阻,调整分压器的比例可以改变电路的输出电压。

理想情况下,负载电阻的两端电压可通过分压器的输出电压和总电阻来计算。

(3) 静态工作点分析:静态工作点一般表示为电路中某一元件两端的电压或电流值。

在本实验中,将通过测量电路中负载电阻两端的电压来确定静态工作点的位置,通过调整电路参数来使得静态工作点稳定在期望值附近。

3. 实验设备(1) 直流电源,电压范围可调(2) 电阻,选择合适的电阻值以满足实验要求(3) 万用表,用于测量电路参数4. 实验步骤(1) 搭建分压式静态工作点稳定电路,如图所示。

(2) 将直流电源连接到电路中,设置合适的电压值。

(3) 用万用表测量负载电阻两端的电压,并记录下来。

(4) 在保持电源电压不变的情况下,调整电路参数(如电阻值)来改变电路的分压比例。

(5) 重复步骤(3)和(4),记录不同电路参数下的负载电阻两端电压值。

5. 实验结果与分析通过实验记录的数据,可以绘制出不同电压分压比例下负载电阻两端电压的变化曲线。

从曲线图中可以看出,当分压比例改变时,负载电阻两端电压也发生变化,说明分压式电路对静态工作点有一定的影响。

此外,我们可以观察到当分压比例较小时,负载电阻两端电压较为稳定,而当比例增大时,负载电阻两端电压变化幅度增大,说明分压式电路对静态工作点的稳定性呈现一定的影响。

第9讲_静态工作点稳定电路

第9讲_静态工作点稳定电路
5 // 15 //1.5 1 50 2.3 3.75k
'
Ii
Re1较小,直流通路中Re1 与Re2均起作用
交流通路中只有Re1起作用 这样既能保证静态工作点 稳定又能使电路有较高的 放大倍数
17
可以看出,当无Ce时,
电压放大倍数很低
+VCC
Rb1 C1
+ ui Rb2 -
5 Rb1 12 3V U BQ VCC 5 15 Rb1 Rb2
I CQ I EQ U BQ U BEQ 3 0.7 1mA 2.3 Re
U CEQ VCC I CQ ( Rc Re )
12 1 (5.1 2.3) 4.6V
' R' Uo Ic RL I b L
Ro Rc
若(1 ) Re rbe , 且 1, 则
' U R Au o L Ui Re
U RL o Au U rbe (1 ) Re i
'
Ri Rb1 // Rb2 // rbe (1 ) Re
T UBE
IC
温度T 输出特性曲线族间距增大

10
2.4.2. 典型的静态工作点稳定电路
一、电路组成和Q点稳定原理
直接耦合放大电路
阻容耦合放大电路
直流通路
Ce旁路电容
11
目标:温度变化时,使IC维持恒定。
如果温度变化时,基极电位能 基本不变,则可实现静态工作点的 稳定。 基极电位基本不变的条件: I1 >>IBQ
R
'
L
Rc // RL

静态工作点调整的原理和方法

静态工作点调整的原理和方法

静态工作点调整的原理和方法静态工作点是指三极管放大电路中,交流输入信号为零时,电路处于直流工作状态,这些电流、电压的数值可用BJT特性曲线上一个确定的点表示,该点习惯上称为静态工作点Q 。

在电子电路中,静态工作点(Q 点)是指在没有信号输入时,电路中各元件的稳定工作状态。

一个稳定的静态工作点对于电路的正常工作至关重要,因为它决定了电路的放大特性、输出信号的幅度和失真程度等重要参数。

负反馈原理:负反馈是保证静态工作点稳定的核心原理。

它指的是将放大器的输出信号的一部分反向反馈回输入端,与输入信号进行比较,并将两者之间的差值放大输出。

这种反馈机制能够使电路输出的变化反向影响输入,从而抑制输出的变化,保证静态工作点稳定。

反馈深度和反馈类型:反馈深度的概念指的是反馈信号的强度与输入信号的比例关系,它决定了负反馈对输出变化的抑制程度。

反馈深度越大,抑制效果越强,静态工作点也越稳定。

反馈类型则指的是反馈信号与输入信号之间的相位关系,常见的有电压串联反馈、电流串联反馈、电压并联反馈、电流并联反馈等。

不同的反馈类型会对电路的放大倍数、输入阻抗和输出阻抗等特性造成不同的影响。

静态工作点调整方法:1. 调整三极管静态工作点的方法是通过不断减小输出频率和调节R来获得正弦波,并确保最大不失真。

2. 在放大器中,失真与能量损耗是一对矛盾。

若要减小失真,能量损耗就会增加;反之,若要降低能量损耗,失真就会增大。

因此,根据电路放大的对象不同,静态工作点Q的设置也会有所不同。

3. 如果主要目的是放大信号电压或电流,为了减小失真,静态工作点Q应设置在放大区直流负载线的中点。

4. 对于功率放大电路,考虑到功率传输效率,静态工作点Q应靠近截止区。

虽然这样会导致较大的失真,但管子的静态损耗较小。

静态工作点的稳定性是通过负反馈、元件特性、电路结构等多方面因素共同作用来实现的。

负反馈作为核心原理,通过反馈信号与输入信号之间的差异进行调整,有效地抑制了静态工作点的漂移,从而保证了电路的正常工作。

典型的静态工作点稳定电路

典型的静态工作点稳定电路
解 由分压式工作点稳定电路的相关公式可得:
1)静态工作点各值如下:
UBQ

RB1 RB1 RB2
VCC
20 40 20
12V
4V
ICQ
≈ UBQ RE
4 2
mA 2mA
UCEQ ≈VCC (RC RE)ICQ 12V (2.5 2) 2V 3V
IBQ
ICQ
2 50
mA
0.04mA
计算机电路基础
对放大电路的基本要求之一,就是放大后的输入信号尽可能不失真。所谓 失真,就是指输出信号的波形不同于输入信号的波形。引起失真的原因有很多, 最基本和最常见的是由静态工作点的设置不合适所致。此外,静态工作点还影 响着电压放大倍数、输入电阻等动态参数。因此,如何使静态工作点保持稳定, 是一个十分重要的问题。
2)动态时, Au 、 Ri 、Ro 如下:
rbe
rbb
26(mV) IBQ (mA)
300
26 0.04
0.95k
Au
RL rbe
50 (2.5 2.5) ≈ 65.8 0.95
Ri ≈ rbe 0.95k
Ro RC 2.5k
计算机电路基础
实际中有许多因素,如环境温度的变化、电源电压的波动、元器件老化等, 都会导致静态工作点不稳定,在引起静态工作点不稳定的诸多因素中,温度对 三极管参数的影响是最为主要的。
要稳定放大器的静态工作点,必须在电路结构上采取一定的措施。最典型的 静态工作点稳定电路如左图所示,该电路的直流电V源CC 通过电阻RB1 和RB2分压后 接到三极管的基极,故也称为分压式工作点稳定电路。 管而静降在态低左电。图流右,的图R作为B2用静为,态上C工偏E作置为点电旁稳阻路定,电电容RB路1,为的是下直旁偏流路置通R电E路阻上。,的R交E 流为信射号极,电使阻放,大起作稳用定不三因极RE

稳定静态工作点方法

稳定静态工作点方法

稳定静态工作点方法稳定静态工作点方法是指在电子器件与电路设计中,为了确保元件的工作状态不受外界因素的影响,以便保持电路的正常工作。

静态工作点是指电子元件在正常工作状态下的电压和电流值。

通过稳定静态工作点的方法,可以确保元件的工作在一定的范围内,不过分偏离设计要求,保证电路的性能和可靠性。

一、使用稳定偏置电路:稳定偏置电路是用于设定电路静态工作点的重要方法之一。

通过稳定偏置电路,可以从外部控制电流源或电压源,使得电路能够稳定地工作在所需的工作点上。

常见的稳定偏置电路有电阻偏置电路、电流镜电路、恒流源电路等。

这些电路可以通过选取合适的元件参数,使得电路的工作点具有一定的稳定性。

二、采用负反馈:负反馈是一种通过外部对电路输出进行干预的方法,可以通过调节输入信号或输出信号,使得电路的静态工作点保持稳定。

通过将电路的输出信号与期望的参考信号做比较,设计一个反馈回路,将这种差别作为输入信号,对电路进行控制,使输出信号逐步靠近期望值。

负反馈可以通过调节放大倍数、输入电阻和输出电阻等参数来实现静态工作点的稳定。

比如,在放大器电路中,可以通过在输出端串联负载电阻,将一部分输出信号反馈到输入端,从而稳定静态工作点。

三、使用温度补偿电路:电子元件在工作过程中会产生一定的温度效应,导致静态工作点的偏移。

为了解决这个问题,可以使用温度补偿电路,通过利用元件的热敏特性来对电路进行修正,以保持静态工作点的稳定。

常见的温度补偿电路有热敏电阻和热敏二极管等,通过测量环境的温度变化,并通过这些元件的特性调整电路的偏置,实现对静态工作点的稳定控制。

四、考虑工作环境因素:在设计电路时,还需要考虑到外界环境因素对电路的影响,如电源电压波动、温度变化、电磁干扰等。

通过对这些因素进行合理的估计和分析,可以选取合适的元件和电路结构,来保持电路的静态工作点的稳定性。

比如,可以通过使用稳压器、滤波电路、隔离电路等来解决电源电压波动的问题。

五、进行仿真和实验验证:在设计电路时,可以利用电路仿真软件对电路的静态工作点进行模拟分析,通过修改电路参数和结构,观察静态工作点的变化情况,找到最佳设计方案。

静态工作点稳定地放大电路分析报告

静态工作点稳定地放大电路分析报告

静态⼯作点稳定地放⼤电路分析报告静态⼯作点稳定的放⼤电路分析⼀、课题名称静态⼯作点稳定的放⼤电路分析⼆、设计任务及要求分析静态⼯作点、失真分析、动态分析、参数扫描分析、频率响应等。

(包括原始数据、技术参数、条件、设计要求等)三、电路分析1.静态⼯作点Q的分析(1)什么是静态⼯作点Q静态⼯作点就是输⼊信号为零时,电路处于直流⼯作状态,这些直流电流、电压的数值在三极管特性曲线上表⽰为⼀个确定的点,设置静态⼯作点的⽬的就是要保证在被被放⼤的交流信号加⼊电路时,不论是正半周还是负半周都能满⾜发射结正向偏置,集电结反向偏置的三极管放⼤状态。

可以通过改变电路参数来改变静态⼯作点,这样就可以设置静态⼯作点。

若静态⼯作点设置的不合适,在对交流信号放⼤时就可能会出现饱和失真(静态⼯作点偏⾼)或截⽌失真(静态⼯作点偏低)。

如图1为阻容耦合电路图1晶体管型号BC107BP参数 .MODEL BC107BP NPN IS =1.8E-14 ISE=5.0E-14 NF =.9955 NE =1.46 BF =400 BR =35.5+IKF=.14 IKR=.03 ISC=1.72E-13 NC =1.27 NR =1.005 RB =.56 RE =.6 RC =.25 VAF=80+VAR=12.5 CJE=13E-12 TF =.64E-9 CJC=4E-12 TR =50.72E-9 VJC=.54 MJC=.33 在放⼤电路中,当有信号输⼊时,交流量与直流量共存。

将输⼊信号为零,即直流电流源单独作⽤时晶体管的基极电流I B,集电极电流I C,b-e之间电压U BE,管压降U CE称为放⼤电路的静态⼯作点Q,常将四个物理量记作I BQ,I CQ,U BEQ,U CEQ。

在近似估算中常认为U BEQ为已知量,对于硅管U BEQ=0.7V,锗管U BEQ=0.2V。

为了稳定Q点,通常使参数的选取满⾜I1>>I BQ因此B点电位U BQ=Rb1/(Rb1+Rb2)·Vcc静态⼯作点的估算U BQ= Rb1/(Rb1+Rb2)·VccI EQ=(U BQ-U BEQ)/ReU CEQ=V CC-I CQ(Rc+Re)(2)为什么要设置合适的静态⼯作点对于放⼤电路最基本的要求,⼀是不失真,⼆是能够放⼤。

稳定三极管放大电路的静态工作点采用

稳定三极管放大电路的静态工作点采用

稳定三极管放大电路的静态工作点采用引言:稳定三极管放大电路是一种常见的电子电路,用于放大电信号。

在设计电路时,需要确定三极管的静态工作点,以确保电路的稳定性和线性放大特性。

本文将详细介绍稳定三极管放大电路静态工作点的确定方法和相关注意事项。

一、什么是静态工作点?静态工作点是指三极管放大电路在没有输入信号时的电压和电流状态。

在静态工作点下,三极管处于线性放大区,能够正常放大输入信号。

确定静态工作点的关键是确定三极管的负偏置电压和负偏置电流。

二、确定静态工作点的方法1. 确定负偏置电压:负偏置电压是指基极相对于发射极的电压,用于将三极管的基极电压稳定在合适的工作区域。

通常情况下,负偏置电压为0.6V,可以通过一个二极管或电阻分压电路来实现。

选择合适的电阻值或二极管来确定负偏置电压。

2. 确定负偏置电流:负偏置电流是指三极管的基极电流,用于确定三极管的工作状态。

负偏置电流的大小决定了三极管的放大倍数和线性放大范围。

负偏置电流过小会导致放大倍数较低,负偏置电流过大会导致功耗增加和三极管易烧坏。

一般情况下,负偏置电流的大小为三极管的最大漏极电流的10%~20%。

3. 确定漏极电流和漏极电压:漏极电流是指三极管的输出电流,漏极电压是指三极管的输出电压。

确定漏极电流和漏极电压需要根据电路的要求和实际情况进行选择。

一般情况下,漏极电流和漏极电压应在三极管的工作范围内,并且要考虑功耗和线性放大范围的平衡。

三、注意事项1. 选择适合的三极管:在确定静态工作点时,需要选择适合的三极管。

不同型号的三极管具有不同的参数和特性,需要根据实际需求进行选择。

常见的参数有最大漏极电流、最大漏极电压、最大功耗等。

2. 考虑温度变化:温度变化会影响三极管的特性和参数,可能导致静态工作点的偏移。

因此,在设计电路时,需要考虑温度变化对静态工作点的影响,并采取相应的补偿措施,如添加温度补偿电路。

3. 考虑输入信号的幅值:静态工作点的选择应考虑到输入信号的幅值范围。

静态工作点的稳定及其偏置电路

静态工作点的稳定及其偏置电路

∴I1 I2
UB
R b2 R b1 R b2
VCC
此式说明UB与晶体 管无关, 不随温度
uo
变化而改变, 故UB 可认为恒定不变。
Re射极直流 负反馈电阻
Ce 交流旁路 电容
RB1—上偏流电阻 RB2—下偏流电阻 5
西安电子科技大学计算机学院吴自力2012--3
二.静态工作点稳定过程
+VCC
Rb1 C1
可以使其具有温度稳定
uo
性,又可以使其具有与 固定偏流电路相同的动
态指标。
CE的作用:交流通路中, CE将RE短路,RE 对交流不起作用,放大倍数不受影响。
14
西安电子科技大学计算机学院吴自力2012--3
去掉
CE
后的交流通路和微变等效电路:
Ii
Ib
Ic
RB1 ui
RB2 RE
RL uo
RC
rbe
Ri= Rb1// Rb2// rbe
26(mV )
rbe
300() (1 ) I E (mA )
Ro= RC
11
西安电子科技大学计算机学院吴自力2012--3
例 : 图 示 电 路 ( 接 CE ) , 已 知 UCC=12V , RB1=20kΩ , RB2=10kΩ,RC=3kΩ,RE=2kΩ,RL=3kΩ,β=50。试估 算静态工作点,并求电压放大倍数、输入电阻和输出电
微变等效电路:
rbe
Ui R'B
Ib RL Uo
RE1 RC
19
西安电子科技大学计算机学院吴自力2012--3
六. 固定偏流电路与射极偏置电路的比较
共射极放大电路
静态:

分压式静态工作点稳定电路实验报告

分压式静态工作点稳定电路实验报告

分压式静态工作点稳定电路实验报告实验目的:掌握分压式静态工作点稳定电路的基本原理和设计方法,学会使用器件参数及相关参数计算公式进行电路设计。

实验器材:示波器、函数发生器、电阻、二极管、PNP、NPN三极管、稳压二极管、电容器、万用表等。

实验原理:分压式静态工作点稳定电路是一种常用的三极管偏置电路,主要用于保持三极管在静态工作点上的稳定。

稳定电路的基本原理是通过合适的电路设计,调整电路中的元件参数,使得三极管在工作过程中保持在合适的静态工作点上。

实验步骤:1. 准备所需器件和元件,包括二极管、PNP、NPN三极管、电阻、稳压二极管、电容器等。

2. 按照设计要求,计算电路所需的元件参数。

例如,可以根据所选取的三极管型号和工作电流,计算电阻值和稳压二极管的电压等。

3. 按照计算结果,进行元件参数的选择和连接。

连接电路时要注意保持电路的连续性和正确性。

4. 连接完毕后,接入电源,调整函数发生器输出的电压和频率,观察示波器上的波形变化。

5. 根据观察结果,适当调整电路中的元件参数,调整静态工作点,并观察示波器上的波形变化。

6. 重复上述步骤,直到达到预期的静态工作点稳定。

实验结果:根据实验现象和观察结果,判断电路的静态工作点是否稳定。

可以通过示波器上的波形变化和计算所得的电路参数来判断是否达到了预期的效果。

实验总结:通过这次实验,我掌握了分压式静态工作点稳定电路的基本原理和设计方法,学会了使用器件参数及相关参数计算公式进行电路设计。

在实验中,我不仅学会了实际操作电路的技巧,还培养了观察和分析实验现象的能力。

通过不断调整元件参数,我成功地实现了预期的静态工作点稳定效果。

这次实验对我今后的电路设计和工程实践有着重要的意义。

典型静态工作点稳定电路

典型静态工作点稳定电路

典型静态工作点稳定电路
典型的静态工作点稳定电路是指在电子电路中用来确保输出稳定在特定电压或电流水平的一种电路。

这种电路通常是通过负反馈来实现的,负反馈是一种控制电路输出的技术,它可以使电路的输出稳定在一个预期的值附近。

在典型的静态工作点稳定电路中,常见的包括基准电压源、稳压器和放大器等组件。

基准电压源用于提供一个稳定的参考电压,稳压器则可以将输入电压调节为稳定的输出电压,放大器则可以用来放大信号并通过负反馈来调节输出。

在设计这种电路时,需要考虑到电路的稳定性、温度漂移、负载变化等因素。

此外,还需要考虑功耗、成本和可靠性等方面的问题。

选择合适的元件和设计合理的电路拓扑结构对于实现稳定的静态工作点至关重要。

另外,还有一些特定的稳压器电路,比如基准电压源、电流源和电压源等,它们都可以用来实现静态工作点的稳定。

这些电路在各种电子设备中都有广泛的应用,比如在电源供应器、放大器、传感器等电路中都可以看到它们的身影。

总的来说,典型的静态工作点稳定电路是电子电路中非常重要的一部分,它可以确保电路的输出稳定性,提高电路的可靠性和性能。

在实际应用中,设计工程师需要根据具体的需求和条件选择合适的稳定电路,并且进行合理的设计和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q点偏低或 Q点偏高; 3)输入信号太大均可以引起非线性失真。
2 - 3 - 21
Q点偏低产生非线性失真-------截止失真(对于uO
顶部平顶失真)
iC
iC
交流负载线
Q
0
t0
0
2 - 3 - 22
(a) t
iB-----饱和失真(对于uO
底部平顶失真)
Rb1
RC
C1
发射极电阻,具有
直流负反馈,稳
定Q的作用。
ui Rb2
Re
交流旁路电容,减少
交流信号的损失。
2 - 3 - 29
+VCC
C2
RL uo
Ce
Rb1
RC
C1
+VCC C2
ui Rb2
Re
RL
uo Ce
电路称为分压式电流负反馈Q点稳定电路。
2 - 3 - 30
2、Q稳定原理---利用直流通路分析
Q如果偏高,要使Q降低,可以使Rb增大; Q如果偏低,要使Q升高,可以使Rb减小。 3)输入信号不能太大,放大电路放大的是小信 号。
2 - 3 - 25
*由以上分析可知:在实际工作中如何调整 电路参数找到电路合适的静态工作点:
通常情况调整Rb 如果Q偏高,出现饱和失真(电压下平 顶波形);增大Rb使Q降低,消除失真。 如果Q偏低,出现截止失真(电压上 平顶波形),减小Rb使Q升高,消除失真。
2、直接耦合放大电路的动态分析
(1)画出放大电路的微变等效电路
IC RL
(2)动态参数:
Au
R' L Rb rbe
2-3-4
Ri Rb rbe RO RC
3、阻容耦合放大电路的动态分析:
(1)画出放大电路的微变等效电路
(2)动态参数:
Au
RL '
rbe
Ri Rb // rbe
RO RC
RC
Q Q
U CEQ VCC I CQ RC
2 - 3 - 19
3.VCC对放大电路Q的影响—VCC增大Q沿输出特性 曲线线向右移(负载线斜率不变)。
VCC
Q Q
U CEQ VCC I CQ RC
2 - 3 - 20
放大电路的非线性失真
1、引起放大电路非线性失真的原因 1)晶体管特性的非线性; 2)Q点的位置不合适:
+VCC
Rb1
RC
C2
C1
ui Rb2
Re
RL
uo Ce
2 - 3 - 31
直流通路
通直 路流
1)稳定条件:
①基极电位UB基本稳定:
设计电路要求:I1 IBQ
uCE
2 - 3 - 14
iVCCC
RC
Q
I CQ
IB Q
u V i R 一、静态工作UC点EQ的VC分C析(uui=C0)E CE
CC C C
输出回路直流负载线方程
2 - 3 - 15
利用作图法确定Q的方法步骤:
1、画出晶体管的输入、输出特性曲线; 2、根据输入回路得到输入回路负载线确定IBQ; 3、根据输出回路得到输出回路负载线确定Q;
模拟电子技术教学课件
河北科技大学信息学院基础电子 教研室
内容回顾
基本要求: 1、掌握晶体管的等效模型; 2、掌握等效法分析动态指标。
2-3-2
1、晶体管的等效模型 c ic
ib
b
uce
ube
ib
b
ube rbe
ic c
ib
uce
e
e
rbe
rbb '(1
)
26(mV ) IE (mA )
2-3-3
iC
iC
iB
Q
0
t0
0
(b)
交流 负载线
uCE uCE
t 2 - 3 - 23
?思考: Q点合适,如果输入信号过大,
——会发生什么现象?
2、非线性失真的类型: 1) Q点偏低引起的截止失真; 2) Q点偏高引起的饱和失真; 3) 输入信号过大引起的双失真。
2 - 3 - 24
3、避免晶体管放大电路产生非线性失真采取的 手段: 1)选择线性好的晶体管; 2)选择放大电路合适的Q;
U CEQ VCC I CQ RC
影响 Q 稳定的因素:电路电源VCC、 电路参数RC 、 Rb、
以及晶体管的性能指标UBEQ ,β。
2-3-8
放大电路Q变化时对电路工作性能的影 响。利用图解法简单分析——直观形象。
图解法:就是利
用晶体管的特性曲线 和放大电路其他元件 的特性,用作图的方 法来分析电路。
2 - 3 - 26
2.4 .1 静态工作点稳定的必要性
为了保证放大电路的正常稳定工作,
电路必须有合适的、稳定的静态工作点。
电源电压的波动、元件的老化以及因温度变化 所引起晶体管参数的变化,都会造成静态工作 点的不稳定。其中温度对晶体管参数的影响是 最主要。
UBE
T
IC
2 - 3 - 27
ICEO
2-3-9
图解法的应用 1. 确定静态工作点(静态分析)。 2. 计算电压放大倍数(动态参数的分析)。 3. 分析放大电路的非线性失真。 4. 分析电路参数放大电路的影响。 5. 分析放大电路最大输出电压。
2 - 2 - 10
外电路
内电路
外电路
线性部分:外围电路
非线性部分:T,即iB和uBE、iC和uCE的关系
iC

温度上升时, 输出特性曲线 上移,造成Q 点上移。
Q
uCE
为了避免由于晶体管参数受温度影响而 引起Q变化,常常要引入直流负反馈或温度 补偿的方法来保证放大电路Q的稳定。
2 - 3 - 28
2.4 .2 典型静态工作点稳定电路 一、电路组成和Q 稳定原理
1、电路组成:
基极分压电阻, 保证UB 的稳定。
2-3-5
放大电路及动态参数对比:
Au
R'L Rb rbe
Ri Rb rbe
RO RC
2-3-6
Au
RL '
rbe
Ri Rb // rbe
RO RC
2-3-7
2.4 静态工作点的稳定
影响 Q的因素:
根据静态工作点(Q)的计算:
I BQ
VCC
U BEQ Rb
ICQ IBQ
2 - 3 - 16
分析电路参数对放大电路Q的影响。 1.Rb对放大电路Q的影响—Rb增大Q沿曲线向下移
—输入负载线斜率减小。
Rb
Q
I BQ
VBB
U BEQ Rb
Q
2 - 3 - 17
Rb对放大电路Q的影响—Rb增大Q沿负载线向下移。
Q
Rb
Q
2 - 3 - 18
2.RC对放大电路Q的影响—RC增大Q沿输出特性曲 线线向左移(负载线斜率变小) 。
2 - 3 - 11
静态工作点的分析(ui=0)——确定Q
1. 输入回路:IBQ和UBEQ的求解 iB
uBE
2 - 3 - 12
VBB iB
Rb
I BQ
Q
uBE VBB iB Rb
输入回路直流负载线方程
2 - 3 - 13
U BEQ VBB
uBE
2. 输出回路:ICQ和UCEQ的求解 iC
相关文档
最新文档