基坑变形监测技术要求与作业方法

合集下载

基坑工程监测技术要求规范

基坑工程监测技术要求规范

基坑工程监测技术要求规范标准实用1总则1.0.1为规范建筑基坑工程监测工作,保证监测质量,为优化设计、指导施工提供可靠依据,确保基坑安全和保护基坑周边环境,做到安全适用、技术先进、经济合理,特制定本规范。

1.0.2本规范适用于建(构)筑物的基坑及周边环境监测。

对于冻土、膨胀土、湿陷性黄土、老粘土等其他特殊岩土和侵蚀性环境的基坑及周边环境监测,尚应结合当地工程经验应用。

1.0.3建筑基坑工程监测应综合考虑基坑工程设计方案、建设场地的工程地质和水文地质条件、周边环境条件、施工方案等因素,制定合理的监测方案,精心组织和实施监测。

1.0.4建筑基坑工程监测除应符合本规范外,尚应符合国家现行有关标准的规定。

2.术语2.0.1建筑基坑building XXX为进行建(构)筑物基础、地下建(构)筑物的施工所开挖的地面以下空间。

2.0.2基坑周边环境surroundings around XXX基坑开挖影响范围内既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。

2.0.3修建基坑工程监测XXX在建筑基坑施工及使用期限内,对建筑基坑及周边环境实施的检查、监控工作。

2.0.4围护墙retaining structure 蒙受坑侧水、土压力及一定规模本空中荷载的壁状结构。

2.0.5支撑bracing由钢、钢筋混凝土等材料组成,用以蒙受围护墙所传递的荷载而设置的基坑内支承构件。

2.0.6锚杆anchor bar一端与挡土墙联结,另一端锚固在土层或岩层中的蒙受挡土墙水、土压力的受拉杆件。

beam设置在围护墙顶部的连梁。

2.0.8监测点monitoring point案牍大全标准实用间接或间接设置在被监测工具上能反映其变化特征的观察点。

2.0.9监测频率frequency of monitoring单位时间内的监测次数。

2.0.10监测报警值alarming XXX为确保基坑工程安全,对监测对象变化所设定的监控值。

《建筑基坑工程监测技术标准》pdf

《建筑基坑工程监测技术标准》pdf

《建筑基坑工程监测技术标准》pdf一、基本规定(一)下列基坑应实施基坑工程监测:1基坑设计安全等级为一、二级的基坑。

2开挖深度大于或等于5m的下列基坑:1)土土质基坑;2)极极软岩基坑、破碎的软岩基坑、极破碎的岩体基坑;3)上部为土体,下部为极软岩、破碎的软岩、极破碎的岩体构成的土岩组合基坑。

3开挖深度小于5m但但现场地质情况和周围环境较复杂的基坑。

(二)基坑工程设计文件应对监测范围、监测项目及测点布置、监测频率和监测预警值等做出规定。

(三)基坑工程施工前,应由建设方委托具备相应能力的第三方对基坑工程实施现场监测。

监测单位应编制监测方案,监测方案应经建设方、设计方等认可,必要时还应与基坑周边环境涉及的有关管理单位协商一致后方可实施。

(四)监测工作步骤宜符合下列规定:1现场踏勘,收集资料;2制定监测方案;3基准点、工作基点、监测点布设与验收,仪器设备校验和元器件标定;4实施现场监测;5监测数据的处理、分析及信息反馈;6提交阶段性监测结果和报告;7现场监测工作结束后,提交完整的监测资料。

(五)监测方案编制前,委托方应提供下列资料:1岩土工程勘察报告;2基坑支护设计文件;3基坑工程施工方案或施工组织设计;4周边环境各监测对象的相关资料;5其他所需资料。

(六)监测单位在现场踏勘、资料收集阶段应包括下列主要工作:1了解建设方和相关单位对监测的要求;2收集并分析岩土工程勘察、水文气象、周边环境、设计、施工等资料;3了解相邻工程的设计和施工情况;4通过现场踏勘,复核相关资料与现场状况的关系,确定拟监测项目现场实施的可行性。

(七)监测方案应包括下列内容:1工程概况;2场地工程地质、水文地质条件及基坑周边环境状况;3监测目的;4编制依据;5监测范围、对象及项目;6基准点、工作基点、监测点的布设要求及测点布置图;7监测方法和精度等级;8监测人员配备和使用的主要仪器设备;9监测期和监测频率;10监测数据处理、分析与信息反馈;11监测预警、异常及危险情况下的监测措施;12质量管理、监测作业安全及其他管理制度。

基坑监测方法

基坑监测方法

基坑监测方法多数情况下,工程变形监测由建设单位委托第三方有资质的单位进行,但在工程施工过程中总承包也需要对工程实施必要的监测,以便于对工程的安全性做出提前预判,防止事故发生。

在施工准备阶段及过程中,即需要提前设置好监测点位,为监测工作做好统筹准备。

开挖深度大于等于5m 或开挖深度小于5m 但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。

一、基坑监测原则变形监测是一项系统工程,是施工管理的重要组成部分,须按照计划进行。

一般情况下,监测工作应遵循以下4 条原则:1、可靠性原则:可靠性原则是监测系统设计中所考虑的最重要的原则。

为了确保其可靠性,必须做到:(1)由具有丰富经验的作业人员,使用满足精度要求的监测仪器,采用先进的监测方法来保证外业采集数据的真实可靠性;(2)基准点、监测点设置应合理,并在监测期间保护好点位标志,使监测工作具有连续性。

2、操作方便性原则:为使监测工作正常进行并满足监测精度的要求,变形监测点在布设时应考虑到水准线路的联测方便,能够节省外业时间、提高点位精度的原则。

3、数据及时性原则:监测数据必须是及时的。

监测数据需在现场及时计算处理,计算有问题应及时复测。

因为施工是一个动态的过程,只有保证及时监测,才能有利于及时发现隐患,及时采取措施。

监测应整理完整的监测记录表、数据报表、形象的图表和曲线,监测结束后及时整理出监测报告。

4、经济合理性原则:监测方案编制时应考虑选用适合于本工程监测作业,并满足监测精度要求的仪器设备。

二、监测方案一般情况下,监测方案应包括下列内容:1、工程概况2、建设场地岩土工程条件及基坑周边环境状况3、监测目的和依据4、监测内容和项目5、基准点、监测点的布设和保护6、监测方法及精度7、监测周期和监测频率8、监测报警及异常情况下的监测措施9、监测数据处理与信息反馈10、监测人员的配备11、监测仪器设备及检定要求12、作业安全及其他管理制度三、监测项目1、基坑工程现场监测点对象应包括:(1)支护结构;(2)地下水状况;(3)基坑底部及周边土体;(4)周边建筑;(5)周边管线及设施;(6)周边重要的道路;(7)其他应监测的对象。

深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。

实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。

在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。

通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。

基于此,本文将对深基坑工程施工变形的监测进行分析。

关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。

确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。

基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。

监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。

基坑监测技术规范及监测方法技术

基坑监测技术规范及监测方法技术
本条是规范适用范围的界定。本规范适用于建(构)筑 物地下工程开挖形成的基坑以及基坑开挖影响范围內的 建(构)筑物及各种设施、管线、道路等监测。
4
【1.0.3】建筑基坑工程监测应综合考虑基坑工程设计方案、 建设场地的岩土工程条件、周边环境条件、施工方案 等因素,制定合理的监测方案,精心组织和实施监测。
18
2 施工工况 (1)开挖后暴露的土质情况与岩土勘察报告有无差异; (2)基坑开挖分段长度及分层厚度是否与设计要求一致,
有无超长、超深开挖; (3)场地地表水、地下水排放状况是否正常,基坑降水、
回灌设施是否运转正常; (4)基坑周围地面堆载情况,有无超堆荷载。
19
3 基坑周边环境 (1)地下管道有无破损、泄露情况; (2)周边建(构)筑物有无裂缝出现; (3)周边道路(地面)有无裂缝、沉陷; (4)邻近基坑及建(构)筑物的施工情况。
24
5.2 基坑及支护结构
【5.2.1】 围护墙或基坑边坡顶部的水平和竖向位移监 测点应沿基坑周边布置,周边中部、阳角处应布置监 测点。监测点水平间距不宜大于20m,每边监测点数目 不宜少于3个。水平和竖向位移监测点宜为共用点,监 测点宜设置在围护墙顶或基坑坡顶上。
➢ 观测点设置在基坑边坡混凝土护顶或围护墙顶(冠 梁)上,有利于观测点的保护和提高观测精度。
33
【5.2.9】围护墙侧向土压力监测点的布置应符合下列要求:
➢ 立柱沉降2~3cm,支撑轴力会增大约1倍,因此对于支 撑体系应加强立柱的位移监测。
➢ 立柱内力截面应选择在轴力较大杆件上受剪力影响小的 部位,因此本条规定当采用应力计和应变计测试时,监 测截面宜选择在坑底以上各层立柱下部的1/3部位。
30
【5.2.6】 锚杆的内力监测点应选择在受力较大且有代 表性的位置,基坑每边中部、阳角处和地质条件复杂 的区段宜布置监测点。每层锚杆的内力监测点数量应 为该层锚杆总的l%~3%,并不应少于3根。各层监测点 位置在竖向上宜保持一致。每根杆体上的测试点宜设 置在锚头附近和受力有代表性的位置。

6基坑监测施工方案

6基坑监测施工方案

6基坑监测施工方案基坑监测在施工过程中是非常重要的一项工作,可以帮助监测基坑周围的土体变形情况,保障基坑施工的安全和稳定。

为了确保基坑监测的有效性和准确性,需要制定详细的监测施工方案。

一、监测设备的选择1.需要选择高质量的基坑监测设备,如倾斜仪、位移仪、桩身位移仪等,以确保监测数据的准确性和实时性。

2.在选择设备时,需要考虑设备的灵敏度、稳定性和耐用性,以保证设备在基坑施工过程中能够持续稳定运行。

3.可以选择具有实时数据传输功能的监测设备,方便监测人员及时获取监测数据并进行分析。

二、监测方案的编制1.制定详细的监测方案,包括监测人员的职责分工、监测设备的布设位置、监测频率、监测数据的处理方式等内容。

2.在制定监测方案时,需要充分考虑基坑周围环境的影响因素,如地下水位、土体性质、周边建筑物等,以确保监测数据的准确性和可靠性。

3.需要定期对监测方案进行评估和调整,根据实际情况及时调整监测方案,以保证监测工作的顺利进行。

三、监测过程的操作1.在监测过程中,需要确保监测设备的准确性和稳定性,及时维护设备,保证设备正常运行。

2.监测人员需要按照监测方案进行操作,确保监测数据的准确性和一致性。

3.如发现监测数据异常,需要及时进行分析处理,并进行必要的调整和修正。

四、监测数据的处理与分析1.监测数据需要及时传输和存储,确保数据安全和完整性。

2.监测数据的处理需要采用专业的数据处理软件,进行数据分析和比较,得出监测结果。

3.需要定期对监测数据进行分析报告,及时汇总监测结果并向相关部门汇报。

五、监测结果的应用1.监测结果可以为基坑施工提供参考和指导,及时发现基坑变形情况,采取相应的措施保障基坑施工的安全和稳定。

2.监测结果也可以为基坑周边建筑物提供参考,及时发现地基沉降情况,采取相应的补救措施。

3.监测结果可以为基坑施工的后续工程提供参考和指导,保证后续工程的顺利进行。

六、监测工作的总结与改进1.在监测工作结束后,需要对监测工作进行总结和评估,总结经验教训,发现问题并提出改进意见。

基坑监测方案

基坑监测方案

基坑监测方案一、监测目的1、为保证基坑安全,及时掌握基坑稳定及土方开挖后基坑边坡的变形情况,基坑支护需进行信息化施工,必须进行支护结构的变形监测。

2、根据监测结果,发现可能发生危险的先兆,判断工程的安全性,防止工程破坏事故和环境事故的发生,采取必要的工程补救措施。

3、以施工监测的结果指导现场施工,进行信息化反馈优化设计。

二、监测项目三、基坑概况结合建设单位分期开挖施工计划,基坑南侧需配合轨道交通地铁配套施工,由于目前地铁配套施工方案尚未确定,故本次暂不考虑基坑南侧的基坑支护设计,优先进行基坑北侧、东侧和西侧的基坑支护设计。

基坑东西长约235m,南北宽约32.0m~109.1m,周长约590m。

基坑开挖深度14.6m~18.6m,基坑采用桩锚支护。

基坑支护结构安全等级为一级。

基坑设计时限18个月。

四、周边条件基坑北侧坡顶距离红线最近处 6.9m,红线范围内均为施工硬化道路,红线外为高层混凝土框架结构,基础形式为桩基础,小区建筑距红线最近距离15.6m。

基坑东侧坡顶距离红线最近处30.8m,基坑坡顶以外2~12m为施工硬化道路,硬化道路以东至红线为实验室、门卫室和消防水箱等临时设施。

红线外为纬十二路。

基坑西侧坡顶距离红线最近处16.3m,基坑坡顶以外1~8m为施工硬化道路,硬化道路以西为项目部,项目部宽6m,项目部以西为用地红线,红线外为纬十一路。

五、控制网的布设与施测监测控制网以假定坐标系统为基准建立。

控制点由基准点和工作基点组成,为了提高监测效率,在基坑周边2倍开挖深度外设置工作基点,选择一个基准点为监测起算点,联测工作基点组成监测控制网闭合线路,工作基点同基准点组成监测控制网,工作基点同监测点组成监测网。

1、水平位移监测控制网的布设与施测(1)水平位移监测控制网的布设工作基准点采用强制对中的水泥观测墩,地下部分埋深 1.2m,地面部分高1.2m。

工作基点埋设时应注意保证与测点间的通视,保证强制对中标志顶面的水平,工作基点埋设完毕后,并作明显警示标记及点号。

基坑变形监测测技术方案

基坑变形监测测技术方案

变形监测技术方案批准:审核:编制:目录一.工程概述1二.作业目的1三.作业依据及规范2四.工作内容2五.基坑及周边监测方案25.1 基准点的布设25.2护坡桩顶水平位移观测点的埋设25。

3护坡桩支护结构水平位移观测点的埋设35.4 变形监测点保护及意外情况处理45.5 基准点、监测点的观测方法及精度要求55.6 观测设备和人员投入55。

7 观测周期65。

8 成果处理6六.提交成果资料66.1 提交阶段成果76。

2 提交沉降观测技术报告书7七.补充说明7八.质量保证措施8九.附件8变形监测技术方案一.工程概述受..。

..的委托,。

.。

拟承担。

.。

.变形监测任务。

本项目位于。

....。

基坑深16-18米,南北长近100米,东西宽约60米。

开挖深度较大,周边不明管线复杂,采用—2米以下桩锚支护(2道锚杆),-2米以上组合柱砖墙支护形式。

二.作业目的本工程基坑挖掘较深,安全问题应引起高度的重视,通过监测及时分析反馈监测结果,掌握基坑围护结构及周边环境的情况,做到心中有数,确保基坑及周边环境的安全。

在基坑工程施工及地下结构施工期间,应对基坑围护结构受力和变形、周边重要道路等保护对象进行系统的监测,为避免基坑工程施工对工程周边环境及基坑围护本身的危害,采用先进、可靠的仪器及有效的监测方法,对基坑围护体系和周围环境的变形情况进行监控,通过监测,可以及时掌握基坑开挖及施工过程中围护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周围环境的安全与稳定提供监控数据,防患于未然,通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,为工程动态化设计和信息化施工提供所需的数据,从而使工程处于受控状态,确保基坑及周边环境的安全。

三.作业依据及规范1、《建筑变形测量规范》(JGJ8-2007);2、《工程测量规范》(GB50026—2007);3、本工程设计图纸及施工方案。

四.工作内容1、测定护坡桩顶部水平位移,周边道路的沉降量、计算沉降差及沉降速率。

基坑监测方法

基坑监测方法

基坑监测方法 Prepared on 22 November 2020基坑监测方法多数情况下,工程变形监测由建设单位委托第三方有资质的单位进行,但在工程施工过程中总承包也需要对工程实施必要的监测,以便于对工程的安全性做出提前预判,防止事故发生。

在施工准备阶段及过程中,即需要提前设置好监测点位,为监测工作做好统筹准备。

开挖深度大于等于5m 或开挖深度小于5m 但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。

一、基坑监测原则变形监测是一项系统工程,是施工管理的重要组成部分,须按照计划进行。

一般情况下,监测工作应遵循以下4 条原则:1、可靠性原则:可靠性原则是监测系统设计中所考虑的最重要的原则。

为了确保其可靠性,必须做到:(1)由具有丰富经验的作业人员,使用满足精度要求的监测仪器,采用先进的监测方法来保证外业采集数据的真实可靠性;(2)基准点、监测点设置应合理,并在监测期间保护好点位标志,使监测工作具有连续性。

2、操作方便性原则:为使监测工作正常进行并满足监测精度的要求,变形监测点在布设时应考虑到水准线路的联测方便,能够节省外业时间、提高点位精度的原则。

3、数据及时性原则:监测数据必须是及时的。

监测数据需在现场及时计算处理,计算有问题应及时复测。

因为施工是一个动态的过程,只有保证及时监测,才能有利于及时发现隐患,及时采取措施。

监测应整理完整的监测记录表、数据报表、形象的图表和曲线,监测结束后及时整理出监测报告。

4、经济合理性原则:监测方案编制时应考虑选用适合于本工程监测作业,并满足监测精度要求的仪器设备。

二、监测方案一般情况下,监测方案应包括下列内容:1、工程概况2、建设场地岩土工程条件及基坑周边环境状况3、监测目的和依据4、监测内容和项目5、基准点、监测点的布设和保护6、监测方法及精度7、监测周期和监测频率8、监测报警及异常情况下的监测措施9、监测数据处理与信息反馈10、监测人员的配备11、监测仪器设备及检定要求12、作业安全及其他管理制度三、监测项目1、基坑工程现场监测点对象应包括:(1)支护结构;(2)地下水状况;(3)基坑底部及周边土体;(4)周边建筑;(5)周边管线及设施;(6)周边重要的道路;(7)其他应监测的对象。

深基坑工程施工监控量测要求

深基坑工程施工监控量测要求

深基坑工程施工监控量测要求1、项目监测管理项目部检测数据分析流程:测量主管拿到监测方每日上报的监测日报,对监测结果进行筛选、分析;工程部部长对监测数据提出处理意见;项目总工对监测结果进行审批,得出结论,并将监测报告结论传达到项目经理、副经理、安全总监,指导施工。

2、监测项目为了及时收集、反馈和分析周围环境及围护结构在施工中的变形信息,实现信息化施工,确保施工安全。

根据施工现场环境条件、围护结构本工程基坑变形控制保护等级二级的要求,确定本工程设置以下几方面监测项目,各种观测数据需相互印证,确保监测结果的可靠性,监测项目详见下表。

监测项目一览表3、监测方案3.1、围护结构水平位移监测本项监测是深入到围护体内部,用测斜仪自下而上测量预先埋设在围护体内的测斜管的变形情况,以了解基坑开挖过程中,作为围护体的围护桩在深度方向上的水平位移情况。

实测时首先将测头导轮高轮向基坑内侧方向放入测斜管,使测头上的导向轮卡在测斜管内壁的导槽中,沿槽划至管底以上50cm (防止掉入异物时测头无法到达起测位置而影响数据连续观测),测读时由管底开始,利用测读仪每提升0.5 m读数一次,直至管口。

拿出侧头后旋转180度重测一次,两次测量的深度必须一致。

由管底到管口的各段位移累计相加,即为各测点的实际位移。

性能指标:传感灵敏度0.04‰、精度±4mm/15m。

3.2、基坑周边建筑物沉降、地下管线、道路沉降监测(1)基坑周边建筑物沉降监测地下结构的施工会引起周围地表的下沉,从而导致地面建筑物的沉降。

这种沉降一般都是不均匀的,因此将造成地面建筑物的倾斜,甚至开裂破坏,应进行严格控制。

设点前对周边所有需进行监测保护的建筑物进行拍照存档。

建筑物沉降监测点一般均匀布设在施工场地周围的建筑物外墙上主要在大的边角等易变形位置设点。

建筑物沉降监测点间距一般为10~15m。

离基坑较近的建筑物和建筑物近基坑侧在中部适当加密监测点,测点埋设如下图所示或在建筑物外墙上直接打入射钉作为测量标志。

深基坑施工监测技术

深基坑施工监测技术

一、深基坑施工监测技术(一)技术内容基坑工程监测是指通过对基坑控制参数进行一定期间内的量值及变化进行监测,并根据监测数据评估判断或预测基坑安全状态,为安全控制措施提供技术依据。

监测内容一般包括支护结构的内力和位移、基坑底部及周边土体的位移、周边建筑物的位移、周边管线和设施的位移及地下水状况等。

监测系统一般包括传感器、数据采集传输系统、数据库、状态分析评估与预测软件等。

通过在工程支护(围护)结构上布设位移监测点,进行定期或实时监测,根据变形值判定是否需要采取相应措施,消除影响,避免进一步变形发生的危险。

监测方法可分为基准线法和坐标法。

在水平位移监测点旁布设围护结构的沉降监测点,布点要求间隔15~25m 布设一个监测点,利用高程监测的方法对围护结构顶部进行沉降监测。

基坑围护结构沿垂直方向水平位移的监测,用测斜仪由下至上测量预先埋设在墙体内测斜管的变形情况,以了解基坑开挖施工过程中基坑支护结构在各个深度上的水平位移情况,用以了解和推算围护体变形。

临近建筑物沉降监测,利用高程监测的方法来了解临近建筑物的沉降,从而了解其是否会引起不均匀沉降。

在施工现场沉降影响范围之外,布设 3 个基准点为该工程临近建筑物沉降监测的基准点。

临近建筑物沉降监测的监测方法、使用仪器、监测精度同建筑物主体沉降监测。

(二)技术指标(1)变形报警值。

水平位移报警值,按一级安全等级考虑,最大水平位移≤0.14%H;按二级安全等级考虑,最大水平位移≤0.3%H。

(2)地面沉降量报警值。

按一级安全等级考虑,最大沉降量≤0.1%H;按二级安全等级考虑,最大沉降量≤0.2%H。

(3)监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。

若有监测项目的数据超过报警指标,应从累计变化量与日变量两方面考虑。

(三)适用范围用于深基坑钻、挖孔灌注桩、地连墙、重力坝等围(支)护结构的变形监测。

(四)工程案例深圳中航广场工程、上海万达商业中心等。

变形监测作业指导书

变形监测作业指导书

12节变形监测作业指导书1 目的为了规范我院变形监测作业方法,提供成果资料的格式,特制订本作业指导书;2 适用范围我院承接的所有构筑物如房屋、地下室、道路、桥梁等变形测量工作;3 职责本作业指导书由生产管理室负责业务下达,由分队负责具体作业实施和作业过程检查,质检办负责审核,总工办负责审定,本作业指导书最终解释权归总工办;4 措施与方法接收任务4.1.1由院生产管理室将任务下达到作业队、室,并开具测绘项目生产过程管理表;由业务承接人员在测绘项目生产过程管理表上简要写出项目的技术要求;4.1.2作业队、室接收任务后,应按照测绘项目负责人制度的规定确定该项目的项目负责人;生产准备4.2.1项目负责人应根据任务书的要求,组织好人员,并进行分工,安排工作实施计划;4.2.2项目负责人应就技术设计书中的技术要求及作业过程中应注意的问题向作业人员进行技术交底;作业人员应认真学习相关的技术标准和管理文件;4.2.3根据项目任务书的要求,收集有关资料如构筑物的设计图纸、地质勘察报告等,变形监测的相关仪器等,并按JGJ/T-97国家建筑变形测量规程,CJJB8-99城市测量规范对仪器设备进行常规检定即水准仪的I角检验、全站仪的2C差检验、测斜仪正反读数稳定性检查、准直仪的I角检验;生产作业变形测量是对工程构筑物在施工和运营期间的形变进行监视测量,我院目前主要承担构构物沉降监测,位移监测,地下室基坑开挖安全监测,以及地形沉降等变形测量工作;以下主要就变形测量的主要作业环节制定作业技术要求,本作业技术要求未提及的其他技术规定应依照建筑变形测量规程有关条款执行;4.3.1监测前准备工作4.3.1.1工地现场踏勘;4.3.1.2埋设基准点,工作基点和变形观测点;4.3.1.3确定基准点稳定性监测和变形观测方案,沉降观测应在现场选定观测线路并做好标记;4.3.1.4绘制基准点、工作基点和变形观测点点位布置图,观测线路图;4.3.1.5编写技术设计书;a观测周期小于五次或工程产值小于1万元的小型项目可以不编写技术设计书,但应编写技术说明;院管工程技术设计书由生产部门编写,质检办审核,总工办审定;b技术设计书要根据测量合同编写,主要内容应包括基准点的设置方案、观测方法与可靠性分析,变形观测点的布设方案与施测方法,观测周期与观测精度等级,数据处理方法和各项限;c 观测周期可根据差指标,拟上交成果目录等;技术设计完成后应交由总工室审核甲方要求或根据预估的变形速率和测量精度来确定;按预估变化率和测量精度等级确定变形观测周期时,可按T>2M/V 计算T :变形观测周期,M :变形量观测中误差,V :预估的变形速率;d 观测精度等级可根据甲方要求或根据所监测工程的重要性来确定,也可以根据变形建筑物允许变形量由M=S/20M :变形观测点观测中误差,S :变形建筑物允许变形量,计算变形观测点测量中误差,再根据观测方案和观测线路,按Ф=M/Q 221Q 为最弱观测点权倒数,Ф为单位权观测中误差,计算单位权观测中误差,现根据建筑变形规程表2.0.5套用相应的测量精度等级;4.3.2 基准点设置与可靠性分析4.3.2.1 沉降观测沉降观测基准点应设置在变形影响范围之外,每个测区至少应设置三个基准点,三个基准点间应单独布设水准线路构成监测网,观测精度应较变形观测精度高一个级别,若条件许可,应尽量将基准点设置在一个测站可以同时观测到的位置直接测定高差,通过计算高差观测不符值或往返测高差不符值按M=][41nN ∆∆±N:测段数,△:高差不符值,n 各测段平均测站数,计算每站高差测定中误差,若相邻两周期基准点间差变化量大于n 22Mn 为测站数,可以认为基准点不稳定,应重新设置基准点;4.3.2.2 位移监测位移监测基准点也应布设在变形影响范围之外,重点工程以及测区面积较大时,应布设独立的基准点稳定性监测网;观测精度应较变形测量精度高一个等级;小型工程可不布设独立的基准点稳定性监测网,但每测区至少应设置三个以上基准点和检核点之间的角度和距离,观测精度也应较变形观测精度高一个等级;根据:M=KV/m K=)1(10253-n n V:各方向观测值与其均值之差,M:方向数,n:测回数计算n 个测回角度观测中误差;根据MD=]2[n∆∆± n:测距边数,△往返测较差或测回间较差计算测距中误差;若两周期基准点与检核点间角度或距离变化量大于22倍的M 或MD,可以认为基准点不稳定,应采取措施重新设置基准点;4.3.2.3 基准点联测每观测两次基准点联测一次,若观测时发现监测点有异常,应及时联测基准点;观测时间超过一年的变形监测工程,变形观测点应与城市等级控制点联测,联测精度不应低于基准点检测精度;其他变形监测工程若条件许可,也应尽量与城市控制点联测;作业实施依据变形监测作业实施应严格按照建筑变形测量规范表2.0.5中的等级和精度以及相应的技术要求实施;观测成果的验算4.5.1沉降观测成果验算4.5.1.1根据水准网环线闭合差按MW =][1nWWN±N:水准环数,n和环平均站数,W:水准环线闭合差计算的每站高差测量定中误差不得大于所选定测量等级的精度要求;4.5.1.2根据测段往返测高差不符值,按M△=][41nN∆∆±N:为测段数,n为各测段平均测站数,△为测段高差不符值,计算的每站高差测定中误差不得大于所选定的测量等级的精度要求;4.5.1.3测段往返测高差不符值,附合或闭合线距闭合差均不应超过±2MO MO为所选用等级的每站高差测定中误差,n为测站数;4.5.2位移观测成果验算根据平差结果计算的变形观测点位测定中误差或根据角度和边长观测不符值按变形测量规范7.2.2-1、、、、、、式计算角度和边长测定中误差,再根据边长和角度测定中误差计算变形观测点点位测定中误差,计算的点位测定中误差不得大于选定的变形测量等级所规定的观测点点位测定中误差;成果资料4.6.1沉降观测沉降观测成果资料主要指建构物沉降观测资料,其他如基坑回弹观测,建筑场地观测等成果提交详见变形测量规范5.2.8、、条;建筑物沉降观测结束后,应提交以下成果资料:4.6.1.1设计书或技术说明;4.6.1.2沉降观测成果表每期观测提供;4.6.1.3沉降观测点点位与沉降量展开图每期观测提供;4.6.1.4基准点检测及稳定性分析报告每期观测提供;4.6.1.5沉降观测成果验算报告每期观测提供;4.6.1.6沉降观测点、基准点点位分布图以1:500地形图作基础图,每期观测提供;4.6.1.7水准线路图;4.6.1.8观测手簿;4.6.1.9技术总结与成果分析报告;4.6.1.10观测过程中若发现异常变化应及时通知甲方;4.6.2位移观测位移观测成果资料主要指建构物水平位移观测、倾斜观测、裂缝观测等成果资料,其他如挠度、风振、滑坡等观测资料提交详见变形测量规范;4.6.2.1构筑物位移观测结束后应提交以下成果:a技术设计书或技术说明;b水平位移观测点,基准点点位布置图以1:500地形图作基础图,每期观测结束后均应提供;c基准点稳定性分析报告;d观测成果表包括位移量、位移方向、观测时间、累计位移量,每期观测提供;e移矢量图每期观测后提供;f观测成果验算报告;g技术总结及成果分析资料;4.6.2.2建筑物裂缝观测结束后应提交以下资料:a倾斜观测点点位布置图;b观测成果表包括观测时间、水平位移分量、倾斜量和倾斜方向;c倾斜量矢量图;d观测手簿;e主体倾斜曲线;f测量说明与观测成果分析;4.6.2.3建筑物地下室基坑开挖安全监测:a技术设计书;b基坑水平位移监测基准点、变形观测点、测斜管点位布置图以1:500地形图为基础图,每期观测均应提供;c基坑周边建筑及地面沉降观测点,基准点布置图以1:500地形图为基础图,每期观测均应提供;d基准点稳定性分析报告每期观测均应提供;e外业观测手簿;f基坑土体侧向位移图每期观测应提供;g沉降观测、位移观测成果表每期观测提供;h技术总结与观测成果分析;过程检查整个作业过程由作业队、室检查人员必须按照变形测量质量评分标准进行评分;检查无误且在成果资料的相应栏目内签名后方可提交下道工序上交部门质检;否则应提出返工意见,检查结果填写在项目跟踪单上的相应栏目内作为质量评定记录予以保留;踪单上的相应栏目内作为质量评定记录予以保留;最终检查最终检查由院质检办负责实施,检查人员必须按照GB12898-91国家三、四等水准测量规范、CJJ8-99城市测量规范对数据记录、计算100%的内业检查;外业检查可根据实际情况进行抽查;检查无误且在成果资料的相应栏目内签名后方可提交;否则应提出返工意见;检查结果填写在项目跟踪单上的相应栏目内作为质量评定记录予以保留,必要时还需编写产品质量检查报告;后附范例一、闽江二桥桥面沉降监测至1、概述福州市六一路闽江二桥于1969年12月5日正式开工,1970年6月20日建成,1970年6月30日通车;在福州市鳌峰大桥建成1993年前的23年间一直是福州市区唯一能通行重载的跨闽江桥梁;1994年随着过江交通量剧增,福州市政府投资5800万元对旧桥进行了加宽;加宽后的桥面宽度由原来的18米改为米,净宽为14米机动车道+2×米非机动车道;该桥全长米;旧桥为预应力钢筋混凝土梁,加宽部分为钢梁 ,两者等高;桥跨布置均为:+5×50++米;该桥荷载等级为汽车-26级设计,为1967年版旧标准,拖车-100级检算;桥上设计车速50KM/H,人行道人群设计荷载4KN/M2 ;该桥经过近30年运营,发现六个水中承台均有不同程度的侵蚀现象,其混凝土有剥落破损、孔洞和露筋等问题;为了确保闽江二桥的正常运营及交通安全,我院受福州市政府及市城乡建设发展总公司委托,从2001年5月至2003年2月对闽江二桥桥面进行沉降监测每天上午6点至7点监测一次,共计进行了1122次观测;2、监测方案设计水准点水准点是沉降观测点的基准点;建筑物沉降均根据它来确定,因此它的构造和埋设要保证稳定与可靠,在二桥桥南桥北附近稳固、不受影响的位置埋设两个沉降观测基准点M、N 两点;每次观测联测M、N两点,另外又在桥南选定一个固定点A点,检验基准点的稳定性与可靠性;沉降观测点沉降点的数量和位置全面反映大桥沉降情况,它与大桥荷载、基础形式和地质条件等有关;应市城乡建设总公司要求,经协商大桥桥面共布32个沉降监测点,监测点布置在桥墩位处桥面上,每个桥墩面上布置四点,桥北与江滨路交界起点处布设四点;曲线图观测值曲线图如图一:图1累计下沉量与时间关系曲线图如图二:图2从图一中可以看出:每个月份的观测成果,呈现在一定区间内的上下波动曲线;从图二中可以看出:累计沉降量曲线走势带有一定规律性,即每个月的农历初一、十五的沉降变化幅度最大;闽江二桥变形监测,为在此期间二桥的安全营运、福州市社会经济的正常发展、人民生命财产的安全,提供了坚实可靠的保障;技术人员在此期间,风雨无阻、没有节假日,付出了艰辛的劳动;二、马尾青洲大桥施工变形监测2002、04、17至10、271、工地位置与监测目的马尾青洲大桥北起马尾开发区南至长乐,是罗长高速公路跨闽江的特大双塔叠合梁斜拉桥;为保证安全施工,提供及时、可靠的反馈信息,我院受香港建设公司委托对青洲大桥最后施工阶段进行监测;2、监测项目1桥面线形标高测量2主桥钢架偏离轴线测量3换索附近桥面垂直变形监测4沥青施工标高控制测量5主塔偏位监测3、监测方案设计桥面线形标高测量、沉降监测、沥青施工标高控制测量1基准点为了确保各次测量基准点的稳定、可靠,在2、3主塔上不受工地影响的位置各埋设一个基准点点位和高程均由甲方提供;2观测点各个项目的测量均按照香港建设总公司要求,在桥面上部设观测标;主桥钢架偏离轴线测量在2、3主塔的中心设站,定出主桥的中心线,再定出主桥上每个钢架的中心,每个钢架的中心到主桥的中心线距离,即为该钢架偏离主桥中心的距离;主塔偏位监测1基准点大桥施工控制网点DQ13和DQ15由甲方提供;2观测点大桥主塔顶端中心点标志为塔顶西北角3观测方法在基准点DQ13和DQ15上设站交会出主塔顶端中心点标志为塔顶西北角坐标4、监测内容桥面线形标高测量桥面观测点由甲方布设提供,施工过程中观测点变动,各观测点的引测杆高由甲方提供;4月17日为换索前测量,5月30日为换索后测量,10月24日为沥青施工完后测量;主桥钢架偏离轴线测量在2、3主塔的中心设站,定出主桥的中心线,再定出主桥上每个钢架的中心,每个钢架的中心到主桥的中心线距离,即为该钢架偏离主桥中心的距离;测量情况详见成果表;换索附近桥面沉降观测换索前后监测两次,监测情况详见施工安全监测报表;沥青施工标高控制测量定出主桥的中心线;测出四个里程K9+102、K9+144、K10+252、K10+304;在这四个里程横断面上各定出四点,共十六个观测点;由基准点引测这十六个观测点高程,各点高程值和点位略图详见报表;主塔偏位监测在基准点DQ13和DQ15上设站交会出主塔顶标志点标志为塔顶西北角坐标分别为2X=米,Y=米、3X=米,Y=米,与其理论坐标2X=米,Y=米、3X=米,Y=米进行比较,得出2、3分别往北方向、南方向偏了厘米、厘米详见略图;另注:2、3标志点的理论坐标由香港建设公司提供;福州市勘测院二00二年十一月二十七日三、福清新世纪国际商厦基坑变形监测1、工地概况与监测目的••••福清新世纪国际商厦位于福清市一拂路与田乾路交叉口西北角,紧邻工地西侧的是房管局宿舍楼共八层,北侧毗邻城关幼儿园教学大楼;基坑支护采用喷锚网与前置木桩,高压旋喷桩联合支护,地下室层数为一层,原有场地标高约为至+1.40m基坑底面开挖至-5.30m,实际挖深约为5.20m至6.70m;在深基坑开挖期间,由于基坑内土方开挖,工地四周的土体势必往基坑方向倾斜,直接影响周边建筑物的安全,为科学准确地确定周边建筑物、挡土结构、周围土体变形情况,确保周边住户和基坑施工的安全并提供及时、可靠的反馈信息,我院受福清新世纪房地产有限公司委托,从2001年02月09日至对福清新世纪国际商厦基坑施工期间进行安全监测;2、监测项目基坑工地西侧、西北侧建筑物和地面沉降观测基坑工地东北侧建筑物沉降观测喷锚网挡土结构顶部水平位移观测七二十一支护体变形测斜四、宁德国税培训大厦主楼、裙楼施工变形监测1、工地概况与监测目的宁德国税培训大楼位于古西路和104国道交叉口西南角,主楼十七层、裙楼五层,属框架结构;紧邻工地西侧的是三幢国税局宿舍楼每幢均为七层楼;西侧基坑支护采用锚杆喷锚网支护,东、南、北侧采用土钉墙围护,地下室层数为一层,基坑底面开挖至±下米;在深基坑开挖期间,由于基坑内土方开挖,工地四周的土体势必往基坑方向倾斜,直接影响周边建筑物的安全,为科学准确地确定周边建筑物、挡土结构、周围土体变形情况,确保周边住户和基坑施工的安全并提供及时、可靠的反馈信息,我院受宁德国税局委托,自2001年08月27日至2003年10月,对国税培训大楼在基坑施工期间进行安全监测;2、监测项目基坑工地西侧建筑物和地面沉降观测基坑挡土结构顶部水平位移观测基坑工地西侧三幢房子倾斜观测西侧支护体变形测斜主楼、裙楼施工沉降监测主楼电梯井道垂直度检测五、福州中城广场基坑开挖安全监测1、工地位置与监测目的福州中城广场工地位于八一七中路东侧,紧邻工地南侧的是省工会宿舍楼共六层、省电子大楼共八层和省电子大楼招待所共八层,北向靠近工地的是尚友礼堂;地下室三层、两道支撑,开挖深度达十二米,在深基坑开挖施工期间,由于基坑内土方开挖,工地四周的围护桩势必往基坑方向位移,直接影响四幢楼和围护桩的安全,为科学准确地确定四幢楼和工地四周围护桩倾斜变形情况,确保施工安全并提供及时可靠的反馈信息,我院受福建中城房地产有限公司委托,在基坑开挖施工期间对四幢楼、工地四周围护桩和围护圈梁进行安全变形监测;2、监测项目省工会宿舍楼沉降观测尚友礼堂沉降观测省电子大楼沉降监测省电子大楼招待所沉降监测省工会宿舍楼倾斜监测省电子大楼倾斜监测电子大楼招待所倾斜监测围护桩的内部测斜圈梁围护的顶部水平位移监测围护桩圈梁沉降观测3、监测方案设计沉降监测1基准点基准点是沉降观测点的基准;建筑物沉降均根据它来确定,因此它的构造和埋设必须保证稳定、可靠及长期保存;为此,•在工地附近稳固且不受工地施工影响的位置埋设沉降观测基准点A、B、C省工会宿舍楼附近和D、E、F尚友礼堂附近;采用独立高程系,首次观测对各基准点进行联测,并计算出各基准点高程;在往后的观测中,定期联测基准点,检验其稳定性;2沉降观测点••• 沉降观测点的数量和位置全面反应楼房沉降情况,它与楼房基础形式、地质条件和工地施工进度等因素有关;用钻孔把螺丝固定在楼房墙上相应位置作观测点用;•倾斜监测方法1省工会楼倾斜监测由于受周围场地限制,在如附图三所示的固定点M、N设站,瞄准目标G、H,用视准轴法进行投影量取;从第二十二次观测时,采用交会坐标法;观测结果见倾斜量观测表;2省电子大楼倾斜监测由于受周围场地限制,在如附图五所示的固定点M0、N0设站,瞄准目标GO、H0,用视准轴法进行投影量取;从第七次观测时,采用交会坐标法;倾斜监测观测结果见倾斜量观测表;3省电子大楼招待所倾斜监测采用交会坐标法,如附图七所示;倾斜监测监测结果见倾斜量观测表;围护桩的内部测斜在围护桩四周适当的位置埋设八根测斜管如附图所示,应用航天工业部测斜仪CX3,根据基坑开挖进度,及时监测;测斜时每隔米测一个数据,每次观测数据都相对首次观测数据进行比较;圈梁围护的顶部水平位移在远离工地稳固地方布设四个基准点JD、JD2、JD3、JD4并相互联测,采用独立坐标系统;为了作业方便,在工地周围合适地方布设四个工作基点,分别是、;工作基点与基准点联测,以检核工作基点稳定性;在圈梁四周布设八个观测点如附图所示;在工作基点上设站,采用小角观测法来观测各个相应的观测点平面变化情况,同时辅以坐标法,以便在工作基点发生变化时做出相应的改正;。

变形观测技术方案

变形观测技术方案

xxx工程沉降观测及基坑支护体系变形观测技术方案一、工程概况:xxx工程,位于。

拟建工程基坑土方开挖深度约7米。

基坑支护结构为密排钢筋砼灌注桩、水平钢筋混凝土内支撑梁、水泥搅拌桩止水帷幕止水。

二、监测意义:在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和道路动载的作用,会产生比较明显的变形,如果超过一定范围,甚至会引起周围道路和建筑物的破坏。

因此,应配备高精度的施工监测队伍,及时提供变形数据,指导施工的顺利进行,保证施工的安全。

天津市地质条件较差,基本上属软土地基,从已竣工和在建的工程来看,因沉降变形(尤其是不均匀沉降变形)影响工程质量及安全的事故时有发生。

因此,在施工过程中进行沉降观测,及时掌握工程整体沉降量和沉降趋势,从而保证建筑工程的施工质量和施工安全显得尤为重要。

三、监测内容:1、周边环境监测:A、现场南侧碱渣管线及西侧市政道路沉降监测B、地下水位监测2、围护结构监测A、支护桩桩身位移(测斜)监测B、支护桩顶部水平位移监测3、支撑体系监测A、水平支撑位移监测B、水平支撑挠度监测C、支撑轴力监测4、沉降监测四、监测实施方案:1、周边环境监测:A、基坑外碱渣管线沉降监测对临近基坑的南侧碱渣管线及西侧市政道路进行沉降变形监测,每隔15米布设一个沉降监测点。

监测采用精密水准测量,其基本思想为:在施工影响区域外布设3个基准点,基准点必须牢固稳定,且构成一个基准网,通过对基准网定期进行一等水准连测,可得知各基准点的稳定情况,从而对不稳定的基准点剔除或进行修正。

每次监测作业时,通过精密水准测量将基准点的高程采用闭合水准测量引测到各监测点上,从而得到各监测点的绝对高程,根据监测点两次所测得高程之差即可得知监测点在这两次期间的沉降量。

监测点监测过程中的限差要求、测量步骤、手簿记录和计算均按照国家二等水准测量规范的规定进行。

监测采用仪器为Topcon自动安平水准仪,其高程测量误差为±0.4mm/km,与之配套的水准尺为INVAR合金带精密水准尺,其线膨胀系数为1.25×10-6/℃。

建筑基坑工程监测技术规范标准

建筑基坑工程监测技术规范标准

4监测项目4.1一般规定4.1.1基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法。

4.1.2基坑工程现场监测的对象应包括:1支护构造。

2地下水状况。

3基坑底部及周边土体。

4周边建筑。

5周边管线及设备。

6周边重要的道路。

7其他应监测的对象。

4.1.3基坑工程的监测工程应与基坑工程设计、施工方案相匹配。

应针对监测对象的关键部位,做到重点观测、工程配套并形成有效的、完整的监测系统。

4.2仪器监测4.2.1基坑工程仪器监测工程应根据表4.2.1进展选择。

表 4.2.1建筑基坑工程仪器监测工程表基坑类别一级二级三级监测工程围护墙〔边坡〕顶部水平位移应测应测应测围护墙〔边坡〕顶部竖向位移应测应测应测续表4.2.1基坑类别一级二级三级监测工程深层水平位移应测应测宜测立柱竖向位移应测宜测宜测围护墙内力宜测可测可测支撑内力应测宜测可测立柱内力可测可测可测锚杆内力应测宜测可测土钉内力宜测可测可测坑底隆起〔回弹〕宜测可测可测围护墙侧向土压力宜测可测可测孔隙水压力宜测可测可测地下水位应测应测应测土体分层竖向位移宜测可测可测周边地表竖向位移应测应测宜测竖向位移应测应测应测周边建筑倾斜应测宜测可测水平位移应测宜测可测周边建筑、地表裂缝应测应测应测周边管线变形应测应测应测注:基坑类别的划分按照现行国家标准?建筑地基根底工程施工质量验收标准?GB50202-2002执行。

4.2.2当基坑周边有地铁、隧道或其他对位移有特殊要求的建筑及设施时,监测工程应与有关管理部门或单位协商确定。

4.3巡视检查4.3.1基坑工程施工和使用期内,每天均应由专人进展巡视检查。

4.3.2基坑工程巡视检查宜包括以下内容:1支护构造:1〕支护构造成型质量;2〕冠梁、围檩、支撑有无裂缝出现;3〕支撑、立柱有无较大变形;4〕止水帷幕有无开裂、渗漏;5〕墙后土体有无裂缝、沉陷及滑移;6〕基坑有无涌土、流沙、管涌。

2施工工况:1〕开挖后暴露的土质情况与岩土勘察报告有无差异;2〕基坑开挖分段长度、分层厚度及支锚设置是否与设计要求一致;3〕场地地表水、地下水放状况是否正常,基坑降水、回灌设施是否运转正常;4〕基坑周边地面有无超载。

基坑变形监测技术方案

基坑变形监测技术方案

XXXXXXXXXXXXXXX项目工艺厂工程工艺厂一标段基坑监测技术方案XXXXXXXXXXXXX有限公司2022年11月批准人: 审定人: 审核人: 项目负责人:技术负责人:XXXXXXXXX项目工艺厂工程工艺厂一标段基坑监测技术方案目录1、综合说明 (1)1.1工程概况 (1)1.2工程地质情况 (1)1.3基坑支护形式 (2)2、监测方案编制依据 (2)3、主要仪器设备及人员配置 (3)3.1仪器设备 (3)3.2人员配置 (3)4、监测目的 (4)5、监测要求 (4)5.1监测内容 (4)5.2监测频率 (5)5.3监测报警值 (6)5.4监测点布设 (6)6、主要技术指标要求 (6)7、基准网建立 (9)7.1原有测量资料 (9)7.2基准网建立 (9)8、监测方法 (10)8.1基坑水平位移监测 (10)8.2基坑竖向位移监测 (11)8.3巡视检查 (11)9、质量控制与检查 (11)10、技术保障 (12)11、监测资料要求 (12)12、监测数据处理及信息反馈 (12)13、安全文明生产 (13)14、质量/环境/职业健康安全管理体系 (13)14.1质量管理体系 (13)14.2 环境管理体系 (14)14.3 职业健康安全管理体系 (14)15、建议与说明 (15)16、提交成果 (16)16.1提交甲方资料 (16)16.2本公司存档资料 (16)17、附件 (16)1、综合说明1.1工程概况XXXXXXXXXXXXXX项目工艺厂工程位于XX省XX市XX县XXX开发区,本工程包括工艺海水管道管沟、高压泵基础等深基坑。

工艺海水管道管沟全长765m,宽10.8m,深度5.35m,其中包含5处止推墩,长18m,宽16.2m,深度5.75m,采取放坡开挖。

高压泵基础共计5处,长5.6m,宽4.3m,深度5.1m,采取放坡开挖。

为保证工艺海水管道管沟、高压泵基础等深基坑土方开挖安全顺利进行,需要对管沟和深基坑进行位移监测。

基坑监测方案及技术措施

基坑监测方案及技术措施

(一)基坑监测方案及技术措施1、监测目的1.使参建各方能够彻底客观真实地把握工程质量,掌握工程各部份的关键性指标,确保工程安全;2.在施工过程中通过实测数据检验工程设计所采取的各种假设和参数的正确性,及时改进施工技术或者调整设计参数以取得良好的工程效果;3.对可能发生危机基坑工程本体和周边环境安全的隐患进行及时、准确的预报,确保基坑结构和相邻环境的安全;4 .积累工程经验,为提高基坑工程的设计和施工整体水平提供基础数据支持。

2、监测原则(1)基坑工程监测基本原则1.监测数据必须是可靠真正的,数据的可靠性由测试元件安装或者埋设的可靠性、监测仪器的精度以及监测人员的素质来保证。

监测数据真实性要求所有数据必须以原始记录为依据,任何人不得篡改、删除原始记录;2.监测数据必须是及时的,监测数据需在现场及时计算处理,发生有问题可及时复测,做到当天测、当天反馈;3.对所有检测项目,应按照工程具体情况预先设定预警值和报警制度,预警体系包括变形或者内力积累值及其变化速率;4.监测应整理完整监测记录表、数据报表、形象的图表和曲线,监测结束后整理出监测报告。

3、监测基点的布设及仪器配备(1)变形监测基准点、工作基点布设要求1.至少有3 个稳定、可靠的基准点。

2 .工作基准点选在相对稳定和方便使用的位置。

在通视条件良好、距离较近、观测项目较少的情况下,可直接将基准点作为工作基点。

3 .监测期间,应定期检查工作基点和基准点的稳定性。

(2)监测仪器与使用根据《中华人民共和国国家标准•工程测量规范GB50026-2022》(以下简称《规范GB50026-2022》)中的有关规定,结合《中华人民共和国行业标准•建造变形测量规范JGJ/T 8-2022》(以下简称《规程JGJ/T 8-2022》)中的有关内容,选择安全监测仪器及施测方法。

1 .基坑侧壁的水平位移采用测斜仪监测;2.建造物及地面(路面)的沉降监测采用DS05 级水准仪、测微器,配合铟钢尺,按测微法施测;3.地下水水位应经过检定的长度量具施测,执行《建造基坑支护技术规程》(JGJ120-2022) 8.3.9 条有关规定;观测精度不宜低于10mm。

深基坑支护结构的监测

深基坑支护结构的监测

深基坑支护结构的监测摘要:在深基坑开挖中,要时刻跟踪深基坑的种种变化,为后续施工提供数据支撑,以保证工程安全质量。

关键词:深基坑;沉降观测;变形;监测方案一、监测工程概况融媒大厦主楼建筑高度为96.4m,共16层;裙楼建筑为2至4层的多层框架建筑,裙楼总建筑高度为18至24m。

地下结构为大底盘地下车库兼顾人防工程的地下室。

根据地质勘察报告说明。

融媒大厦基坑深度为4.4m至5.98m。

如基坑支护结构被破坏、周围土体失稳过大变形对基坑周边建筑环境影响一般,基坑安全等级为三级。

二、监测方案1、依据根据施工设计要求,基坑监测项目分为,基坑坡顶水平位移监测、基坑坡顶垂直位移监测、地下水位监测。

1.本基坑的支护形式融媒大厦深基坑支护形式为放坡开挖+土钉墙支护。

基坑开挖到首层土钉位置下0.5m时喷射第一层混凝土,钻孔施工土钉,外挂钢筋网片与土钉绑扎牢固,再喷射第二层混凝土。

基坑顶砌筑截水沟,基坑底部挖社排水沟,防止雨水、地表水影响基坑边坡安全。

3、基坑监测范围根据《建筑基坑工程监测技术规范》(GB 50497-2009)规定,结合考虑本基坑工程周边建筑环境特点,确定基坑周围环境监测范围为基坑边线外2倍深度范围,即为11.96m为外监测边线。

与此同时还需要在施工过程中对监测范围以外的高压线杆、地下管线、便道等进行日常巡查检查,现场巡查发现异常状况要及时向项目领导汇报。

必要时增加监测项目以保证监测项目安全。

4、基坑监测重点由于基坑开挖面与开挖深度较大、时间紧凑、对各工序先后衔接较高、基坑监测工程量大,因此对基坑监测工作要严格要求。

(1)基坑围护体系边坡土钉墙安全稳定作为本项目监测重点;(2)现场布测点是后续观测的前提,测点保护作为工作重点;(3)基坑上部挡水墙阻水效果作为重点监测对象;(4)各变形观测点的安装埋设作设计为工作重点;(5)基坑周围经常架设泵车位置加强监测作为重点之一。

三、基坑监测的方法1、现场巡视肉眼观察从基坑开挖开始至基坑回填结束,整个施工监测时间段内需专业测量人员以自身对基坑监测工程的经验对基坑边坡裂缝、渗水、流沙等情况进行肉眼观测并详细记录,从而第一时间判断可能出现的问题,为基坑安全建立第一道防线。

基坑支护变形监测方案

基坑支护变形监测方案

1、编制依据基坑支护设计图纸《建筑基坑工程监测技术规范》(GB50497-2009)《工程测量规范》GB50026-20072、工程概况L形地库三个角高层建筑下,地下二层普遍深度-9.0m(地下二层底板标高),局部深度-13.8m(电梯井底板标高),基坑支护采用混凝土灌注桩、土钉墙喷锚系统,深基坑位置土方开挖至-4.0m左右,留出支护桩作业面,即进行支护桩及喷锚系统施工,同步进行深基坑支护系统监测。

3、监测目的施工中可能会出现基坑变形,为确保边坡的安全稳定和工程顺利进行,及时掌握基坑边坡变形动态,便于采取各种保护措施,我们在基坑施工过程中需对边坡进行水平位移、沉降等变形进行监测。

基坑工程施工前,应由建设方委托第三方对基坑工程实施现场监测。

监测单位应编制监测方案,监测方案应经建设、设计、监理等单位认可。

4、监测项目基坑边坡水平位移、沉降、裂逢;周边建筑物。

4.1 边坡水平位移监测4.1.1监测点设置深基坑每边设置3个稳定、可靠的点作为基准点。

在基坑四周冠梁上设置监测点,基坑各边每隔10-15m设置一个监测点,且每边中点、阳角必须有点,每边不少于3点,水平及竖向监测点为共用点。

基坑周边建筑物(4#楼及13#楼)、地下管线监测点布置:在基坑周围建筑物四角、拐角、管线井口设置一组监测点,监测其沉降。

4.1.2监测点制作施工灌注桩时将一根1m长的Ф18钢筋突出固定在冠梁与灌注桩交接处,要求钢筋端部平整并刻有十字丝,钢筋的端部突出冠梁上表面20cm。

4.1.3 监测点保护在施工过程中,加强对监测点的保护,不得随意破坏。

以保持监测数据的准确性和连续性。

5、仪器设备为确保本工程支护结构的安全,精确提供观测数据,本次监测主要采用监测仪器有:a、自动安平水准仪型号:DSA320 , 出厂编号:****。

b.全站仪型号: GTS-332W,出厂编号:托普康*****。

6、监测方法监测方法采用极坐标法。

监测项目初始值在深基坑土方开挖(-4.0m以下)之前测定,并取至少连续观测3次的稳定值的平均值作为初始值。

9点掌握基坑监测全过程(监测点布置、监测方法)

9点掌握基坑监测全过程(监测点布置、监测方法)

9点掌握基坑监测全过程(监测点布置、监测⽅法)⼀般情况下,⼯程变形监测由建设单位委托第三⽅有资质的单位进⾏,但在⼯程施⼯过程中总承包也需要对⼯程实施必要的监测,以便于对⼯程的安全性做出提前预判,防⽌事故发⽣。

在施⼯准备阶段及过程中,即需要提前设置好监测点位,为监测⼯作做好统筹准备。

开挖深度⼤于等于5m 或开挖深度⼩于5m 但现场地质情况和周围环境较复杂的基坑⼯程以及其他需要监测的基坑⼯程应实施基坑⼯程监测。

⼀、基坑监测原则变形监测是⼀项系统⼯程,是施⼯管理的重要组成部分,须按照计划进⾏。

⼀般情况下,监测⼯作应遵循以下4 条原则:1、可靠性原则:可靠性原则是监测系统设计中所考虑的最重要的原则。

为了确保其可靠性,必须做到:(1)由具有丰富经验的作业⼈员,使⽤满⾜精度要求的监测仪器,采⽤先进的监测⽅法来保证外业采集数据的真实可靠性;(2)基准点、监测点设置应合理,并在监测期间保护好点位标志,使监测⼯作具有连续性。

2、操作⽅便性原则:为使监测⼯作正常进⾏并满⾜监测精度的要求,变形监测点在布设时应考虑到⽔准线路的联测⽅便,能够节省外业时间、提⾼点位精度的原则。

3、数据及时性原则:监测数据必须是及时的。

监测数据需在现场及时计算处理,计算有问题应及时复测。

因为施⼯是⼀个动态的过程,只有保证及时监测,才能有利于及时发现隐患,及时采取措施。

监测应整理完整的监测记录表、数据报表、形象的图表和曲线,监测结束后及时整理出监测报告。

4、经济合理性原则:监测⽅案编制时应考虑选⽤适合于本⼯程监测作业,并满⾜监测精度要求的仪器设备。

⼆、监测⽅案⼀般情况下,监测⽅案应包括下列内容:1、⼯程概况2、建设场地岩⼟⼯程条件及基坑周边环境状况3、监测⽬的和依据4、监测内容和项⽬5、基准点、监测点的布设和保护6、监测⽅法及精度7、监测周期和监测频率8、监测报警及异常情况下的监测措施9、监测数据处理与信息反馈10、监测⼈员的配备11、监测仪器设备及检定要求12、作业安全及其他管理制度三、监测项⽬1、基坑⼯程现场监测点对象应包括:(1)⽀护结构;(2)地下⽔状况;(3)基坑底部及周边⼟体;(4)周边建筑;(5)周边管线及设施;(6)周边重要的道路;(7)其他应监测的对象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基坑变形监测技术要求与作业方法发表时间:2016-11-08T10:40:38.353Z 来源:《低碳地产》2016年9月第17期作者:黄文新[导读] 【摘要】随着城市建设的高速发展和地下空间的开发利用,基坑工程愈来愈多。

基坑监测、基坑设计与施工同被列为基坑工程质量保证的三大基本要素。

基坑变形监测的实施,基坑监测数据的获取、基坑监测的预警及监测报告的提交都应严格按照相关规范、规程执行。

通过基坑沉降监测实例详述了施工过程中变形监测技术以及监测作业过程。

深圳市爱华勘测工程有限公司广东深圳 518049【摘要】随着城市建设的高速发展和地下空间的开发利用,基坑工程愈来愈多。

基坑监测、基坑设计与施工同被列为基坑工程质量保证的三大基本要素。

基坑变形监测的实施,基坑监测数据的获取、基坑监测的预警及监测报告的提交都应严格按照相关规范、规程执行。

通过基坑沉降监测实例详述了施工过程中变形监测技术以及监测作业过程。

【关键词】基坑监测、沉降监测、技术要点、实例1.基坑变形监测特点及其基本要求1.1基坑工程监测的特点(1)时效性(2)精度要求高(3)等精度重复观测(4)数据严密处理(5)紧密结合多种学科1.2 基坑变形监测的基本要求(1)基坑监测工作在进行前一定要预先制定出完整精细的监测方案。

(2)所监测的每一项数据资料必须是真实可靠的原始记录。

(3)在各结构中所埋设的监测元件应避免对基坑及周边结构的受力产生影响,且在回填土时应与该场地基坑土质尽量匹配一致。

(4)应全面综合地掌握监测结果且对重点监测项目预设安全报警值。

(5)基坑在监测过程中应配有完整的监测数据记录表、报表、图表(包括曲线变化图等),同时在监测工作完成后将所获资料整理得出详细的监测报告。

1.3 基坑变形监测的基本知识1.3.1 基坑监测的方法(1)肉眼观察:自基坑开挖到建筑结构施工再到地面、土体回填完毕的整个监测时段内,均需要专业测量人员仅凭自身的丰富经验对自然环境、基坑及周遭建筑物体等的外部特征、渗水漏水等情况用肉眼首先进行视察并做以详细的记录,从而在第一时间判断出可能存在的问题,防患于未然。

(2)有关位移问题的监测a.水平位移变形监测主要方法①极坐标法②前方交会法③视准线法或称轴线法(适用于呈直线型的基坑边和直线型的支撑)④小角度法(适用于不在同一条直线上且比较散乱监测点的基坑工程)⑤全站仪三维监测法(即控制网法,适于要求得基坑整体绝对位移量的工程)⑥后方交会法(工作量大且适用于因四周被障碍物封闭无法直接布设稳定监测点的基坑工程)b.竖向位移变形监测方法①常采用几何水准的测量方法,特殊情况下可采用液体静力水准测量的方法。

②基坑的回弹与坑底的隆起在监测时常使用分层沉降标或回弹监测标,将几何水准测量方法与高程传递的辅助工具(如钢尺等)相结合来完成监测工作。

c.倾斜位移变形监测方法依据不同的场地及外部环境条件,可采用前方交会法、激光铅直仪法、倾斜仪法、投点法、垂吊法等。

d.深层水平位移监测方法常通过观测活动式测斜仪测斜管倾斜度的变化值,而得出最终的水平位移量。

e.裂缝的监测方法对于裂缝的长度可利用量尺等工具直接进行测量。

(3)有关内力、压力问题的监测方法可采用如前所述的各种内力、压力测量仪器对支护结构内力、锚杆与土钉内力、孔隙水压力、土压力进行直接的量测。

(4)有关水位问题的监测方法主要通过观测降水井或水位计观测孔等中的水位高度变化监测地下水位的升降。

(5)周边环境的变形监测方法通过采用特定的测量设备对基坑周边的临近物进行实时监测,防止因施工对其它建筑物体等所带来不利影响,从而及时调整基坑施工速度,修改支护保护措施。

1.4.2 监测点的布设要求(1)除对重点监测部位应加密监测点数目以保证更精准的折射出监测物的变化外,其余部分应根据各方面的实际情况与最优经费要求合理的设定监测点的数目;(2)监测点的布设位置应当在避开障碍物的同时选择能够确切反应监测物的实际受力情况、形变状态及其变化趋势的关键特征点位处,且其位置不能阻碍其它建筑工程设施的正常运作并对施工作业有尽可能小的不利影响。

(3)监测标志的设定应当显眼、稳定、结构安排合理,保证着整个基坑施工期间不易被损毁。

1.4.3 平面控制网的技术要求在对基坑个项目内容实时监测前,需根据施工现场情况与点位布置图布设两级平面控制网,一级网在基准点与工作基点的基础上建立,二级网或称扩展网即建立在工作基点和各项目监测点的基础上。

如若仅是对单个独立目标实时监测,只要利用基准点与监测点来布设成一级网即可。

2.沉降监测的技术2.1 沉降监测的精度相关要求2.1.1 各等级几何水准观测的技术要求根据《建筑基坑工程监测技术规范》(GB50497-2009),实际作业中已大量采用徕卡DNA系列电子水准仪,各等级水准观测的视线长度、前后视距差、视线高度,应符合规范的规定。

2.2 沉降监测的主要技术要求2.2.1 最终沉降量的观测中误差应符合的规定a.绝对沉降(如沉降量、平均沉降量等)的观测中误差,对于特高精度要求的工程可按地基条件,结合经验与分析具体确定;对于其他精度要求的工程,可按底、中、高压缩性地基土的类别,分别选±0.5mm、±1.0mm、±2.5mm。

b.相对沉降(如沉降差、基础倾斜、局部倾斜等)、局部地基沉降(如基坑回弹、地基土分层沉降等)以及膨胀土地地基变形等的观测中误差,均不应超过其变形允许值的1/20。

c.建筑物整体性变形(如工程设施的整体垂直挠曲等)的观测中误差,不应超过允许垂直偏差的1/10。

d.结构段变形(如平置构件挠度等)的观测中误差,不应超过变形允许值的1/6。

e.对于科研项目变形量的观测中误差,可视所需提高观测精度的程度,将上列各项观测中误差乘以1/5~1/2系数后采用。

2.3 沉降观测的基本要求2.3.1 仪器设备、人员素质的要求为能精确地反映出建构筑物在不断加载作用下的沉降情况,一般规定测量的误差应小于变形值的1/10~1/20,为此要求沉降观测应使用精密水准仪。

观测人员必须熟练掌握仪器的操作规程,能针对不同工程特点、具体情况采用不同的观测方法及观测程序,对实施过程中出现的问题能够分析原因并正确的运用误差理论进行平差计算,做到按时、快速、精确地完成每次观测任务。

2.3.2 作业中应遵循的规定a.观测应在成像清晰、稳定时进行;b.仪器离前后视水准尺的距离要用皮尺丈量,或用视距法丈量,视距一般不应超过50m。

前后视距应尽可能相等;c.前、后视距观测最好用同一根水准尺;d.前视各点观测完毕以后,应回视后视点,最后应闭合于水准点上。

2.3.3 沉降观测工作的要求如果设置有工作基点,则每年应进行一至两次与水准基点的联测,以检查工作基点是否发生变动。

联测工作应尽可能选择固定的月份,即保证外界条件基本相同,以减少外界条件变化对成果的影响。

沉降观测是一项较长期、连续的观测工作,为保证观测成果的正确性,应尽可能做到以下四定:a.固定人员观测和整理成果;b.固定使用的水准仪及水准尺;c.使用固定的水准基点;d.按规定的日期、方法和实测路线进行观测。

2.3.4 沉降观测点的要求一般要求建筑物上设置的沉降观测点要对称分布,在施工时就在建筑物墙体底部离地面0.8m左右处,按要求埋设凸出墙面的金属观测标志,以便于观测。

这些标志要与墙体内的钢筋焊在一起,以保证它们的整体性。

为了能够反映出建构筑物的准确沉降情况,沉降观测点要埋设在最能反映沉降特征且便于观测的位置,一般相邻点之间的间距以15至30米为宜,均匀地分布在建筑物的周围。

通常情况下,建筑物设计图纸上有专门的沉降观测点布置图。

沉降观测点的布置,应以能全面反映建筑物地基变形特征并结合地质情况及建筑物结构特点确定。

点位宜选设在下列位置:a.建筑物的四角、中点、转角处及沿外墙每10~20m处或每隔2~3根柱基上,高低层建筑物、新旧建筑物、纵横墙等交接处的两侧;b.建筑物裂缝和沉降缝两侧、基础埋深相差悬殊处、人工地基与天然地基接壤处、不同结构的分界处及填挖方分界处;c.临近堆置重物处、受震动有显著影响的部位及基础下的暗沟处;d.框架结构建筑物的每个或部分柱基上纵横轴线设点;e.片筏基础、箱型基础底板或接近基础的结构部分之四角处及其中部位置;沉降观测点的形式和设置方法应根据工程性质和施工条件来确定或设计。

埋设观测点的要求概括如下:(1)观测点应埋设牢固,能长期保存。

(2)观测点具备检核条件,满足一定的观测精度(3)在观测点上能垂直放置水准尺,通视条件良好。

再就是,埋设的沉降观测点要符合各施工阶段的观测要求,特别要考虑到装修装饰阶段因墙或柱面施工而破坏或掩盖住观测点,不能连续观测而失去观测意义。

3.基坑沉降监测实例3.1概述倚龙华庭项目位于深圳市龙岗区深惠公路西北侧。

主楼地面以上27层, 3层地下室,总用地面积为3220.7㎡,总建筑面积为39044.2㎡。

其结构形式主楼采用框架-核心筒结构,地下室采用框架结构。

场地长方形状,基坑周长约253.5m。

本项目为第三方监测。

3.2、监测作业依据(1)《建筑变形测量规范》JGJ8-2007(2)《工程测量规范》GB50026-2007(3)《深圳地区建筑深基坑支护技术规范》(SJG05-96)3.3、变形监测技术方案3.3.1变形监测的方法基坑施工对基坑本身及周边建筑物带来的影响因素较多而且情况复杂,其中最主要的是基坑边坡位移和沉降以及基坑降水引起周边区域地下水位下降从而引发建筑物地基不均匀下降,因此,基坑边坡位移、沉降及建筑物沉降是必须关注的监测项目。

本次将对离基坑较近的周边建筑物进行沉降监测,对基坑边坡进行位移和沉降监测。

3.3.2沉降观测(1)监测等级与方式本次监测的周边建筑一般为7-16层的框架结构楼房,属于一般性工业建筑,基坑深度15米,属一级基坑,采用二级变形监测可以满足监测精度的要求。

沉降观测以水准测量方式进行。

(2)基准点、监测点的布设本项目监测点布置图如下:(3)基准点的布设根据国家颁发的《建筑变形测量规程》(JGJ8-2007)中的有关技术要求,在施工影响范围外,没有沉降,能长期保存的地方,按规范要求埋设三个混泥土水准标石作为本次沉降观测基准点。

三个基准点构成一个独立的闭合环,以便相互检验本身点位是否有变动。

(4)基坑边坡监测点的布设根据甲方提供的观测点平面布置图埋设观测点。

观测点埋设的主要原则是:牢固、稳定便于保存,易于观测,根据设计要求,基坑边坡布设21个沉降观测点,编号为C1至C21,沉降观测点同时兼作位移观测点。

详见《监测布点示意图》。

(5)基坑周边建筑物监测点的布设基坑周边建筑物监测点的标志均采用Φ20㎜、顶端打磨成半球形的弯头钢筋,根据甲方提供的观测点平面布置图,用电钻在承重墙柱上钻孔,打入标志(半球朝上),然后用水泥加固。

相关文档
最新文档