七年级一元一次方程应用题类型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化,常见题型有:
①既有调入又有调出;
②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
船(飞机)航行问题:相对运动的合速度关系是:
顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。
②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
(6)溶液配制问题。
其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(7)利润率问题。
其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。商品售价=商品标价×折扣率
(8)银行储蓄问题。
其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
(9)数字问题。
要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。
(10)年龄问题其基本数量关系:大小两个年龄差不会变。
这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。
(11)比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。
一元一次方程应用题步骤解题技巧
列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
1、解应用题的一般思维表述方式
解应用题的关键是:找等量关系,才能设出未知数,列出方程,剩余的解题任务相应的就比较轻松。2、应用题的类型及思维策略
(1)应用题分类
在小学,学生对应用题学得较久,而且教师或某些资料分得太细,学生要记忆的东西太多,一旦记不住则无法理解。怎样引导学生由记忆性思维转化为理解性思维,而且不需要记忆太多的东西。
1、行程问题(包括小学的追击问题,相遇问题,顺风逆风问题等
2、工作问题
3、浓度问题(包括稀释问题,加浓问题,混合问题等)
4、杂题(包括比值问题,利润问题,增长下降问题,数字问题等)
(2)分类原因
因为前面三类都是我们在小学多年的学习中非常熟悉的,而且他们的等量关系是类似的。如:路程=时间*速度,工作总量=工作时间*工作效率,溶质=浓度*溶液质量。而杂题在题目中都有明显的表述等量关系的字词或隐藏着公认的规律。
(3)思维品质
一、杂题。
一般来说,都有明显的表述等量关系的字词,对学生而言比较容易。
二、行程问题。
行程问题是学生最熟悉的问题。但是要找出其中的等量关系,学生感到非常困难,原因是不知道从哪方面入手找等量关系。我引导学生这样想:a找哪两个事物之间发生关系;b分别找出这两个事物关于路程、时间、速度的等量关系。若无则略;c设未知数,列方程。
三、工作问题。
因工作问题涉及的三个量的关系与行程问题类似,因此可以用相同的思维策略解决工作问题。
四、浓度问题
因浓度问题涉及的三个量:溶质、溶液、浓度的关系与行程问题类似,因此也可以用相同的思维策略来解决。
五、拓展
利用上述策略,还可以解决不等式、不等式组、函数等应用问题。