初中数学几何图形初步全集汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何图形初步全集汇编及答案

一、选择题

1.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()

A.2

B.31

C.3

D.23

【答案】C

【解析】

【分析】

作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.

【详解】

解:作B关于AC的对称点B',连接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'为等边三角形,

∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,

∴最小值为B'到AB的距离3

故选C.

【点睛】

本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此

2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )

A .210824(3) cm -

B .()2108123cm -

C .()254243cm -

D .()254123cm -

【答案】A

【解析】

【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.

【详解】

解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,

∴BD =12a cm ,AD =3a cm , ∴AC =2AD =3a cm ,

∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12

a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +

12a )−4a =1, ∴a =2,h =9−23

∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;

故选:A .

本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.

3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )

A .90°

B .75°

C .105°

D .120°

【答案】B

【解析】

【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.

【详解】

∵//BC DE

∴30E BCE ==︒∠∠

∴453075AFC B BCE =+=︒+︒=︒∠∠∠

故答案为:B .

【点睛】

本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.

4.如图,将矩形纸片沿EF 折叠,点C 在落线段AB 上,∠AEC=32°,则∠BFD 等于( )

A .28°

B .32°

C .34°

D .36°

【答案】B

【解析】

根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.

【详解】

解:如图,设CD和BF交于点O,由于矩形折叠,

∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,

∵∠AEC=32°,

∴∠ACE=90°-32°=58°,

∴∠BCO=90°-∠ACE=32°,

∴∠BOC=90°-32°=58°=∠DOF,

∴∠BFD=90°-58°=32°.

故选B.

【点睛】

本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.

5.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()

A.线段比曲线短B.经过一点有无数条直线

C.经过两点,有且仅有一条直线D.两点之间,线段最短

【答案】D

【解析】

【分析】

如下图,只需要分析AB+BC<AC即可

【详解】

∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径

又∵两点之间线段最短

∴AC<AB+BC

故选:D

【点睛】

本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离

6.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()

A.黑B.除C.恶D.☆

【答案】B

【解析】

【分析】

正方体的空间图形,从相对面入手,分析及解答问题.

【详解】

解:将其折成正方体后,则“扫”的对面是除.

故选B.

【点睛】

本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.

7.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()

相关文档
最新文档