一元二次不等式及其解法知识梳理及典型练习题

合集下载

高中 一元二次不等式及其解法 知识点+例题 全面

高中 一元二次不等式及其解法 知识点+例题 全面

辅导讲义――一元二次不等式及其解法教学内容1.一元二次不等式:只含有一个未知数,并且未知数最高次数是2的不等式. 2.二次函数、一元二次方程、一元二次不等式的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1或x >x 2}{x |x ≠x 1}{x |x ∈R }ax 2+bx +c <0 (a >0)的解集{x |x 1< x <x 2}∅ ∅[例1] 若不等式052>++c x ax 的解集是}2131{<<x x ,则a+c 的值为________.-7[巩固1] 已知不等式02<+-b x ax 的解集是}21{<<-x x ,则a ,b 的值为___________.a=1,b=-2[巩固2] 若关于x 的不等式0622<+-t x tx 的解集是),1(),(+∞-∞ a ,则a 的值为______.-3[例2] 若1)(2+-=ax x x f 有负值,则实数a 的取值范围是____________.),2()2,(+∞--∞[巩固1] 已知二次函数c bx ax x f ++=2)(的图象与直线25=y 有公共点,且不等式02>++c bx ax 的解是知识模块1三个“二次” 精典例题透析3121<<-x ,求a ,b ,c 的取值范围.[巩固2] 已知关于x 的不等式)(0222R a a ax x ∈≤++-的解集为M . (1)当M 为空集时,求实数a 的取值范围. (2)如果]4,1[⊆M ,求实数a 的取值范围.[例3] 关于x 的方程02=++c bx x 的两根分别为21-=x 和212-=x ,则关于x 的不等式02<+-c bx x 的解集是______________.)2,21([巩固1] 方程05)2(2=-+-+m x m x 的两根都大于2,则m 的取值范围是____________.]4,5(--[巩固] 若关于x 的不等式4502≤++≤ax x 恰好只有一个解,则实数.______=a 2±[例5] 若不等式02<--b ax x 的解集为}32{<<x x ,则.______=+b a 1-[巩固1] 若关于x 的不等式0322<+-a x x 的解集是)1,(m ,则实数.______=m 21[巩固2] 关于x 的不等式0)2)(1(>--x mx ,若此不等式的解集为}21{<<x mx,则m 的取值范围是__________. )0,(-∞[例6] 已知实数R a ∈,解关于x 的不等式.02)2(2<++-a x a x[巩固] 已知关于x 的不等式0232>+-x ax 的解集是}1{b x x x ><或, (1)求a ,b 的值;(2)解关于x 的不等式).(0)(2R c bc x b ac ax ∈<++-[例7] 若不等式02<--b ax x 的解集是)3,2(, (1)求a ,b 的值;(2)求不等式012>--ax bx 的解集.[巩固] 已知不等式0)32()(<-++b a x b a 的解为43->x ,解不等式.0)2()1(2)2(2>-+--+-a x b a x b a题型一:一元二次不等式的解法 [例] 求下列不等式的解集:(1)-x 2+8x -3>0; (2)ax 2-(a +1)x +1<0.解 (1)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不相等的实根x 1=4-13,x 2=4+13. 又二次函数y =-x 2+8x -3的图象开口向下, 所以原不等式的解集为{x |4-13<x <4+13}. (2)若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a)(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a <x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a.综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a <x <1}.[巩固](1)若不等式ax 2+bx +2>0的解为-12<x <13,则不等式2x 2+bx +a <0的解集是________.(2)不等式x -12x +1≤0的解集是________.知识模块3经典题型11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是_______________.答案 (-∞,-32)∪(12,+∞) 解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12. 12.(2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a=_______.答案 52解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为______________.答案 [0,π6]∪[5π6,π] 解析 由题意,要使8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos 2α≤0,化简得cos 2α≥12. 又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π, 解得0≤α≤π6或5π6≤α≤π. 14.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是________.答案 21解析 设f (x )=x 2-6x +a ,其是开口向上,对称轴是x =3的抛物线,图象如图所示.关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧ f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧f (2)=4-12+a ≤0,f (1)=1-6+a >0, 解得5<a ≤8.又a ∈Z ,所以a =6,7,8,则所有符合条件的a 的值之和是6+7+8=21.15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以。

【超级经典】一元二次不等式及其解法(含答案)

【超级经典】一元二次不等式及其解法(含答案)

1 , 2
由函数 y 4 x 4 x 1的图象为:
2
原不等式的的解集是 { } . 方法二:∵ 原不等式等价于: (2 x 1) 0 ,
2
1 2
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
∴原不等式的的解集是 { } . (4)方法一:
2 2 因为 0 ,方程 x 4 x 5 0 无实数解,
函数 y x 4x 5 的简图为:
2
所以不等式 x 4 x 5 0 的解集是 .
2
所以原不等式的解集是 . 方法二:∵ x 4x 5 ( x 2) 1 1 0
2
函数 y x 5x 的简图为:
2
因而不等式 x 5x 0 的解集是 {x | 0 x 5} .
2
方法二: x 5x 0 x( x 5) 0
2
x 0 x 0 或 x 5 0 x 5 0
解得
x 0 x 0 或 ,即 0 x 5 或 x . x 5 x 5
地址:西凤街 19 号 3 栋 3 楼附 2 号
联系电话:(028)67208488
都戴氏教育温江校区
【经典例题】 类型一:解一元二次不等式 例 1. 解下列一元二次不等式 (1) x 5x 0 ;
2
(2) x 4 x 4 0 ;
2
(3) x 4 x 5 0
2
思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为 (5)2 4 1 0 25 0 所以方程 x 5x 0 的两个实数根为: x1 0 , x2 5

一元二次不等式的经典例题及详解

一元二次不等式的经典例题及详解

一元二次不等式专题练习例 1 解不等式:(1) 2x 3 x 2 15x 0; (2) (x 4)(x 5)2(2 x)3 0 .例2 (1 ) 丄1x 2(2 )例8解不等式4x 2 10x 3 32cx bx a 0的解集.例14解不等式■. x 2 3x 108 x •解下列分式不等式: x 2 4x 3x 2 7x 2解不等式x 2 4 x解不等式x 2 6x 5 12 4x x 2解不等式 x 2 2x 22-3 2x x 2设m R ,解关于x 的不等式 m 2x 22mx 3 0 • 例7解关于x 的不等式• 2ax ax (a 0).例9解关于x 的不等式x 2 (a a 2)xa 3例10已知不等式ax 2bx c 解集是(0) •求不等式例11若不等式2x ax 2 x 1x bx 2x 1的解为(1,),求a 、b 的值.例12不等式ax 2 bx 2 0的解集为,求a 与b 的值.例13解关于x 的不等式ax2(a 1)x例1解:(1)原不等式可化为x(2x 5)( x 3) 05把方程x(2x 5)(x 3) 0的三个根& 0,x 2 -,X a 3顺次标上数轴•然后从右上 2开始画线顺次经过三个根,其解集如下图的阴影部分.5•••原不等式解集为 x - x 0或x 32(2)原不等式等价于(x 4)( x 5)2(x 2)30 x 5 0 x5 (x 4)(x 2) 0 x4或 x 2分析:当分式不等式化为上凶 0(或 0)时,要注意它的等价变形g(x)①他 0 f (x) g(x) 0 g(x)②器 0或胡0 f(x) 0或f(x )曲)0例2 (1)解:原不等式等价于说明:用“穿根法”解不等式时应注意:①各一次项中 奇次重根可转化为不含重根的不等式,也可直接用“穿根法” 如下图. x 的系数必为正;②对于偶次或,但注意“奇穿偶不穿”,其法2 2 1x3x3x 2 x 2 x 2 3(x 2) x(x 2) (x 2)(x 2)(x 6)(x 1) (x 2)(x 2)用“穿根法”•••原不等式解集为(0 x 2x 2 5x 6 0(x (x (x 2)(x 2)6)(x 2)(x1) (x 2)2)(x 2) 00 2)1,26,2x 2 3x 2 7x3x (2x 2 3x 1)(3x 2 7x 2x 2 3x 1 0 . 2x 2 3x 27x 2 或 0 3x 2x 1或1 x 1或: x 23x7x2) 0 3 2(2)解法一:原不等式等价于(2,解法二:原不等式等价于(2x 1)(x 1)(3x 1)(x 2)(2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” 2)&1)⑵例3分析:解此题的关键是去绝对值符号, •••原不等式解集为(而去绝对值符号有两种方法:是根据绝对值的意义a a(a 0)a(a 0) 二是根据绝对值的性质: a, x.a x a 或 x a ,因此本题有如F 两种解法.解法一:原不等式2x 2x••• 2x3 或 1x2故原不等式的解集为 x1 x 3 .解法二:原不等式等价于(x 2) x 24 x 2于下列两个不等式组:x 2 6x 5 0 亠 x 2 6x 5 02 或2124x x 20 12 4x x 2 0所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解. 解法一:原不等式等价下面两个不等式级的并集:x 2 6x 5 0,亠 x 2 6x 5 0, 2 或2124x x 212 4x x 2 0(x 1)(x 5) 0,或(x 1)(x 5) 0, (x 2)(x 6) 0; 或 (x 2)(x 6)0;1 x 5, x 1,或 x 5, ;或、 2x6 x2,或 x 61 x 5,或 x2 或 x 6 .•••原不等式解集是{xx 2,或1 x 5,或x 6}.解法二:原不等式化为(x 1)(x 5)0 .(x 2)(x 6)画数轴,找因式根,分区间,定符号.(X 1)(X 5)符号(x 2)(x 6)、+ I - I 4 ! - I +•••原不等式解集是{xx 2,或1 x 5,或x 6}.说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组 的解的并集,否则会产生误解.解法二中,“定符号”是关键•当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间•在解题时要正确运 用.2 x 2xx 2 (x 2)2x3故 12例4分析:这是一个分式不等式,其左边是两个关于 x 3.x 二次式的商,由商的符号法则,它等价例5分析:不等式左右两边都是含有 x 的代数式,必须先把它们移到一边,使另一边为 0再解.解之,得原不等式的解集为 {x 1 x 2或x 3} • 项使一边为0再解.另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从 而使求解过程科学合理.例6分析:进行分类讨论求解.解:当m 0时,因 3 0 一定成立,故原不等式的解集为R .31当m 0时,解得三x 丄; m m1 3当m 0时,解得丄x -.m m31 •••当m 0时,原不等式的解集为 x 3 x -;m m 1 3当m 0时,原不等式的解集为 x- x — mm说明:解不等式时,由于 m R ,因此不能完全按一元二次不等式的解法求解•因为当m 0时,原不等式化为 3 0,此时不等式的解集为 R ,所以解题时应分 m 0与m 0两 种情况来讨论.在解出m 2x 2 2mx 3 0的两根为为 3 ,x 2 m 1 后,认为m--,这也是易出现的错m m误之处.这时也应分情况来讨论:当m0时,3 1 t;当mm m 0时,3 1m m例7分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解:移项整理,将原不等式化为(x 2)(x 2 x 1) (x 3)(x 1)由x 2 x 10恒成立,知原不等式等价于(x 2) (x 3)(x 1)说明:此题易出现去分母得x 2 2x 2 x(3 2x x 2)的错误解法.避免误解的方法是移当m 0时,原不等式化为(mx 3)(mx 1) 0 ; 解:原不等式c22ax a(1) 1 x 0, 2ax a 20,(1 或⑵x)2;2x a 2 0,1 x 0.1 2x a2ax 2, 由 a 0,得:(1)x 1,(2)2 x 2(a 1)x a 2 1 0;x 1.由判别式4(a 1)2 4(a 21) 8a 0 ,故不等式x 2 2(a 1)x a 21 0的解是a 1 . 2a x a 1,2a .当0 a 2时,a a 1 2a 1 , a 1 2a1 ,不等式组 (1)的解是2a 1 , 2a x 1,不等式组(2)的解是x 1 .当a 2时,不等式组 ⑴无解,(2)的解是x a .2综上可知,当0 a 2时,原不等式的解集是 a 1, 2a, ;当a 2时,原不等式的解集是说明:本题分类讨论标准“ 0 a 2 , a 2 ”是依据“已知a 0及⑴中‘ x - , x 1 '2(2)中‘ x a ,x 1 '确定的•解含有参数的不等式是不等式问题中的难点,也是近几年高2考的热点•一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的 解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式 2ax a 2 (1 x).纠正错误的办法是熟练掌握无理不等式基本类型的解法.例8分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即 可. 解答:去掉绝对值号得3 4x 2 10x 3 3,•••原不等式等价于不等式组2x(2x 5)2(x 3)(2x 1) 0•原不等式的解集为说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等 价转化为不3 4x 2 10x 3 4x 2 10x 0 4x 2 10x 3 3 4x 2 10x 6 03.等式组,变成求不等式组的解.例9分析:不等式中含有字母a,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程x2 (a a2)x a3 0的根,然后写出不等式的解,但由于方程的根含有字母a ,故需比较两根的大小,从而引出讨论.解:原不等式可化为(x a)(x a2) 0.⑴当a a2(即a 1或a 0 )时,不等式的解集为:x x a 或x a2;(2)当a a2(即0 a 1 )时,不等式的解集为:x x a2或x a ;(3)当a a2(即a 0或1 )时,不等式的解集为:x x R 且x a .说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根% a , X2 a2,因此不等式的解就是x小于小根或x大于大根.但a与a2两根的大小不能确定,因此需要讨论 a a2,a a2, a a2三种情况.分析:按照一元二次不等式的一般解法,先确定系数c的正负,然后求出方程cx2 bx a 0的两根即可解之.例10解:(解法1)由题可判断出,是方程ax2 bx c 0的两根,b ca a又ax2 bx c 0的解集是x x ,说明a 0 .而0, 0 0 —0 c 0,a2 . c 2 b a 门…cx bx a 0 x x 0.c c说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负, 求出相应的方程的根;(2) 结合使用韦达定理,本题中只有 , 是已知量,故所求不等式解集也用, 表示,不等式系数a , b , c 的关系也用, 表示出来;(3)注意解法2中用“变换”的方法求方程的根.c a2 1 ( a. 2b a 2 1 (x)—x — 0,即 x (-c c即(X-)(x1) 0 .1 1又0• (x -)(x 1)的解集为 x-)x-)0,(解法2)由题意可判断出 ,是方程ax 2bx0的两根,又 ax 2 bx0的解集是对方程cx 2bx0两边同除以 x 2得1 2 a ㈠2 x令t 丄x该方程即为at 2 b tc 0,它的两根为t 1,t 2,X 1 X 2•••方程 cxbx 0的两根为-,••• 0•不等式 cx 2 bxa 0的解集是例11分析:不等式本身比较复杂,要先对不等式进行同解变形, b式子.再根据解集列出关于a、解: ..2-x x 1 (x y240,2 1 23x x 1 (x)2-0,24•••原不等式化为(2 a b)x2 (a b)x a b 0.依题意a b2 a ba b2 a b 5a -23 .b -2说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.例12分析:此题为一元二次不等式逆向思维题,要使解集为x 1 x 2,不等式2 2ax bx 2 0需满足条件a 0 , 0, ax bx 2 0的两根为x1 1 , x22.解法- -* :设ax2bx 2 0的两根为x1,x2,由韦达定理得b bX1X2——12a由题意:a22X1X2——12a a• a1,b 1,此时满足 a 0 , b2 4a ( 2) 0.解法二一: 构造解集为x 1x 2的元二次不等式:(x 1)(x 2) 0,即x2 x 2 0,此不等式与原不等式ax2 bx 2 0应为同解不等式,故需满足:说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好.例13分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想.为正数再求解.般情况下,.f(x) g(x)可转化为.f (x) g(x)或f(x) g(x),而.... f(x) g(x)等价于:f(x) 0 g(x) 0 f(x) [g(x )]2解:原不等式等价于下面两个不等式组:8x08x02①2② x 2 3x 10x 2 3x 10 022 x 2 3x 10(8 x)2由①得亠 ,• x 8x 5 或 x 2①当a 0时,①式变为 (x 1)(x1) 0,•不等式的解为x 1或x1aa②当a 0时,①式变为 (x 1)(xa1) 0 . ②J 11 a,•当 0a 1时,1 1,此时②的解为11X 丄•当 1a 1 时,一1aaaa a此时②的解为 1 x 1 .0时, 0时, 原不等式变为: 原不等式变为:解:分以下情况讨论(1)当 a ⑵当a a说明:解本题要注意分类讨论思想的运用, 级分类:关键是要找到分类的标准,就本题来说有三 x 1 0 ,••• x 1 (ax 1)(x 1) 0①分类应做到使所给参数 a 的集合的并集为全集, 交集为空集,要做到不重不漏.另外, 解本题还要注意在讨论a 0时,解一元二次不等式ax 2 (a 1)x 1 0应首选做到将二次项系数变例14分析:无理不等式转化为有理不等式, 要注意平方的条件和根式有意义的条件,f(x) 0或 g(x) 0x 8由②得••• x 5或x74 x13.分析:如果多项式 f (x)可分解为n 个一次式的积,则一元高次不等式 f(x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况.均值不等式专题均值不等式是求函数最值的一个重要工具,同时也是高考常考的一个重要知识点。

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f〔x〕g〔x〕的形式.(2)将分式不等式转化为整式不等式求解,如:f 〔x 〕g 〔x 〕>0 ⇔ f (x )g (x )>0; f 〔x 〕g 〔x 〕<0 ⇔ f (x )g (x )<0; f 〔x 〕g 〔x 〕≥0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≥0,g 〔x 〕≠0; f 〔x 〕g 〔x 〕≤0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≤0,g 〔x 〕≠0.(2021·课标Ⅰ)集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},那么A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].应选A .设f (x )=x 2+bx +1且f (-1)=f (3),那么f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.应选B. -12<1x <2,那么x 的取值范围是( ) A.-2<x <0或0<x <12 B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,应选D.不等式1-2xx +1>0的解集是 .解:不等式1-2xx +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .(2021·武汉调研)假设一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,那么k的取值范围为________.解:显然k ≠0.假设k >0,那么只须(2x 2+x )max <38k ,解得k ∈∅;假设k <0,那么只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,那么a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b=-13是解此题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合 (2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解以下不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}. (3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2021·金华十校联考)函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 那么不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +〔x +1〕[-〔x +1〕+1]≤1 或 ②⎩⎪⎨⎪⎧x +1≥0,x +〔x +1〕[〔x +1〕-1]≤1, 解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.应选C.类型三 二次不等式、二次函数及二次方程的关系关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5.不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)假设1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)假设1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)假设1m =1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m 与1大小的不确定性,对m <1、m>1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧〔x +2〕〔2x +1〕≥0,2x +1≠0. 得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2〔x +2〕〔x +1〕>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,那么要注意分式的分母不能为零.※用“数轴标根法〞解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根〞的右上方向左下方画线,穿过此根,再往左上方穿过“次右根〞,一上一下依次穿过各根,“奇穿偶不穿〞来记忆.(5)写出不等式的解集:假设不等号为“>〞,那么取数轴上方穿根线以内的范围;假设不等号为“<〞,那么取数轴下方穿根线以内的范围;假设不等式中含有“=〞号,写解集时要考虑分母不能为零.(1)假设集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,那么A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x 〔x -2〕≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.应选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧〔x -1〕〔2x +1〕≤0,2x +1≠0得-12<x ≤1.应选A.类型六 和一元二次不等式有关的恒成立问题(1)假设不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,那么a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,那么x 的取值范围是( )A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g 〔1〕>0,g 〔-1〕>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,应选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,那么f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f 〔-2〕>0,f 〔2〕>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.类型七 二次方程根的讨论假设方程2ax 2-x -1=0在(0,1)内有且仅有一解,那么a 的取值范围是( )A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,那么f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.应选B.1.不等式x -2x +1≤0的解集是( )A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],应选D.2.关于x 的不等式(mx -1)(x -2)>0,假设此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,那么m 的取值范围是( )A.m >0B.0<m <2C.m >12D.m <0解:由不等式的解集形式知m <0.应选D.3.(2021·安徽)一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,那么f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,应选D.4.(2021·陕西)在如下图的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影局部),那么其边长x (单位:m )的取值范围是( ) A.[15,20] B.[12,25] C.[10,30]D.[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.应选C.5.假设关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,那么实数a 的取值范围是( ) A.a <-12 B.a >-4 C.a >-12D.a <-4解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,那么a <-4.应选D.6.假设不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,那么实数k 的取值范围是____________.解:∵x ∈(1,2),∴x -1>0.那么x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2].7.(2021·江苏)函数f (x )=x 2+mx -1,假设对于任意x ∈[m ,m +1],都有f (x )<0成立,那么实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f 〔m 〕=2m 2-1<0,f 〔m +1〕=2m 2+3m <0, 解得-22<m <0.故填⎝⎛⎭⎫-22,0.8.假设关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围. 解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.9.二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)假设方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)假设f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式 f (x )=-15x 2-65x -35. (2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝⎛⎭⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0. 故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).10.解关于x 的不等式:a 〔x -1〕x -2>1(a >0). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0, 假设a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1};假设a -2a -1=2,即a =0时,解集为∅; 假设a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习及同步练习题(含答案)

3.2 一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃(二)、检测题一、选择题1、不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为 ( ) A 、11|32x x ⎧⎫<<⎨⎬⎩⎭ B 、1|2x x ⎧⎫>⎨⎬⎩⎭ C 、1|3x x ⎧⎫<⎨⎬⎩⎭ D 、11|32x x x ⎧⎫<>⎨⎬⎩⎭或 2、在下列不等式中,解集为φ的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+->3、函数()2log 3y x =+的定义域为 ( )A 、()(),13,-∞-⋃+∞B 、()3,1--C 、(][),13,-∞-⋃+∞D 、(][)3,13,--⋃+∞4、若2230x x -≤,则函数()21f x x x =++ ( ) A 、有最小值34,无最大值 B 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值5、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-6、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14-B .14C .10-D .10 二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为 。

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。

一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。

高考复习 第7篇 第2讲 一元二次不等式及其解法知识点+例题+练习 含答案

高考复习 第7篇 第2讲 一元二次不等式及其解法知识点+例题+练习 含答案

第2讲 一元二次不等式及其解法 考点一 一元二次不等式的解法【例1】 (2014·大连模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是________.解析 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3),∴a <0.且⎩⎪⎨⎪⎧1-ab a =2,-ba =-3,解得a =-1或13,∴a =-1,b =-3.∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32.答案 ⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.【训练1】 (2013·江西卷改编)使不等式x <1x <x 2成立的x 的取值范围是________. 解析 当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎨⎧x 2>1,x 3<1,解得x <-1.答案 (-∞,-1)考点二 含参数的一元二次不等式的解法【例2】 (2013·烟台期末)解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即a >-2,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1;当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 【训练2】 (1)(2013·重庆卷改编)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于________. (2)解关于x 的不等式(1-ax )2<1.(1)解析 法一 ∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由根与系数的关系知⎩⎨⎧x 1+x 2=2a ,x 1x 2=-8a 2, ∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15,又∵a >0,∴a =52.法二 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15, ∴4a -(-2a )=15,解得a =52. 答案 52(2)解 由(1-ax )2<1,得a 2x 2-2ax <0, 即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a .当a <0时,2a <x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考点三 一元二次不等式恒成立问题【例3】 已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二 ∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数.则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.【训练3】 (1)若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.(2)(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是________.解析 (1)当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R , 只需⎩⎨⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.(2)∵x ∈(0,2], ∴a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)⎝⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞1.解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2.当判别式Δ<0时,ax 2+bx +c >0(a >0)解集为R ;ax 2+bx +c <0(a >0)解集为∅.二者不要混为一谈.3.含参数的不等式的求解,注意选好分类标准,避免盲目讨论. 4.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .思想方法6——数形结合思想在“三个二次”间关系的应用【典例】 (2012·福建卷)对于实数a 和b ,定义运算“*”;a *b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析 由定义可知:f (x )=(2x -1)*(x -1)=⎩⎨⎧(2x -1)2-(2x -1)(x -1),x ≤0,(x -1)2-(2x -1)(x -1),x >0,∴f (x )=⎩⎨⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1, ∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14. 令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或1+34(舍去).∴1-34>x 1>0,∴3-14>-x 1>0, ∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案 ⎝ ⎛⎭⎪⎫1-316,0【自主体验】1.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎨⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1;②⎩⎨⎧1-x 2>0,x <0⇒-1<x <0. 综上可知:-1<x <2-1.答案 (-1,2-1)2.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x -1,x >0-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =________.解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3]. 答案 (2,3]2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4.答案 (-∞,-4)∪(4,+∞)3.(2013·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为________.解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,f (x )<f (4)的解集为{x |x <4}. 答案 {x |x <4}4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 (2,3)5.(2014·南京二模)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为________.解析 根据给出的定义得x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)·(x -1)<0,故这个不等式的解集是(-2,1). 答案 (-2,1)6.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________. 解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,∴a =-2. 答案 -27.(2013·重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围是________.解析 不等式8x 2-(8sin α)x +cos 2α≥0恒成立,所以Δ≤0,即Δ=(8sin α)2-4×8×cos 2α≤0,整理得2sin 2 α-cos 2α≤0,即4sin 2 α≤1,所以sin 2 α≤14,即-12≤sin α≤12,因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π,即α的取值范围是⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π. 答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π 8.(2014·福州期末)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析 原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 答案 [-4,3] 二、解答题9.求不等式12x 2-ax >a 2(a ∈R )的解集. 解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 10.(2014·长沙质检)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1]. 法二 令g (x )=x 2-2ax +2-a ,由已知, 得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].能力提升题组 (建议用时:25分钟)一、填空题1.(2013·新课标全国Ⅱ卷改编)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 不等式2x(x -a )<1可变形为x -a <⎝ ⎛⎭⎪⎫12x,在同一平面直角坐标系内作出直线y =x -a 与y =⎝ ⎛⎭⎪⎫12x 的图象,由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1. 答案 (-1,+∞)2.(2013·西安二模)在R 上定义运算:⎣⎢⎡⎦⎥⎤ab cd =ad -bc .若不等式⎣⎢⎡⎦⎥⎤x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.答案 323.(2014·铜陵一模)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若f (x )的最大值小于1,则a 的取值范围是________.解析 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-a 4<1,∴a >-4,故-4<a <0.答案 (-4,0)二、解答题4.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3),f (x )+2x =a (x -1)(x -3),且a <0,因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .①由方程f (x )+6a =0,得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①,得f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧ -a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-3)∪(-2+3,0).。

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法知识梳理及典型练习题(含答案)一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式。

当a>0时,解集为x>b/a;当a<0时,解集为x<b/a。

2.一元二次不等式及其解法1) 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。

2) 使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的解集。

3) 一元二次不等式的解:对于一元二次不等式ax^2+bx+c>0(a>0),我们可以先求出其对应的一元二次方程ax^2+bx+c=0的解集,然后根据一元二次函数的图像,判断不等式的解集。

3.分式不等式解法对于分式不等式f(x)/g(x)>0或f(x)/g(x)<0,我们可以先化为标准型,即将右边化为0,左边化为分母的符号,然后将分式不等式转化为整式不等式求解。

对于分式不等式f(x)/g(x)≥0或f(x)/g(x)≤0,我们可以先求出f(x)/g(x)>0或f(x)/g(x)<0的解集,然后根据分式函数的图像判断不等式的解集。

例题1:已知集合A={x|x^2-2x-3≥0},B={x|-2≤x<2},则A∩B=[-2,-1]。

例题2:设f(x)=x^2+bx+1且f(-1)=f(3),则f(x)>0的解集为{x|x≠1,x∈R}。

例题3:已知-2<x/11<1/2,则x的取值范围是-22<x<11.解:首先求出方程2x2-8x-4=0的解为x1=-1,x2=2.根据题意,不等式在(1,4)内有解,即在x1和x2之间有解,则2x2-8x-4-a的图像必定开口向上,且在x1和x2处有两个零点。

又因为a>0时,图像整体上移,不可能在(1,4)内有解,故a<0.又因为当a=-4时,2x2-8x-4=0在(1,4)内有解,故a的取值范围是a<-4.故选A.1) 给定不等式 $2x^2-8x-4-a>0$ 在区间 $(1,4)$ 内有解,即$a<2x^2-8x-4$ 在区间 $(1,4)$ 内有解。

(完整版)《一元二次不等式及其解法》典型例题透析

(完整版)《一元二次不等式及其解法》典型例题透析

(3 )方法一:《一元二次不等式及其解法》典型例题透析类型一:解一元二次不等式 例1.解下列一元二次不等式2 2 2(1)x 5x0 ; (2)x 4x 4 0 ; ( 3) x 4x 5 0所以,原不等式的解集是 {x|x 2}所以原不等式的解集是{x|x 2}原不等式整理得x 2 4x 50.思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答解析: (1) 方法一:因为所以方程 (5)2 4 1 0 25 0x 2 5x 0的两个实数根为:X iX 25x 0的解集是{x|05}.方法二: 2x 5x 0x(x 5)x x 解得x 0 或 x 0,即 0 x 55或xx 5 2x因而不等式 x 5x 0的解集是{x |0 x方法一:因为 0,方程x 2 4x 4 0的解为捲X 2 2 .函数y2x 4x 4的简图为:方法二:x 2 4x 4 (x 2)220 (当 x 2时,(x 2)0)2函数y5}.因而不等式x因为0,方程x2 4x 5 0无实数解,函数y x2 4x 5的简图为:所以不等式x2 4x 5 0的解集是方法二: 2 2x 4x 5 (x 2) 1 1 0所以原不等式的解集是•原不等式的解集是总结升华:1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;2. 当0时,用配方法,结合符号法则解答比较简洁(如第是一个完全平方数时,利用因式分解和符号法则比较快捷,3. 当二次项的系数小于举一反三:【变式1】解下列不等式(1) 2x2 3x(3) 4x2 4x【答案】(1 )方法一:0时, 般都转化为大于0后,2、3小题);当0且(如第1小题).再解答.因为方程2x23x22x6x2x0.(3)2 43x 2y 2x2 3x(2) 250的两个实数根为:2的简图为:函数0的解集是:X i12,x2{x|x(2x 1)(x1 、{x|x 或x2(2)整理,原式可化为3x2 6x 2 0,因为方法二:•••原不等式等价于•••原不等式的解集是:0,2方程3x 6x 2 0的解x, 12)1或x 2}.20,2}.,X2 1332所以不等式的解集是 (1八.(3 )方法一:因为 02由函数y 4x 4x 1的图象为:1原不等式的的解集是{—}•2方法二:•/原不等式等价于:(2x 1)2 0,•••原不等式的的解集是2方程 x 2x 3 0无实数解,3的简图为:函数2的简图为:方法二:x 2 2x 3 •原不等式解集为 . 【变式2】解不等式:6 x 2 【答案】原不等式可化为不等式组 x 2(x1)2 2 x 2x12,即(X 4)(xx(x 1)3) 0 03解得x•原不等式的解集为{x|类型二:已知一元二次不等式的解集求待定系数例2.不等式x 2 mx n 0的解集为x (4,5),求关于x 的不等式nx 解集。

一元二次不等式及其解法(精)全

一元二次不等式及其解法(精)全
1.2 x
一元二次不等式5x2 10x 4.8 0的解集就是 二次函数y 5x2 10x 4.8的图象(抛物线) 位于x轴下方的点所对应的x的集合.
因此, 求解一元二次不等式可以先解相应的一元二次方程, 确定抛物线与x轴交点的横坐标, 再根据图象写出不等式的解集. 第一步:解方程5x2 10x 4.8 0,得:x1 0.8, x2 1.2;
问题: 怎样解不等式5x2 10x 4.8 0?
思考(:1)当x是什么实数时,函数y 5x2 10x 4.8的值是:
(1)0 (2)正数 (3)负数
(2)能否画出二次函数 y 5x2 10x 4.8 的图象。 y
(3)能否找出抛物线上纵坐标 y 0 的点?其横坐标应取哪些值?
0 0.8
y 5x2 10x 4.8
有两相异实根 x1, x2 (x1<x2)
有两相等实根 x1=x2= b 2a
ax2+bx+c>0 (a>0)的解集 {x|x<x1,或 x>x2}
{x|x≠
b
}
2a
ax2+bx+c<0
(a>0)的解集 {x|x1< x <x2 }
Φ
△<0 y
x O 没有实根
R Φ
例1:解下列不等式:
(1)x2 7x 12 0; (2) x2 2x 3 0; (3)x2 2x 1 0; (4)x2 2x 2 0.
从这题可得出求一元二次不等式的解集的 基本步骤是怎样的?
解一元二次不等式的基本步骤:
(1)化不等式为标准形式:ax2 bx c 0(a 0) 或ax2 bx c (0 a 0)
(2)确定方程ax2 bx c 0 a 0 的根;

一元二次不等式解法和集合运算练习题

一元二次不等式解法和集合运算练习题

必修 5《一元二次不等式及其解法》练习卷知识点:1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:鉴别式b2 4ac 0 0 0 二次函数y ax2bx ca0 的图象有两个相异实数根一元二次方程ax2 bx c 0x1,2 b 有两个相等实数根2a x1 x2b 没有实数根a 0 的根2ax1 x2ax2 bx c 0x x x1或x x2x xbRa 0 2a一元二次不等式的解集ax2 bx c 0x x1 x x2a 0同步练习:1、不等式6x2 5x 4 的解集为()A ., 4 1 , B. 4 , 13 2 3 2C., 1 4 , D. 1 , 42 3 2 32、设会合x 1 x 2 ,x x a 0 ,若,那么实数 a 的取值范围是()A.1, B.2, C.,2 D.1,3、若不等式x2 mx 1 0 的解集为 R ,则 m 的取值范围是()A .RB .2,2 C., 2 2, D.2,24、设一元二次不等式ax 2 bx 1 0 的解集为x 1 x 1 ,则 ab 的值是()3A .6 B.5 C.6 D.55、不等式x2 ax 12a2 0 a 0 的解集是()A .3a,4 aB .4a, 3a C.3,4 D .2a,6 a6、不等式ax2 bx 2 0 的解集是x 1 x 1,则2 3 A.14 B.14 C.a b()10D.101 2 x2 6 x 9 x2 3x 191的解集是()7、不等式22A .1,10 B., 1 10,C.R D., 1 10,8、不等式x 1 2 x 0 的解集是()A .x 1 x 2 B.x x 1或x 2 C.x 1 x 2 D.x x 1或x 29、不等式ax2 bx c a 0 的解集为,那么()A .a 0,0B .a 0,0 C.a 0,0 D .a 0,010、设f x x2 bx 1 ,且 f 1 f 3 ,则 f x 0 的解集是()A.,1 3, B.R C.x x 1 D .x x 111、若0 a 1,则不等式 a x1的解是()x 0aA .a1 1x a x B.a aC.x a或x 1 D.x 1或 x aa a12、不等式x 1 3x 0 的解集是()A.,1B.,0 0,1C.1, D.0,13 3 3 313、二次函数y ax2 bx c x R 的部分对应值以下表:x 3 2 1 0 1 2 3 4y 6 0 4 6 6 4 0 6则不等式 ax2 bx c 0 的解集是____________________________.14、若a b 0 ,则 a bx ax b 0 的解集是_____________________________.15 、不等式ax2 bx c 0 的解集为x 2 x 3 ,则不等式ax2 bx c 0 的解集是________________________ .16、不等式x2 2x 3 0 的解集是___________________________.17、不等式x2 5x 6 0 的解集是______________________________.18、k 1 x2 6x 8 0 的解集是或4 ,则k_________.x x 2 x519、已知不等式x2 px q 0 的解集是x 3 x 2 ,则 p q ________.20、不等式x x3 0 的解集为____________________.21、求以下不等式的解集:⑴ x 4 x 1 0 ;⑵3x2 x 2 ;⑶ 4x2 4x 1 0 .22、已知不等式ax 2bx 2 0 的解集为x 1x1,求a、b的值.2 323、已知会合x x29 0 ,x x24x 3 0 ,求,.会合的运算一、知识点:1.交集:由所有下于会合 A 即:A B2.并集:由所有下于会合 A 即:A B 属于会合 B 的元素所组成的会合,叫做 A 与 B 的交集。

一元二次不等式的解法练习题含答案

一元二次不等式的解法练习题含答案

一元二次不等式的解法练习题(1)1. 不等式−2x 2+x +3≤0的解集是( )A. B.{x|x ≤−1或x ≥}C.{x|x ≤−或x ≥1}D.2. 不等式x 2−7x <0的解集是( ) A.{x|x <−7或x >0} B.{x|x <0或x >7} C.{x|−7<x <0}D.{x|0<x <7}3. 不等式x 2+2x −3≥0的解集是( ) A.{x|x ≥1} B.{x|x ≤−3} C.{x|−3≤x ≤1} D.{x|x ≤−3或x ≥1}4. 不等式x 2−4x −5>0的解集为( )A.{x|x ≥5或x ≤−1}B.{x|x >5或x <−1}C.{x|−1≤x ≤5}D.{x|−1<x <5}5. 不等式2x 2−x −1>0的解集是( ) A.(−12,1)B.(1,+∞)C.(−∞,1)∪(2,+∞)D.(−∞,−12)∪(1,+∞)6. 不等式组{x 2−2x −3<0log 2x <0 的解集为( )A.(−1, 0)B.(−1, 1)C.(0, 1)D.(1, 3)7. 已知集合A ={x ∈N|−2<x <4},B ={x|12≤2x ≤4},则A ∩B =( ) A.{x|−1≤x ≤2} B.{−1, 0, 1, 2} C.{1, 2} D.{0, 1, 2}8. 下列四个不等式中,解集为⌀的是()A.−x2+x+1≤0B.2x2−3x+4<0C.x2+6x+9≤0D.9. 已知函数f(x)=3x2−6x−1,则()A.函数f(x)有两个不同的零点B.函数f(x)在(−1, +∞)上单调递增C.当a>1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=3D.当0<a<1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=1310. 已知集合A={−1,0,2}, B={2,a2},若B⊆A,则实数a的值为________.11. 不等式|x−3|<2的解集为________.12. 不等式3x2−6x−5>4的解集为________.13. 已知不等式kx2−2x+6k<0(k≠0)若不等式的解集为{x|x<−3或x>−2},求实数k的值________.14. 不等式9−x2>0的解集是________.15. 已知集合A={x|x2−3x−10≤0}.(Ⅰ)若B={x|m−6≤x≤2m−1},A⊆B,求实数m的取值范围;(Ⅱ)若B={x|m+1≤x≤2m−1},B⊆A,求实数m的取值范围.16. 已知函数f(x)=ax2+bx−a+2.(1)若关于x的不等式f(x)>0的解集是(−1,3),求实数a的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.17. 某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(利润和投资单(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元投资金,并将全部投入A,B两种产品的生产,怎样分配这18万元,才能使该企业获得最大利润?其最大利润约为多少万元?参考答案与试题解析一元二次不等式的解法练习题(1)一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】一元二次不等式的应用【解析】将不等式变形为(x+1)(2x−3)≥0,由一元二次不等式的解法得出答案.【解答】不等式−2x2+x+3≤0,即2x2−x−3≥0,即(x+1)(2x−3)≥0,解得x≤−1或,故不等式−2x2+x+3≤0的解集是{x|x≤−1或x≥}.2.【答案】D【考点】一元二次不等式的应用【解析】不等式化为x(x−7)<0,求出解集即可.【解答】不等式x2−7x<0可化为x(x−7)<0,解得0<x<7,所以不等式的解集是{x|0<x<7}.3.【答案】D【考点】一元二次不等式的解法【解析】将不等式左边因式分解可得:(x+3)(x−1)≥0,从而可解不等式.【解答】解:由题意,不等式可化为:(x+3)(x−1)≥0,∴x≤−3或x≥1.故选D.4.【答案】B【考点】直接解一元二次不等式即可. 【解答】解:∵ x 2−4x −5>0, ∴ (x −5)(x +1)>0, 解得,x <−1或x >5. 故选B . 5.【答案】 D【考点】一元二次不等式的解法 【解析】 此题暂无解析 【解答】 此题暂无解答 6.【答案】 C【考点】其他不等式的解法 【解析】由题意可得,{−1<x <30<x <1 ,解不等式可求.【解答】由题意可得,{−1<x <30<x <1 ,即可得,0<x <1. 7. 【答案】 D【考点】 交集及其运算 【解析】化简集合A 、B ,根据交集的定义写出A ∩B . 【解答】集合A ={x ∈N|−2<x <4}={0, 1, 2, 3}, B ={x|12≤2x ≤4}={x|−1≤x ≤2},则A ∩B ={0, 1, 2}.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 ) 8.【答案】 B,D【考点】此题暂无解析【解答】此题暂无解答9.【答案】A,C,D【考点】二次函数的图象二次函数的性质【解析】结合二次函数的零点及单调性及复合函数的单调性与最值的关系分别检验各选项即可判断.【解答】因为二次函数对应的一元二次方程的判别式△=(−6)2−4×3×(−1)=48>0,所以函数f(x)有两个不同的零点,A正确;因为二次函数f(x)图象的对称轴为x=1,且图象开口向上,所以f(x)在(1, +∞)上单调递增,B不正确;令t=a x,则f(a x)=g(t)=3t2−6t−1=3(t−1)2−4.当a>1时,1a ≤t≤a,故g(t)在[1a,a]上先减后增,又a+1a2>1,故最大值为g(a)=3a2−6a−1=8,解得a=3(负值舍去).同理当0<a<1时,a≤t≤1a ,g(t)在[a,1a]上的最大值为g(1a)=3a2−6a−1=8,解得a=13(负值舍去).三、填空题(本题共计 5 小题,每题 5 分,共计25分)10.【答案】【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:已知A={−1,0,2}, B={2,a2},若B⊆A,则a2=0,解得:a=0.故答案为:0.11.【答案】(1, 5)【考点】由题意利用绝对值不等式的基本性质,求得不等式|x−3|<2的解集.【解答】不等式|x−3|<2,即−2<x−3<2,求得1<x<5,12.【答案】{x|x>3或x<−1}【考点】一元二次不等式的解法【解析】先化简不等式,然后根据十字相乘法求出不等式的解集.【解答】解:由题意得,不等式化简为x2−2x−3>0,所以(x−3)(x+1)>0,解得x>3或x<−1,所以不等式的解集为{x|x>3或x<−1}.故答案为:{x|x>3或x<−1}.13.【答案】−2 5【考点】一元二次不等式的解法【解析】(1)由题设条件,根据二次函数与方程的关系,得:k<0,且−3,−2为关于x的方程k x2−2x+6k=0的两个实数根,再由韦达定理能求出k的值.【解答】解:∵不等式kx2−2x+6k<0(k≠0)的解集为{x|x<−3或x>−2},∴−3和−2是方程kx2−2x+6k=0的两个根,∴−3+(−2)=2k,∴k=−25,故答案为:−25.14.【答案】{x|−3<x<3}【考点】一元二次不等式的解法【解析】此题暂无解析【解答】解:不等式9−x2>0变形为x2<9,所以解集为{x|−3<x <3}. 故答案为:{x|−3<x <3}.四、 解答题 (本题共计 3 小题 ,每题 10 分 ,共计30分 ) 15.【答案】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 【考点】集合的包含关系判断及应用 【解析】先求出集合A ,再利用集合A 与集合B 的包含关系,列出不等式组,即可求出m 的取值范围,注意对空集的讨论. 【解答】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5 ,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 16.【答案】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.【考点】一元二次不等式的解法 【解析】左侧图片未给出解析 左侧图片未给出解析【解答】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ f (x )=ax 2+2x −a +2=(x +1)(ax −a +2)>0, ∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.17.f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以当t=4时,y max=172=8.5,所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元. 【考点】二次函数在闭区间上的最值函数模型的选择与应用【解析】此题暂无解析【解答】解:(1)根据题意可设A,B两种产品的利润与投资的函数关系式分别为:f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.试卷第11页,总11页。

一元二次不等式基础题50道加解析

一元二次不等式基础题50道加解析

一元二次不等式基础题50道加解析一元二次不等式是一种常见的数学问题,涉及到一元二次方程的不等式关系。

解一元二次不等式的方法主要有图像法、代入法和配方法等。

下面将给出50道关于一元二次不等式的基础题目及解析,帮助读者巩固和加深对一元二次不等式的理解和应用。

一、图像法1.解不等式x^2-4x+3>0解析:首先求出方程x^2-4x+3=0的根,可以通过求解二次方程或配方法得到x=1和x=3。

然后画出函数y=x^2-4x+3的图像,可知该图像开口向上,且在x=1和x=3两点处与x轴相交。

根据图像的性质,可知不等式x^2-4x+3>0的解集为x∈(-∞,1)∪(3,+∞)。

2.解不等式2x^2-5x+2<0解析:首先求出方程2x^2-5x+2=0的根,可以通过求解二次方程或配方法得到x=0.5和x=2。

然后画出函数y=2x^2-5x+2的图像,可知该图像开口向上,且在x=0.5和x=2两点处与x轴相交。

根据图像的性质,可知不等式2x^2-5x+2<0的解集为x∈(0.5,2)。

二、代入法3.求解不等式x^2-6x+8>0解析:将不等式中的x^2-6x+8替换为一个符号t,得到t>0。

然后求解t>0的解集,可以得到t∈(-∞,∞)。

最后将t的解集转换回x 的解集,即x^2-6x+8>0的解集为x∈(-∞,∞)。

4.求解不等式x^2+5x+6≤0解析:将不等式中的x^2+5x+6替换为一个符号t,得到t≤0。

然后求解t≤0的解集,可以得到t∈(-∞,0]。

最后将t的解集转换回x 的解集,即x^2+5x+6≤0的解集为x∈[-3,-2]。

三、配方法5.求解不等式x^2-4x+3≥0解析:首先求出方程x^2-4x+3=0的根,可以通过求解二次方程或配方法得到x=1和x=3。

然后将不等式x^2-4x+3≥0转换为(x-1)(x-3)≥0的形式。

根据配方法,可知x-1和x-3的符号相同,且不等式的解集为x∈(-∞,1]∪[3,+∞)。

一元二次不等式及其解法专题讲解及练习(含答案)

一元二次不等式及其解法专题讲解及练习(含答案)

一元二次不等式及其解法. 一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0 (a >0)或ax 2+bx +c <0 (a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2. 一元二次不等式与相应的二次函数及一元二次方程的关系如下表:题型一 一元二次不等式的解法例1 已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎨⎧1+b =3a,1×b =2a. 解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. 当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.(1)不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为________.(2)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). (1)答案 {x |-3<x <-2}解析 令f (x )=ax 2+bx +c ,则f (-x )=ax 2-bx +c ,结合图象,可得ax 2-bx +c >0的解集为{x |-3<x <-2}.(2)解 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. ①当a =0时,原不等式化为x +1≤0⇒x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1. ③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ; 当2a =-1,即a =-2时,原不等式等价于x =-1; 当2a <-1,即a >-2,原不等式等价于2a ≤x ≤-1. 综上所述,当a <-2时,原不等式的解集为⎣⎡⎦⎤-1,2a ; 当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎡⎦⎤2a ,-1; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞.练习题1. 不等式x 2<1的解集为________.答案 {x |-1<x <1}解析 x 2<1,则-1<x <1,∴不等式的解集为{x |-1<x <1}. 2. 函数y =x 2+x -12的定义域是____________.答案 (-∞,-4]∪[3,+∞)解析 由x 2+x -12≥0得(x -3)(x +4)≥0,∴x ≤-4或x ≥3. 3. 已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为__________.答案 (-∞,-2)∪(2,+∞)解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2,∴k >2或k <- 2. 4. (2012·重庆)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解析 x -12x +1≤0等价于不等式组⎩⎪⎨⎪⎧ x -1≤0,2x +1>0,①或⎩⎪⎨⎪⎧x -1≥0,2x +1<0.②解①得-12<x ≤1,解②得x ∈∅,∴原不等式的解集为⎝⎛⎦⎤-12,1. 5.若不等式ax 2+bx -2<0的解集为{x |-2<x <14},则ab 等于( )A .-28B .-26C .28D .26答案 C 解析 由已知得⎩⎨⎧-2+14=-ba-2×14=-2a,∴a =4,b =7,∴ab =28.5. 不等式x -3x +2<0的解集为解析 不等式x -3x +2<0可转化为(x +2)(x -3)<0,解得-2<x <3.6. 已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是 解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).7. 若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4,所以0≤a ≤4. 8. 已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =________. 答案 -2解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,故-12应是ax -1=0的根,∴a =-2.9. (江西)不等式x 2-9x -2>0的解集是________.答案 {x |-3<x <2或x >3}解析 利用“穿根法”求解.不等式可化为(x -3)(x +3)x -2>0,即(x -3)(x +3)(x -2)>0,利用数轴穿根法可知,不等式的解集为{x |-3<x <2或x >3}. 10. 若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.答案 2解析 根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.11. 求不等式12x 2-ax >a 2 (a ∈R )的解集.解 原不等式可化为(3x -a )(4x +a )>0. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为{x |x <a 3或x >-a4}.。

一元二次不等式及其解法

一元二次不等式及其解法

一元二次不等式及其解法(1)<基础知识><基本训练>1、不等式(x+2)(1+x)>0的解集是 。

2、若关于X 的不等式x-ax+1>0的解集为(-∞,-1)∪(4,+∞),则实数a = .3、已知不等式ax 2+2x+c>0的解集为-13<x<12,则a+c= . 4、若关于x 的方程2k x 2-2x -9k=0两实根有一个大于2,而另一个根小于2,则实数k 的取值范围是 。

<典型例题讲练>例1、 解下列不等式:(1) -x 2+3x+18<0 (2) 4≤x 2-3x<18(3) 2x-1x+2<1 (4) (x-3)(x-2)(x-1)2(x-4)≥0<课堂检测>1、不等式 2x-13x+1>0的解集是 。

2不等式组⎩⎪⎨⎪⎧︱x-2︱<2log 2(x 2-1)>1的解集是 。

3、x(x-5)2>6(x-5)2解集是 。

4、函数f(x)=3ax+1-2a在(-1,1)上存在X0,使f(X0)=0,则a的取值范围是5、解下列不等式:(1) 4x2+4x+1>0 (2) x2-3x+5>0(3) (x+3)(x+2)(x-1)2(x-4)<0 (4) 2x2-5x-1x2-3x+2>1一元二次不等式及其解法<典型例题讲练>例1.当a为何值时,不等式(a2-1)x2-(a-1)x-1<0的解是全体实数。

练习:已知常数a∈R,解关于x的不等式ax2-2x+a<0.<课后作业>1、解不等式:(1) –x2+2x-23>0 (2) 9x2-6x+1≤0(3) (2x2-3x+1)(3x2-7x+2)>0 (4)3x-52x-3≤22、已知不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数X恒成立,求实数m的取值范围。

(完整版)一元二次不等式及其解法练习及同步练习题(含答案)

(完整版)一元二次不等式及其解法练习及同步练习题(含答案)

13.2 一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y (2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃(二)、检测题一、选择题1、不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为 ( ) A 、11|32x x ⎧⎫<<⎨⎬⎩⎭ B 、1|2x x ⎧⎫>⎨⎬⎩⎭ C 、1|3x x ⎧⎫<⎨⎬⎩⎭ D 、11|32x x x ⎧⎫<>⎨⎬⎩⎭或 2、在下列不等式中,解集为φ的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+->3、函数()2log 3y x =+的定义域为 ( )A 、()(),13,-∞-⋃+∞B 、()3,1--C 、(][),13,-∞-⋃+∞D 、(][)3,13,--⋃+∞4、若2230x x -≤,则函数()21f x x x =++ ( ) A 、有最小值34,无最大值 B 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值2 5、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-6、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14-B .14C .10-D .10 二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为 。

高一一元二次不等式及其解法知识点+例题+练习 含答案

高一一元二次不等式及其解法知识点+例题+练习 含答案

1.“三个二次”的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集(-∞,x1)∪(x2,+∞)(-∞,-b2a)∪(-b2a,+∞)Rax2+bx+c<0(a>0)的解集(x1,x2) ∅∅不等式解集a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b}{x|x≠a}{x|x<b或x>a}(x-a) (x-b)<0{x|a<x<b}∅{x|b<x<a}【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ ) (2)不等式x -2x +1≤0的解集是[-1,2].( × )(3)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (5)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )1.(教材改编)不等式x 2-3x -10>0的解集是________. 答案 (-∞,-2)∪(5,+∞)解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 2.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =________. 答案 [0,4)解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).3.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是________________. 答案 (2,3)解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.5.(教材改编)若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________. 答案 (-1,1)解析 由题意可知,Δ>0且x 1x 2=a 2-1<0,故-1<a <1.题型一 一元二次不等式的求解命题点1 不含参的不等式例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞).命题点2 含参不等式例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅, ③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}. 引申探究将原不等式改为ax 2-(a +1)x +1<0,求不等式的解集. 解 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a )(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a<x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a .综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a<x <1}.思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.求不等式12x 2-ax >a 2(a ∈R )的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.综上所述,当a >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上恒成立例3 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.(2)设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是________. 答案 (1)(-3,0) (2)[0,4)解析 (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. (2)∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4.命题点2 在给定区间上恒成立例4 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即 m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.命题点3 给定参数范围的恒成立问题例5 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________________________________________________________________________. 答案 {x |x <1或x >3}解析 x 2+(k -4)x +4-2k >0恒成立, 即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解之得x <1或x >3.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为__________.(2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (1)[-1,4] (2)(-22,0) 解析 (1)x 2-2x +5=(x -1)2+4的最小值为4, 所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4.(2)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)y =[(1+0.75x )×12-(1+x )×10]×(1+0.6x )×10 000 =-6 000x 2+2 000x +20 000,即y =-6 000x 2+2 000x +20 000(0<x <1). (2)上年利润为(12-10)×10 000=20 000. ∴y -20 000>0,即-6 000x 2+2 000x >0, ∴0<x <13,即x 的范围为(0,13).14.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思维点拨 (1)考虑“三个二次”间的关系; (2)将恒成立问题转化为最值问题求解. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵x ∈[1,+∞)时,f (x )=x 2+2x +ax >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}温馨提醒 (1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. (2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别.[方法与技巧]1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. [失误与防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0 (a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.A 组 专项基础训练(时间:30分钟)1.不等式(x -1)(2-x )≥0的解集为____________. 答案 {x |1≤x ≤2}解析 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0, 所以不等式的解集为{x |1≤x ≤2}.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为________.答案 [-1,1]解析 方法一 当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.② 由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是____________. 答案 [0,4]解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.4.已知不等式x 2-2x -3<0的解集是A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b =________. 答案 -3解析 由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2, 所以a +b =-3.5.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =________.答案 2∶1∶3解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a. ∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧ b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a 2=2∶1∶3. 6.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为__________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________________. 答案 {x |a <x <1a} 解析 原不等式即(x -a )(x -1a)<0, 由0<a <1得a <1a ,∴a <x <1a. 8.已知关于x 的不等式ax -1x +1<0的解集是⎩⎨⎧⎭⎬⎫x |x <-1或x >-12,则实数a =____________. 答案 -2解析 ax -1x +1<0⇔(x +1)(ax -1)<0, 依题意,得a <0,且1a =-12.∴a =-2. 9.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a 的取值范围是________.答案 (-1,23) 解析 ∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1.∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0, ∴-1<a <23. 10.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .B 组 专项能力提升(时间:20分钟)11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是__________________________.答案 (-∞,-32)∪(12,+∞) 解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12.12.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.答案 52解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.答案 b <-1或b >2解析 由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a 2=1,故a =2. 由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.14.设函数f (x )=x 2-1,对任意x ∈[32,+∞),f (x m)-4m 2·f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________________.答案 {m |m ≤-32或m ≥32} 解析 依据题意得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0, 解得m ≤-32或m ≥32. 15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.。

一元二次不等式解法专题知识梳理及典型练习题(含答案)

一元二次不等式解法专题知识梳理及典型练习题(含答案)

一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}Φ Φ二.穿针引线法例 1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( ) A .{x|x >0}B .{x|x≥1}C.{x|x >1} D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( ) A .(x -3)(2-x)≥0B.0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0 练习1:1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)答案 D2.(2011·XX)不等式2x 2-x -1>0的解集是( ). A.⎝ ⎛⎭⎪⎫-12,1B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26 答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎨⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎨⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式. (2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.(2014·课标Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A .设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B. 已知-12<1x<2,则x 的取值范围是( )A.-2<x <0或0<x <12B.-12<x <2<-12或x >2 <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是 .解:不等式1-2xx +1>0等价于(1-2x )(x +1)>0,也就是⎝ ⎛⎭⎪⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝ ⎛⎭⎪⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎪⎫-∞,-13,得a +b >0,且3b -2a a +b =-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2. 解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,不符合 ②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2. (3)当m 2-4<0即-2<m <2时,x >1m -2. 类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2013·金华十校联考)已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或 ②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1}, ∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集. 解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,ca =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝⎛⎭⎪⎫x -1m (x -1)<0.①当m <0,不等式为⎝⎛⎭⎪⎫x -1m (x -1)>0,∵1m<1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m或x >1.②当m >0,不等式为⎝⎛⎭⎪⎫x -1m (x -1)<0.(Ⅰ)若1m<1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m<x <1; (Ⅱ)若1m>1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ; (Ⅲ)若1m=1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a,+∞;当-2<a <0时,解集为⎣⎢⎡⎦⎥⎤2a,-1;当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎢⎡⎦⎥⎤-1,2a .类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0. 得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A.{x |-1≤x <0} B.{x |0<x ≤1} C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )∪[1,+∞) ∪[1,+∞)解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,则a 的最小值为( )B.-2C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎤0,12,∴a ≥-⎝⎛⎭⎪⎫x +1x .∵f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上是减函数, ∴⎝⎛⎭⎪⎫-x -1x max =-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )<x <3 <1或x >3 <x <2<1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围. 解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1. ∴x <-1或x >3.类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) <-1>1 C.-1<a <1≤a <1解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.1.不等式x -2x +1≤0的解集是( ) A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D. 2.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,则m 的取值范围是( )>0<m <2 >12 <0解:由不等式的解集形式知m <0.故选D.3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2}解:可设f (x )=a (x +1)⎝ ⎛⎭⎪⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎪⎫10x -12<0,从而10x <12,解得x <-lg2,故选D.4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( )A.[15,20]B.[12,25]C.[10,30]D.[20,30] 解:设矩形的另一边为y m ,依题意得x 40=40-y 40,即y =40-x , 所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( ) <-12>-4 >-12 <-4解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是____________. 解:∵x ∈(1,2),∴x -1>0.则x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2]. 7.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0, 解得-22<m <0.故填⎝ ⎛⎭⎪⎫-22,0. 8.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2. 9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式 f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0). 10.解关于x 的不等式:a (x -1)x -2>1(a >0). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0, 若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1};若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。

相关文档
最新文档