PLC控制三相异步电动机正反转
任务三 三相异步电动机正反转循环运行的PLC控制
(二)设备与器材
表1-22 设备与器材
序号
名称
符号
型号规格
数量 备注
1
常用电工工具
十字起、一字起、尖嘴钳、剥线钳 等
1
2
计算机(安装GX Works3编程 软件)
3
三菱FX5U可编程控制器
PLC
FX5U-32MR/ES
4
三相异步电动机正反转循环运 行控制面板
5
三相异步电动机
6
以太网通信电缆
M
WDJ26,PN=40W,UN=380V, IN=0.2A,nN=1430r/min,f=50Hz
2)学会用三菱FX5U PLC的顺控程序指令编辑三相异步电动机正反转循 环运行控制的程序。
3)会绘制三相异步电动机正反转循环运行控制的I/O接线图。 4)掌握FX5U PLC I/O接线方法。 5)熟练掌握使用三菱GX Works3编程软件编辑梯形图程序,并写入 PLC进行调试运行。
11
项目一 任务三 三相异步电动机正反转运行运行的PLC控制
MPS
栈存储器的第一层, 之前存储的数据依次
下移一层
读取堆栈第一层的 MRD 数据且保存,堆栈内
的数据不移动
读取堆栈存储器第
MPP
一层的数据,同时该 数据消失,栈内的数
据依次上移一层
梯形图表示
FBD/LD表示
ST表示
目标元件
ENO:=MPS(EN);
ENO:=MRD(EN);
无
ENO:=MPP(EN);
对于FX5U PLC默认情况下,16位计数器的个数为256个,对应编号为C0 ~C255;32位超长计数器个数为64个,对应编号为LC0~LC63。
基于PLC变频器三相异步电动机正反的控制
基于PLC变频器三相异步电动机正反的控制PLC(可编程逻辑控制器)和变频器是工业控制领域中常用的设备,它们可以用来控制三相异步电动机的正反转。
通过PLC和变频器的配合,可以实现对电动机的精确控制,提高生产效率,确保生产设备的安全运行。
本文将详细介绍如何利用PLC和变频器实现对三相异步电动机正反的控制。
一、PLC的基本原理PLC(可编程逻辑控制器)是一种专门用来控制工业过程的装置。
它可以根据预先设定的程序来实现对工业设备的自动控制。
PLC主要由输入模块、输出模块、中央处理器和存储器组成。
输入模块用来接收外部信号,输出模块用来输出控制信号,中央处理器负责对输入信号进行处理,并根据预设的程序来控制输出模块的动作。
PLC的工作原理是通过接收输入信号,根据预设的程序进行逻辑处理,然后产生相应的控制信号输出到输出模块,从而控制工业设备的运行。
PLC可以实现对各种工业设备的自动控制,包括电动机、泵、阀门等。
二、变频器的基本原理变频器是一种用来调节电动机转速的装置,它可以根据外部输入信号来控制电动机的转速。
变频器可以将交流电源转换为可调的交流电源,从而实现对电动机转速的精确控制。
变频器主要由整流器、滤波器、逆变器和控制电路组成。
变频器的工作原理是通过控制逆变器的开关管来改变输出电压和频率,从而实现对电动机的转速控制。
变频器可以实现对电动机的起动、加速、减速、停止等动作,同时还可以保护电动机免受过载、过流、短路等故障的影响。
PLC和变频器可以配合使用,实现对三相异步电动机的正反转控制。
下面我们将介绍如何利用PLC和变频器来实现对电动机的正反转控制。
1. 硬件连接首先需要将PLC和变频器连接起来,以便它们之间可以进行通信。
一般来说,PLC和变频器之间可以采用RS485通信接口进行连接。
在连接时需要确保PLC和变频器的通信参数设置一致,包括波特率、数据位、校验位等。
2. 编写PLC程序接下来需要编写PLC程序,用来实现对电动机的正反转控制。
PLC基本逻辑指令及应用—三相异步电动机正反转控制
OB 组织
FB
FC
功能块 功能
DB 数据块
FB1
FC1
DB
OB1
FB2
FB1
FC21
DB
DB
FC1
DB1
变量类型
位
(1字)节 基本数据类型
字 双字 字符 有符号字节 整数 双整数 无符号字节 无符号整数 无符号双整数 浮点数(实数) 双精度浮点数
时间
符号 Bool Byte Word DWord Char Sint Int Dint USInt UInt UDInt Real LReal
I0.0 Q0.0
常闭 触点
SB2 KM2 I0.1 Q0.1
KM2
输出
Q0.1
线圈
KM1
Q0.0
KM1 Q0.2 KM2
Q0.1
“bit” 常开触点
“bit” 常闭触点
“bit” 线圈
左
母
线
右
母
线
KH SB3
I0.3
I0.2
SB1 KM1
SB2 KM2
I0.0 Q0.0 I0.1 Q0.1
KM2
➢ 用字母表示存储区标识符,M表示位存储区、I 表示输入映像区、Q表示输出映像区。
➢ 地址由字节地址和位地址组成
MSB
LSB
7 65 4 32 10
I0
1
2
3
(3)不同存储区寻址 ➢ 字节的寻址:
MSB
LSB
7 65 4 32 10
M0
1
2
3
(3)不同存储区寻址 ➢ 字的寻址:
MSB
LSB
7 65 4 32 10
三相异步电动机正反转PLC控制
三相异步电动机正反转PLC控制
异步电动机正反转控制系统是应用最广泛的控制方式,图1是传统的利用接触-继电控制实现的电动机正反转控制线路,它包括主电路和控制电路。
图1 电动机正反转控制线路
一.系统的硬件设计
PLC硬件包括设计主电路、输入输出分配,主电路仍然为图1(a)主电路,PLC的硬件接口设计为输入、输出接线图设计,根据电动机正反转控制要求,要求有4个输入点,2个输出点,系统的I/O接线图为图2:为了防止正反转接触器同时得电,在PLC的I/O分配图输出端KM1和KM2采用了硬件互锁控制。
图2 异步电动机正反转控制PLC接线图
二.系统的软件设计
PLC软件设计要设计梯形图和编写程序,梯形图和指令表图3。
,在梯形图中,Q0.0、Q0.1常闭实现正反转软件互锁,I0.0、I0.1常闭实现按钮软件互锁。
在梯形图中,正反转线路一定要有联锁,否则按SB2、SB3则KM1、KM2会同时输出,引起电源短路。
图3 异步电动机正反转控制程序
三.系统调试运行
按照图2连接好PLC的输入和输出,将图3的梯形图程序下载到PLC,,将PLC运行开关打到RUN ,按下正转起动按钮SB2,I0.0闭合,Q0.0得电,驱动KM1主触头闭合,电动机M正转起动,按下停车按钮SB1,KM1线圈失电,电动机M停车;按下反转起动按钮SB3,I0.1闭合,Q0.1得电,驱动KM2主触头闭合,电动机M反转起动,按下停车按钮SB1,KM2线圈失电,电动机M停车。
实验2.8 PLC控制的三相异步电动机的正反转控制实验
实验2.8 PLC 控制的三相异步电动机的正反转控制实验V12L3L2L1U12KM2上图为电工实训实验指导书中三相异步电动机正反转继电器控制线路。
线路的动作过程: 按下正转按钮SB1,KM1主触头闭合,KM2主触头处于打开状态,电机正转;按下反转按钮SB2,KM1主触头打开,KM2主触头闭合,电机反转;按下停止按钮SB3,电机停止运转。
可编程控制器控制系统可代替继电器控制系统实现相同的控制任务。
其输入设备和输出设备与继电器控制系统相同,但他们是直接接到可编程控制器的输入端和输出端的。
控制程序是通过一个编程器写道可编程控制器的程序存储器中。
每个程序语句确定一个顺序,运行时依次读取存储器中的程序语句,对它们的内容进行解释并加以执行,执行结果用以接通输出设备,控制被控对象的工作。
在存储器控制系统中,控制程序的修改不需要通过改变控制系统的接线(即硬件),而只需要通过编程器改变程序存储器中某些语句的内容。
一、实验目的1、了解继电器控制系统和PLC 控制系统的不同点和相同点。
2、掌握三相异步电动机正反转控制主回路的接线。
3、学会用可编程控制器实现三相异步电动机正反转控制的编程方法。
二、实验内容L1L2L3(b)FX系列PLC上图(a )为PLC 控制系统主回路接线图;图(b )为本实验的PLC 主机接线图。
按钮SB1为电机正转正转按钮,按钮SB2为反转控制按钮,按钮SB3为急停控制按钮,KM1为正转接触器,KM2为反转接触器,FR 为热继电器,QS 为低压断路器。
要求实现以下的控制目的:当按下正转控制按钮SB1,线圈KM1通电,KM1主触头闭合,电动机M 正向旋转,当松开按钮时,电动机M 不会停转。
当按下反转控制按钮SB2,线圈KM2通电,KM2主触头闭合,电动机M 反向旋转,当松开按钮时,电动机M 不会停转。
按下按钮SB3,电机M 停止运转(正转或反转)。
三、编写PLC 的实验程序。
PLC控制三相异步电动机的正反转控制
•
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈
串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈
不会同时通电,这种安全措施在继电器电路中称为“互锁”。
• 除此之外,为了方便操作和保证Y0和Y1不会同时为ON, 在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常 闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常 闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正 转,这是如果想改为反转运行,可以不安停止按钮SB1,直接 安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0 线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点 击正转变为反转。 在梯形图中的互锁和按钮联锁电路只
12、OUT Y1
图一 图二 图三
•
返回
图1 三相异步电动机正反转控制电路图
返回
图2 PLC外部接线图
图3 异步电动机正反转控制电 路梯形图
返回
• • Thank
谢谢大家 you very
much
故障引起的电源短路事故。如果因主电路电流过大或者接
触器质量不好,某一接触器的主触点被断电时产生的电弧 熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如 果另一个接触器的线圈通电,仍将造成三相电源短路事故。
•
为了防止出现这种情况,应在PLC外部设置KM1和
KM2的辅助常闭触点组成的硬件互锁电路 见图2 ,假设
KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助
常闭触点处于断开状态,因此KM2的线圈不可能得电。
图一 图二 图三
•
图1中的FR是作过载保护用的热继电器,异步
电动机长期严重过载时,经过一定延时,热继电器的
PLC控制三相异步电动机正反转设计毕业设计论文
PLC控制三相异步电动机正反转设计毕业设计论文摘要:本文基于PLC控制技术,设计了一种三相异步电动机的正反转控制系统。
通过分析三相异步电动机的工作原理和控制方式,确定了系统的控制策略和硬件配置。
通过对PLC编程,实现了对电动机的正反转控制和过载保护功能。
实验结果表明,该系统可稳定、可靠地实现三相异步电动机的正反转控制,具有较好的应用前景。
关键词:PLC;三相异步电动机;正反转控制;过载保护1.引言三相异步电动机广泛应用于工业生产中,具有体积小、功率大、效率高等特点。
在实际应用过程中,正反转控制和过载保护是三相异步电动机控制系统中的重要功能,对于保证电机的正常运行和延长电机的使用寿命具有重要作用。
本文基于PLC技术,设计了一种三相异步电动机的正反转控制系统,旨在实现电动机的正反转控制和过载保护功能。
2.三相异步电动机的工作原理和控制方式三相异步电动机由定子和转子组成,在工作过程中,通过三相交流电源提供的电磁场与定子的电磁场产生转矩,从而驱动电动机的转子旋转。
三相异步电动机的控制方式主要包括定时控制和矢量控制两种。
定时控制是根据电动机运行的需要,通过调节电源的相位和频率实现对电动机的控制;矢量控制是基于电动机的数学模型和转子位置的反馈信息,通过控制电源的电压和频率,实现对电动机的精确调控。
3.设计方案基于PLC控制技术,本文设计了一种三相异步电动机的正反转控制系统。
系统由PLC控制器、三相交流电源、电动机和传感器组成。
通过PLC编程,实现了对电动机的正反转控制和过载保护功能。
具体的设计方案如下:3.1硬件配置系统的硬件配置包括PLC控制器、三相交流电源、电动机和传感器。
PLC控制器是系统的核心部件,负责电动机控制和过载保护的实现。
三相交流电源提供电动机的驱动能源。
电动机是执行器,根据PLC的控制信号,实现正反转和停止操作。
传感器用于检测电动机的工作状态和转速。
3.2PLC编程通过PLC编程,实现了对电动机的正反转控制和过载保护功能。
任务一 三相异步电动机变频调速正反转运行的PLC控制
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
✓ 模拟量输入A/D的应用举例 有一台压力传感器测量范围是0~40000N,将其连接至输出范围为0~
10V的电压变送器,并将电压变送器的输出端连接到FX5U32MR/ES内置模拟 量输入端子,要求实时显示压力数值,试编辑梯形图程序。
打开GX Works3编程软件,按图4-2、4-3所示的方法设置模拟量输入的参 数。由于FX5UPLC内置模拟量输入是将A/D转换值存于特殊寄存器SD6020中 ,数字量的范围0~4000,这个数值对应的力是0~40000N,据此编辑梯形 图如图4-4所示。
11
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
✓ 内置模拟量输出规格
表4-3 FX5UCPU内置模拟量输出规格(续)
项目
规格
转换速度
30μs(数据的更新为每个运算周期)
绝缘方式
与CPU模块内部不绝缘
输入输出占用点数
0点(与CPU模块最大输入输出点数无关)
① 0V 输出附近存在死区区域,模拟量输出值相对于数字输入值存在部分 未反映的区域。
-32768~+32767
默认
禁止 0 0
禁用 0 0 0
CLEAR
0
15
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
在图4-6“模块参 数 模拟输出”设置 窗口,单击该窗口左 侧“应用设置”选项 ,即可选择对输出通 道进行应用设置,设 置界面如图4-7所示 ,参数设置完成后, 单击“应用”按钮。 这一步很重要,否则 ,参数设置无效。
图4-4 模拟量输入A/D的应用梯形图
10
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
PLC控制三相异步电动机正反转只是分享
P L C控制三相异步电动机正反转实验三 PLC控制三相异步电动机正反转一、实训目的1.掌握PLC控制代替传统接线控制的方法,编制程序控制三相异步电动机正反转控制。
2.掌握三相异步电动机正反转主电路和控制电路的接线方法。
3.学会用可编程控制器实现三相异步电动机正反转控制的编程方法。
三、实验控制要求1.用两个按钮控制起停,按动启动按钮后,电动机开始正转。
2.正转5 min 后,停2 min ,然后再开始反转。
3.反转3 min 后,停 1 min,再正转,依次循环。
4.如果按动停止按钮开头,不管电动机在哪个状态(正转、反转或停止),电动机都要停止运行,不再循环运行。
电动机可逆运行方向的切换是通过两个接触器KM1、KM2的切换来实现的。
切换时要改娈电源的相序。
在设计程序时,必须防止由于电源换相所引起的短路事故。
例如,由于向正向运转切换到反向运转时,当正转接触器KM1断开时,由于其主触点内瞬时产生的电弧,使这个触点仍处于接通状态;如果这时使反转接触器KM2闭合,就会使电源短路。
因此必须在完全没有电弧的情况下才能使反转的接触器闭合。
四、I/O分配表和电路图控制电路输入设备PLC输入继电器输出设备PLC输出继电器代号功能代号功能SB1 启动按钮I0.0 KA1 正转接触器Q0.0 SB2 停止按钮I0.1 KA2 反转接触器Q0.1梯形图参考程序PLC控制三相异步电动机正反转四、实训步骤程序中的I0.0至I0.1分别对应控制实训单元输入SB1和SB2。
通过专用PC/PPI电缆连接计算机与PLC主机。
打开编程软件STEP7,逐条输入程序,检查无误后,将所编程序下载到主机内,并将可编程控制器主机上的STOP/RUN开关拨到RUN位置,运行指示灯点亮,表明程序开始运行,有关的指示灯将显示运行结果。
分别按下SB1和SB2开关,观察输出指示灯.Q0.0、Q0.1是否符合逻辑。
观察各电器的动作情况。
思考题:。
PLC控制三相异步电机正反转
目录一、可行性报告 (2)1、项目目的 (2)2、项目背景及发展概况 (2)3、可行性 (3)二、设计说明 (3)1、器材 (3)2、整体思路 (4)3、系统流程图 (4)4、实验步骤 (5)三、三相异步电机的正反转PLC控制 (5)3.1 PLC定时器控制电动机正反转电路的主接线图 (7)3. 2 PLC定时器控制三相异步电动机正反转的梯形图 (8)3.3定时器控制电动机正反转的指令表程序 (9)3.4 PLC的I/O分配 (10)3.5 实体框形图 (11)结论 (12)电机控制一、可行性报告1、项目目的1)、了解机床电气中三相电机的正反转控制和星三角启动控制。
2)、掌握电动机的常规控制电路设计。
3)、了解电动机电路的实际接线。
4)、掌握GE FANUC 3I 系统的电动机启动程序编写。
2、项目背景及发展概况三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它,要合理的控制它。
这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化设备提供了非常可靠的控制应用,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业,企业对自动化的需要。
PLC 控制三相异步电动机正反转实验
PLC 控制三相异步电动机正反转实验PLC 控制三相异步电动机正反转实验本文下载地址:搜索PLC实验二PLC控制三相异步电动机正反转实验一、实验目的1.学习和掌握PLC的实际操作和使用方法;2.学习和掌握PLC控制三相异步电动机正反转的硬件电路设计方法;3.学习和掌握PLC控制三相异步电动机正反转的程序设计方法;4.学习和掌握PLC控制系统的现场接线与软硬件调试方法。
二、实验原理三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。
因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。
如图2.1所示为PLC控制异步电动机正反转的实验原理电路。
图2.1PLC控制三相异步电动机正反转实验原理图左边部分为三相异步电动机正反转控制的主回路。
由图2.1可知:如果KM5的主触头闭合时电动机正转,那么KM6主触头闭合时电动机则反转,但KM5和KM6的主触头不能同时闭合,否则电源短路。
右边部分为采用PLC对三相异步电动机进行正反转控制的控制回路。
由图可知:正向按钮接PLC的输入口某0,反向按钮接PLC的输入口某1,停止按钮接PLC的输入口某2;继电器KA4、KA5分别接于PLC的输出口Y33、Y34,KA4、KA5的触头又分别控制接触器KM5和KM6的线圈。
实验中所使用的PLC为三菱F某2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5做中间转换电路。
在KM5和KM6线圈回路中互串常闭触头进行硬件互锁,保证软件错误后不致于主回路短路引起断路器自动断开。
电路基本工作原理为:合上QF1、QF5,给电路供电。
当按下正向按钮,控制程序要使Y33为1,继电器KA4线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序要使Y34为1,继电器KA5线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。
用PLC控制三相异步电动机正反转
用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。
PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。
用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。
即电动机的控制能实现正反停。
1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。
2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。
即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。
当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。
3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。
即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。
这样能做到电动机正反转的直接切换。
当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。
常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。
当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。
常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。
PLC控制三相异步电动机正反转
目录引言 (1)第一章三相感应电动机系统总体设计方案 (2)1.1三相感应电动机的基本结构 (2)1.1.1 三相感应电动机定子 (2)1.1.2三相感应电动机转子 (3)1.2三相感应电动机的工作原理 (3)1.3三相异步电动机的正反转工作过程 (3)1.3.1 三相感应电动机的原理 (3)1.3.2 三相感应电动机的制动 (4)1.4三相感应电动机系统变量定义及分配表 (4)1.5三相感应电动机系统接线图 (5)1.6三相感应电动机系统流程图 (6)1.7三相感应电动机时序图设计 (7)第二章 PLC基础的知识 (10)2.1关于PLC的定义 (10)2.2PLC与继电器控制的区别 (10)2.3PLC的工作原理 (10)第三章三相感应电动机的PLC控制 (12)3.1三相感应电机的正反转PLC控制 (12)3.2PLC定时器控制电动机正反转互锁的设计 (13)3.2.1 PLC定时器控制电动机正反转电路的主接线图 (13)3.2.2 PLC定时器控制三相感电动机正反转的梯形图 (13)3.3三相感应电动机使用PLC控制优点 (13)第四章系统调试及结果分析 (15)结论 (16)参考文献 (17)引言三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
要合理的控制它。
我研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
09-用PLC进行三相异步电动机正、反转控制线路设计
实验九用PLC进行三相异步电动机正、反转控制线路设计一、实验目的掌握使用PLC实现三相异步电动机的正反转控制。
二、实验原理图a)主电路b)控制电路c)梯形图图1原理图三、控制要求开关QS作为总电源开关。
按下SB1,KM1吸合,电动机正向转动。
按下SB2,KM2吸合,电动机反向转动。
按下SB3,KM1(或KM2)释放,电动机停止。
开关S1与热继电器FR并接,可以用于模拟FR的动作。
四、梯形图并写出程序,实验梯形图参考图7-15步序指令器件号说明步序指令器件号说明0 LD X0 正转起动7 OR Y11 OR Y0 8 ANI X12 ANI X1 9 ANI X2 停止3 ANI X2 停止10 ANI X3 过载保护4 ANI X3 过载保护11 OUT Y1 反转5 OUT Y0 正转12 END6 LD X1 反转起动1.控制回路接线将PWD-41A挂件上PLC输出端的COM、COM0、COM1相接。
按照输入输出配置将PWD-43挂件三相鼠笼异步电动机控制模块的SB1、SB2、SB3、FR分别接到PWD-41A上PLC的输入端X0、X1、X2、X3;将S1接到FR;COM接到PLC输入端的COM。
KM1、K2接到PLC输出端的Y0、Y1;N接到PLC输出端的COM。
输入输出X0 正转(SB1)Y0 正转X1 反转(SB2)Y1 反转将QS的三个输入端(黄、绿、红)分别接到PWD02电源控制屏上的三相电源U、V、W,将N接到PWD02上的N。
将KM1黄色端与KM2的红色端子相接,KM1、KM2的绿色端子相接,KM1红色端子与KM2黄色端子相接,然后将FR的三个输出端(黄、绿、红)分别接到三相异步电动机(DJ24)接线盒上的A、B、C,将DJ24的X、Y、Z短接。
三、实验操作过程按实验接线接好连线,待老师检查无误后方可往下进行。
将程序输入PLC中并运行,按下PDC01A电源控制屏上的启动按钮将控制屏启动接通三相电源。
基于PLC变频器三相异步电动机正反的控制
基于PLC变频器三相异步电动机正反的控制PLC(可编程逻辑控制器)是一种用于自动化控制的电子设备,可通过编程来控制各种机械设备和工业流程。
变频器是一种用于控制电机转速的设备,可以通过改变输入电压和频率来改变电动机的转速。
三相异步电动机是一种常用的工业电动机,可以根据输入电源的频率和电压来实现正反转运行。
在基于PLC变频器的控制系统中,可以使用PLC来控制变频器的输出频率和电压,从而控制电动机的正反转运行。
具体的控制原理如下:1. 硬件连接:将PLC和变频器连接起来。
通过PLC的数字输出口,将控制信号传输给变频器的控制端口。
然后,将变频器的输出端口与三相异步电动机的输入端口相连接。
2. PLC编程:在PLC中,通过编写程序来实现控制电动机正反转运行。
需要定义变量来保存电机的状态信息,例如正转、反转或停止状态。
然后,通过读取输入端口的信号,检测电机当前的状态,并根据需要改变电机的状态。
当PLC接收到正转信号时,可以向变频器发送指令,使电动机以正转方式运行。
还可以在PLC程序中添加其他功能,例如监测电动机的运行状态、保护电动机免受过载和短路等故障,以及实现电动机运行相关的逻辑控制。
3. 参数设置:在使用PLC控制变频器和电动机之前,需要对变频器进行参数设置。
这些参数包括变频器的输出频率范围、启动和停止时间、最大和最小转速等。
通过合理设置这些参数,可以确保电动机在正反转运行过程中遵循设计要求。
基于PLC变频器的控制系统具有控制精度高、稳定性好、可靠性高等优点。
在工业自动化领域中得到了广泛应用。
通过合理配置PLC程序和参数设置,可以实现对三相异步电动机的正反转运行控制,满足不同的工业应用需求。
三相异步电动机正反转plc控制的实训总结
三相异步电动机正反转plc控制的实训总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三相异步电动机正反转 PLC 控制的实训总结1. 引言在工业自动化控制中,三相异步电动机的正反转控制是基础而重要的技能之一。
三相异步电机正反转plc控制电路设计
三相异步电机正反转plc控制电路设计
三相异步电机正反转PLC控制电路设计需要考虑以下几个方面:
1. 电机接线:首先需要将三相异步电机的三个相线分别接到PLC输出接口的三个继电器(K1、K2、K3)上,同时将电机的公共线接到PLC的中性线上。
2. 控制逻辑:为了实现正反转控制,需要设计相应的控制逻辑。
具体来说,可以使用两个按钮(分别为正转按钮和反转按钮)来控制电机正反转的方向。
当按下正转按钮时,PLC将使K1继电器闭合,同时使K2和K3继电器断开,从而使电机正转;当按下反转按钮时,PLC将使K3继电器闭合,同时使K1和K2继电器断开,从而使电机反转。
3. 安全措施:为了确保电机正反转过程中的安全性,需要添加一些安全措施。
例如,可以在电路中添加限位开关,当电机旋转到一定位置时,可以自动切换为停止状态。
此外,还需要确保电路的接线牢固可靠,以避免漏电等问题。
总之,三相异步电机正反转PLC控制电路设计需要充分考虑电机的接线、控制逻辑和安全措施,以实现可靠的正反转功能。
用PLC控制三相异步电动机正反转
用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。
PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。
用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。
即电动机的控制能实现正反停。
1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。
2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。
即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。
当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。
3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。
即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。
这样能做到电动机正反转的直接切换。
当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。
常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。
当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。
常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。
plc三相异步电动机正反转控制
plc三相异步电动机正反转控制
PLC三相异步电动机正反转控制
PLC(可编程逻辑控制器)是一种数字化电子设备,用于控制机器和工艺自动化。
在工业生产中,PLC广泛应用于各种机械设备的控制和自动化。
其中,PLC三相异步电动机正反转控制是一种常见的应用。
PLC三相异步电动机正反转控制的原理是通过PLC控制电动机的三个相线,实现电动机的正反转。
具体实现方法如下:
1. 通过PLC控制电动机的三个相线,使电动机正转或反转。
2. 通过PLC控制电动机的起动电流和运行电流,实现电动机的平稳启动和运行。
3. 通过PLC控制电动机的转速,实现电动机的调速。
4. 通过PLC控制电动机的保护功能,实现电动机的安全运行。
在实际应用中,PLC三相异步电动机正反转控制可以应用于各种机械设备的控制和自动化。
例如,可以应用于机床、输送带、风机、水泵
等设备的控制和自动化。
总之,PLC三相异步电动机正反转控制是一种常见的应用,它可以实现电动机的正反转、平稳启动和运行、调速和保护功能。
在工业生产中,它广泛应用于各种机械设备的控制和自动化,提高了生产效率和质量。
用PLC实现三相异步电动机的正反转控制电路教学设计方案
用PLC实现三相异步电动机的正反转控制电路教学设计方案嘿,大家好!今天我来给大家分享一个实用的教学设计方案——用PLC实现三相异步电动机的正反转控制电路。
作为一名有着十年方案写作经验的大师,我会尽量让这个方案简单易懂,跟着我一起来探索吧!一、教学目标1.让学生掌握PLC的基本原理和编程方法。
2.培养学生运用PLC实现电动机正反转控制电路的能力。
3.提高学生的实际动手操作能力和创新思维。
二、教学内容1.PLC的基本原理和编程方法。
2.三相异步电动机的正反转控制电路原理。
3.PLC与电动机控制电路的连接方法。
三、教学重点与难点1.教学重点:PLC的编程方法和电动机正反转控制电路的设计。
2.教学难点:PLC与电动机控制电路的连接及编程技巧。
四、教学步骤1.理论讲解(1)介绍PLC的基本原理和编程方法。
PLC(可编程逻辑控制器)是一种以微处理器为核心,采用可编程存储器存储用户程序,实现各种逻辑、定时、计数、运算等功能的控制器。
它广泛应用于工业控制领域,具有可靠性高、编程简单、易于扩展等优点。
(2)讲解三相异步电动机的正反转控制电路原理。
三相异步电动机的正反转控制电路是指通过改变电动机的电源相序,实现电动机的正反转运行。
通常采用接触器来实现电源相序的改变,从而实现电动机的正反转控制。
2.实践操作(1)准备实验设备①PLC控制器②三相异步电动机③接触器④继电器⑤电源(2)连接PLC与电动机控制电路①将PLC的输入端与电动机控制电路的输入端相连。
②将PLC的输出端与接触器的线圈相连。
③将接触器的触点与电动机的电源相连。
(3)编写PLC程序①分析电动机正反转控制电路的输入信号和输出信号。
②根据输入信号和输出信号,编写PLC程序。
//正转IF(按钮1按下)THEN输出1=1;//接触器1得电,电动机正转输出2=0;//接触器2失电,电动机不反转ENDIF//反转IF(按钮2按下)THEN输出1=0;//接触器1失电,电动机不反转输出2=1;//接触器2得电,电动机反转ENDIF(4)调试与优化(2)拓展学生的学习思路,引导学生思考如何将PLC应用于其他工业控制场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三PLC控制三相异步电动机正反转
一、实训目的
1.掌握PLC控制代替传统接线控制的方法,编制程序控制三相异步电动机正反转控制。
2.掌握三相异步电动机正反转主电路和控制电路的接线方法。
3.学会用可编程控制器实现三相异步电动机正反转控制的编程方法。
三、实验控制要求
1.用两个按钮控制起停,按动启动按钮后,电动机开始正转。
2.正转5 min 后,停2 min ,然后再开始反转。
3.反转3 min 后,停 1 min,再正转,依次循环。
4.如果按动停止按钮开头,不管电动机在哪个状态(正转、反转或停止),电动机都
要停止运行,不再循环运行。
电动机可逆运行方向的切换是通过两个接触器KM1、KM2的切换来实现的。
切换时要改娈电源的相序。
在设计程序时,必须防止由于电源换相所引起的短路事故。
例如,由于向正向运转切换到反向运转时,当正转接触器KM1断开时,由于其主触点内瞬时产生的电弧,使这个触点仍处于接通状态;如果这时使反转接触器KM2闭合,就会使电源短路。
因此必须在完全没有电弧的情况下才能使反转的接触器闭合。
四、I/O分配表和电路图
控制电路
输入设备PLC输入继
电器输出设备PLC输出继
电器
代号功能代号功能
SB1 启动按钮I0.0 KA1 正转接触器Q0.0 SB2 停止按钮I0.1 KA2 反转接触器Q0.1
梯形图参考程序
PLC控制三相异步电动机正反转
四、实训步骤
程序中的I0.0至I0.1分别对应控制实训单元输入SB1和SB2。
通过专用PC/PPI电缆连接计算机与PLC主机。
打开编程软件STEP7,逐条输入程序,
检查无误后,将所编程序下载到主机内,并将可编程控制器主机上的STOP/RUN开关拨到RUN 位置,运行指示灯点亮,表明程序开始运行,有关的指示灯将显示运行结果。
分别按下SB1和SB2开关,观察输出指示灯.Q0.0、Q0.1是否符合逻辑。
观察各电器的动作情况。
思考题:。