数学模型姜启源第4版

合集下载

第四章 数学规划模型 数学建模(姜启源第四版)ppt课件

第四章  数学规划模型 数学建模(姜启源第四版)ppt课件

12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 x1桶牛奶生产A1 x2桶牛奶生产A2
决策变量
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应
x1 x2 50
基本模型
变量
目标 函数 约束 条件
x5 kg A1加工B1, x6 kg A2加工B2 利润
Max z 24x1 16x2 44x3 32x4 3x5 3x6
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
基本 1桶 模型 牛奶 或
线性规划模型
A1,A2每公斤的获利是与各自 产量无关的常数
每桶牛奶加工A1,A2的数量, 时 间是与各自产量无关的常数 A1,A2每公斤的获利是与相互 产量无关的常数 每桶牛奶加工A1,A2的数量,时 间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
可 加 性
连续性
模型求解
x1 x2 50
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Global optimal solution found. Objective value: 3360.000 Total solver iterations: 2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 原料无剩余 MILK 0.000000 48.00000 三 TIME 0.000000 2.000000 时间无剩余 种 CPCT 40.00000 0.000000 加工能力剩余40

姜启源编数学模型第四版

姜启源编数学模型第四版
第26页/共76页
一般模型 x(t) ~甲方兵力,y(t) ~乙方兵力
模型 假设
• 每方战斗减员率取决于双方的兵力和战斗力. • 每方非战斗减员率与本方兵力成正比. • 甲乙双方的增援率为u(t), v(t).
x(t) f (x, y) x u(t), 0
tm~传染病高潮到来时刻
tm
1
ln
1 i0
1
t i 1 ?
(日接触率) tm
病人可以治愈!
第6页/共76页
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染. SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
di
dt
i(1 i)
i
i[i (1 1 )]
i(0) i0
/
~ 日接触率 1/ ~感染期
~ 一个感染期内每个病人的
有效接触人数,称为接触数.
第7页/共76页
模型3
di/dt
di i[i (1 1 )]
dt
接触数 (感染期内每个
病人的有效接触人数)
i
i
>1
i0
>1
1
1-1/
接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di
i(1 i)
dt
i(0) i0
第5页/共76页
模型2
i
di
i(1 i)
dt
i(0) i0
Logistic 模型
1
i(t)

姜启源第四版数学模型-第7章

姜启源第四版数学模型-第7章

F(x)0
x N(1E),x0
平衡点
0
r1
稳定性判断 F (x 0 ) E r , F (x 1 ) r E
E r F (x 0 ) 0 ,F (x 1 ) 0 x0稳定,x1不稳定
E r F (x 0 ) 0 ,F (x 1 ) 0 x0不稳,定 x1稳定
x2 1 2 2 2
A

fx1 gx1
fx2 P0
g x2
2 p q 0

p

(
f x1

g) x2
P0

q

det
A
p>0且q>0
p<0或q<0
平衡点 P0稳定(对(2),(1)) 平衡点 P0不稳定(对(2),( Nx22
x1(t)f(x1,x2) x2(t)g(x1,x2) (1)
x (t)f(x0,x0)x ( x0)f(x0,x0)x ( x0)
1
x 1 1 2 1 1
x2 1 2 2 2
x (t)g(x0,x0)x ( x0) g(x0,x0)x ( x0) (2 )
2
x 1 1 2 1 1
过度 支出 S(E)cE r
=0 临界强度Es
pN/2cpN(c/Np2c/N) Es Es1E*经济学捕捞过度
pNE S(E)
pNE/2 S(E)
cpN/2 (p2c/N)
T(E)
Es Es2 E*生态学捕捞过度 0
Es1 E*
Es2 r
E
捕鱼业的 在自然增长和捕捞情况的合理假设下建模. 持续收获 用平衡点稳定性分析确定渔场鱼量稳定条件,
f (x , x ) 0

姜启源等编《数学模型》第四版课件第1章

姜启源等编《数学模型》第四版课件第1章


小船(至多2人) 3名商人
3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员. 要求~在安全的前提下(两岸的随从数不比商人多),经 有限步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数
yk~第k次渡河前此岸的随从数 sk=(xk , yk) ~过程的状态 xk, yk=0,1,2,3;
( x y ) 30 750 ( x y ) 50 750
求解
x=20 y =5
答:船速为20km/h.
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数)
• 用符号表示有关量(x, y分别表示船速和水速) • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程)
dz x z , t 2, dt x 1100e t , z (2) 236.5
λ=0.1386 (不变),μ =0.1155×2=0.2310
z(t ) 1650e0.1386t 1609.5e0.2310t , t 2
施救方案
1200 1000 x(t) 800
k=1,2,…
S ~ 允许状态集合 S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数
vk~第k次渡船上的随从数
uk, vk=0, 1, 2;
k=1,2,…
dk=(uk , vk) ~过程的决策 D ~允许决策集合 D={(u , v) u+v=1, 2, u, v=0, 1, 2} 状态因决策而改变
14电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义数学建模的一般步骤模型准备模型假设模型构成模型求解模型分析模型检验模型应用了解实际背景明确建模目的搜集有关信息掌握对象特征形成一个比较清晰的问题电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义针对问题特点和建模目的作出合理的简化的假设在合理与简化之间作出折中用数学的语言符号描述问题发挥想像力使用类比法尽量采用简单的数学工具数学建模的一般步骤电气照明是建筑电气技术的基本内容是保证建筑物发挥基本功能的必要条件合理的照明对提高工作效率保证安全生产和保护视力都具有重要的意义模型求解各种数学方法软件和计算机技术

姜启源等编《数学模型》第四版 课件 第十三章 动态优化模型

姜启源等编《数学模型》第四版 课件 第十三章  动态优化模型

自变量t,函数x(t), y(t)
泛函、泛函的变分和极值
1.对于某函数集合的每一个函 数x(t), 有J的一个值与之对应, 称J是x(t)的泛函, 记作J(x(t)) 2. x(t)在x0(t)的增量记作 x(t)= x(t)-x0(t),x(t)称x(t)的变分
3. y在t0的增量记作 f= f(t0+t) - f(t0), f的线性主部是函数 的微分, 记作dy,dy = f (t0)dt
(t ) 0 k2 2k1 x
d df d d 2 (t ))] ( ) k 2 [ (k1 x dt dx dt dx
最优生产计划在边际成本的变化率等于边际贮存时达到 .
生产计划的制订
• 最优生产计划的目标函数只考虑生产费用与贮存 费用, 并对这两种费用作了最简单的假设. • 对于泛函极值问题用古典变分法求解, 得到最优 生
泛函、泛函的变分和极值
4. 若泛函J(x(t))在函数集合内的x(t) 达到极值, 则在x(t)的变分J(x(t))=0
dy (t ) f (t t ) 0
5. 泛函J(x(t))在x(t)的变分可以表为 J ( x(t )) J ( x (t ) x (t )) 0
d ( F y Fy ) 0 dx
c
y(1 y2 ) 1/ c 2
F yFy c
x c1 (t sin t ) c2 y c1 (1 cos t ) 圆滚线方程
c2=0, c1由y(x1)=y1确定.
横截条件(变动端点问题)
容许函数 x(t)的一个端点固定: x(t1)=x1; 另一个端点 在给定曲线 x=(t) 上变动: x(t2)= (t2) (t2可变). 欧拉方程在变动端点的定解条件

数学模型第四版(姜启源)作业对于6.4节蛛网模型讨论下列问题:【范本模板】

数学模型第四版(姜启源)作业对于6.4节蛛网模型讨论下列问题:【范本模板】

对于6。

4节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定。

如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与6.4的结果进行比较。

(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 决定,试分析稳定平衡的条件是否还会放宽。

解:(1)设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为:)2(11k k k x x f y +=++ 则 0),2(0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,….该方程的特征方程为022=++αβαβλλ与6.4节中 )2(11-++=k k k y y g x 时的特征方程一样, 所以0〈αβ〈2, 即为0p 点的稳定条件。

(2)设 )2(11k k k x x f y +=++ )2(11-++=k k k y y g x , 则有 0),2(0101>-+-=-++ααx x x y y k k k 0),2(0101>-+=--+ββy y y x x k k k 消去y ,得到0123)1(424x x x x x k k k k +=++++++αβαβαβαβ 该方程的特征方程为02423=+++αβαβλαβλλ令λ=x ,αβ=a , 即求解三次方程0a 2ax ax 4x 23=+++ 的根 在matlab 中输入以下代码求解方程的根x :syms x asolve(4*x^3+a*x^2+2*a*x+a==0,x)解得 1x = (36*a^2 — 216*a — a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(1/3)/12 — a/12 + (a*(a — 24))/(12*(36*a^2 — 216*a — a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(1/3));2x = -(2*a*(36*a^2 - 216*a — a^3 + 24*3^(1/2)*(—a^2*(a - 27))^(1/2))^(1/3) — 3^(1/2)*a*24*i — 3^(1/2)*(36*a^2 — 216*a — a^3 + 24*3^(1/2)*(—a^2*(a — 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i+ (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 — 216*a - a^3 + 24*3^(1/2)*(-a^2*(a — 27))^(1/2))^(1/3));3x =—(2*a*(36*a^2 - 216*a — a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3) + 3^(1/2)*a *24*i + 3^(1/2)*(36*a^2 - 216*a — a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i — 24*a - 3^(1/2)*a^2*i + (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 — 216*a — a^3 + 24*3^(1/2)*(—a^2*(a -27))^(1/2))^(1/3));其中1x 为实根,2x 与3x 为一对共轭虚根。

数学模型第四版课后规范标准答案姜启源版

数学模型第四版课后规范标准答案姜启源版
现求(1)的解: (1)的系数矩阵为
.
再由初始条件,得
又由
其解为
(1)
即乙方取胜时的剩余兵力数为
又令
注意到 .
(2) 若甲方在战斗开始后有后备部队以不变的速率 增援.则
相轨线为
此相轨线比书图11中的轨线上移了 乙方取胜的条件为
《数学模型》作业解答
第六章(2008年11月20日)
1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数h.
S取最大值.
由 解得
此时 =20 =350(元)
2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:
货物
体积
(立方米/箱)
重量
(百斤/箱)
利润
(百元/箱)

5
2
20

4
5
10
已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.
A
B
C
3 2 2
3 3 3
4 5 5
4 4 3
5 5 5
6 6 7
总计
10 10 10
15 15 15
2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型.
解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.
考虑 到 时间内录像带缠绕在右轮盘上的长度,可得 两边积分,得
《数学模型》作业解答
故应改变订货策略.改变后的订货策略(周期)为T = ,能节约费用约53.33元.
《数学模型》作业解答
第四章(2008年10月28日)

数学模型第四版课后答案姜启源版

数学模型第四版课后答案姜启源版

《数学模型》作业答案第二章(1)(2012年12月21日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, 方法一(按比例分配)分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为: 第10个席位:计算Q 值为3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p中选较大者,可使对所有的,i iin p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ⎰⎰+=ntdn wkn r k vdt 0)(2π《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:令0=dTdC, 解得 rc c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QC TC, 得到驻点:与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况. 解:由题意可得贮存量)(t g 的图形如下:⋅-TT r k c 022)( 又 ∴ T =0kTT r k r 2)(⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,T r k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b kc b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t T T t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值.解:按分段价格,单位时间内的销售量为又 t q t q β+=0)(.于是总利润为=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- 0,021=∂∂=∂∂p p 令, 得到最优价格为: 在销售期T 内的总销量为 于是得到如下极值问题: 利用拉格朗日乘数法,解得: 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元);每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++= 令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小.又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为: max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =70以及x=0,y=0 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 1l x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为这是一个整线性规划问题. 用图解法求解. 可行域为:由直线1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值 由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为: max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成(1).s s(t) .s(t) .100≤∴单调减少由若σs (2)().00.1-s ,1,1dtdit s s σσσ从而则若 4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ并画出血药浓度曲线的图形.解: 设给药速率为()(),,0t x t f 中心室药量为(1)快速静脉注射: 设给药量为,0D 则()0t f =(2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得 (3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t k e D k t f -=3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ 求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--v bl a vbl e e ba vaw Q 1'21'04 4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNh N x --=, 2412N rNh N x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =,但2*0Nx =2N.2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.由前面的结果可得 h =r Er E e r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h . 10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x .解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22Nx ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N xrx h -=, 易得 2*0N x =此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较. (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: 在),(000y x P 点附近用直线来近似曲线h f ,,得到由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 对应齐次方程的特征方程为 02 2=++αβαβλλ 特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 对(7)作变换:,12αβμλ-= 则其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3)上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4)当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()T nk k k a a a ,,,21 ,()n k ,,2,1 =有 ()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次. 解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton圈为332541→→→→→.所以此竞赛图是双向连通的.等都是完全路径.此竞赛图的邻接矩阵为令()T e 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==,()()()TAS S 5,4,2,3,412==,()()()TAS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为 当mn2较小,1 n 时,有E D -=1 , mn E 4≈ ② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 于是带走产品的平均数是 ()122-+-n n npq q m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n ) ∴此时传送带效率公式为 ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- 当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈ ∴ mn E E 32/'=,当n m 时,132 m n, ∴ E E '.所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10=当报童每天订300份时,收益的期望值最大.数模复习资料第一章 1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型2. 数学模型对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中着名的牛顿第二定律使用公式22dt xd mF =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N随时间t 自由增长过程的微分方程()()t rN dtt dN =.3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验e.n 阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .9. (1)某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?(2)37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,。

笔记-数学模型(第四版) 姜启源等编

笔记-数学模型(第四版) 姜启源等编
x(t t ) x(t ) kx(t ) t
dx kx 当 t 0 得微分方程: dt x(0) x0
解微分方程
dx kdt x 1 x dx kdt ln( x) kt c1 x ce kt , c x0 x x0 e kt
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e m( )



t 时刻年龄为 的人的存活时间之和为: h( ) 所以时刻 t 年龄为 的人的期望寿命为:
P174 习题 4 1.设 x(t ), y (t ) 分别为 t 时刻甲乙双方的兵力,满足下列微分方程
x ay , (1) y bx, (2) x ( 0) x 0 , y ( 0) y 0 a 4, x 0 y 0 则当乙方取胜时,乙方的剩余兵力是多少?战斗时间 b 是多少? (2) 若甲方在战斗开始后,有后备兵力以不变的速率 r 增援,试重新建立模 型, 讨论如何判断双方的胜负
0

( r , t ) dr
0

d
解:
设 t 时刻年龄为 的人的数目随时间变化的规律为: m m( r ), r 0
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e 0 0 m(0)
2.试推导 logistic 人口增长模型.即设时刻 t 的人口为 x(t ) ,单位时间内人口的 增量与 x(1

姜启源编《数学建模》第四版 第十二章:马氏链模型

姜启源编《数学建模》第四版  第十二章:马氏链模型
3 i
需求不超过存量,需求被售
需求超过存量,存量被售
[ j P ( D j S i ) iP ( D i S i ) ] P ( S i ) n n n n n
i 1 j 1
0 . 632 0 . 285 0 . 896 0 . 263 0 . 977 0 . 452 0.857
状态与状态转移
1 , 第 n 年健康 状态概率 a ( n ) P ( X i ), i n 状态 X n 2 , 第 n 年疾病 i 1 , 2 ,n 0 , 1 ,
转移概率 p P ( X j X i ), i , j 1 , 2 , n 0 , 1 , ij n 1 n
a (n) 1
i 1 i
k j 1
k
转移概率 p P ( X j X i ), p 0 , p 1 ,i 1 , 2 , , k ij n 1 n ij ij
基本方程
a ( n 1 ) a ( n ) p ,i 1 , 2 , , k i j ji
1. 正则链 ~ 从任一状态出发经有限次转移 能以正概率到达另外任一状态 (如例1) .
N 正则链 N , P 0
正则链 w , a ( n ) w ( n )w ~ 稳态概率
w 满足 wP w
0 .8 0 .2 例 1 . P 0 . 7 0 . 3
背景与问题
钢琴销售量很小,商店的库存量不大以免积压资金.
一家商店根据经验估计,平均每周的钢琴需求为1架. 存贮策略:每周末检查库存量,仅当库存量为零时, 才订购3架供下周销售;否则,不订购. • 估计在这种策略下失去销售机会的可能性有多大? 以及每周的平均销售量是多少?

数学模型第四版姜启源

数学模型第四版姜启源
盟军(加)
盟军(英)
盟军(美一) 强化
盟军 缺口 (预备队)
原地 待命
德军 撤退 进攻
东进 盟 军 (美三 )
双方应该如何决策 ?
模型假设
? 博弈参与者为两方(盟军和德军)
? 盟军有3种使用其预备队的行动:强化缺口,原地 待命,东进;德军有 2种行动:向西进攻或向东撤退 .
? 博弈双方完全理性 ,目的都是使战斗中己方获得
(p*, q*): 混合(策略)纳什均衡(Mixed NE) 最优值均为 2/5
模型评述
?? 0 M ??1
0 ?? 0?
?占优(dominate) :盟军的行动 2占优于1
??? 1 1?? (前面的非常数和博弈 M' 类似)
?混合策略似乎不太可行 ! 但概率可作为参考. ----现实:盟军让预备队原地待命(行动 2),而德军
O
x
vb=vs 1 vs
单一价格战略效率为
1x
? ? ? ? x 0 (vb ? vs )dvsdvb ? 3x(1 ? x) ? 3 / 4
? ?1 0
vb 0
(vb
?
vs )dvs dvb
x=0.5
效率最大 (3/4)
线性价格战略
卖方报价 ps(vs) = as+csvs; 买方报价 pb(vb) =ab+cbvb.
多个决策主体
博弈模型 合作博弈
决策主体的决策 行为发生直接相 互作用 (相互影响 )
博弈模型 (Game Theory)
非合作博弈
静态、动态 信息完全、不完全
军事、政治、经济、企业管理和社会科学中应用广泛
11.1 进攻与撤退的抉择
背 ? 1944年6月初,盟军在诺曼底登陆成功 . 景 ? 到8月初的形势:

数学建模姜启源第四版第九章--概率模型

数学建模姜启源第四版第九章--概率模型

dG
n
(ab)n(p n) (bc)p(r)dr
dn
0
(ab)n(p n)n(ab)p(r)dr
n
(b c)0p (r)d r (a b )np (r)drdG 0 dn Nhomakorabean
0
n
p(r)dr p(r)dr
a b
b c
9.6 航空公司的预订票策略 问题 预订票业务~航空公司为争取客源开展优质服务
4)每人在生产完一件产品时都能且只能触到一只 挂钩,若这只挂钩是空的,则可将产品挂上运走; 若该钩非空,则这件产品被放下,退出运送系统.
模型建立
• 定义传送带效率为一周期内运走的产品数(记作s, 待定)与生产总数 n(已知)之比,记作 D=s /n
为确定s,从工人考虑还是从挂钩考虑,哪个方便?
• 若求出一周期内每只挂钩非空的概率p,则 s=mp
• 预先订票的乘客如果未能按时登机,可以乘坐下一 班机或退票,无需附加任何费用.
• 若公司限制预订票的数量等于飞机容量,由于会有订 了机票的乘客不按时来,致使飞机不满员而利润降低.
• 如果不限制预订票数量,若持票按时来的乘客超过飞 机容量,必然引起不能走乘客的抱怨, 给公司带来损失 .
• 公司需要综合考虑经济利益和社会声誉,确定预订票 数量的最佳限额 .
题, 如是否有考试作弊、赌博、偷税漏税等.
即使无记名调查也很难消除被调查者的顾虑, 极有 可能拒绝或故意做出错误的回答, 难以保证数据的 真实性, 使得调查结果存在很大的误差.
以对学生考试作弊现象的调查和估计为例, 建立 数学模型研究敏感问题的调查和估计方法.
问题及分析
设计合理的调查方案来提高应答率, 降低不真实回答 率, 尽量准确地估计有过作弊行为的学生所占的比例 .

2021-11第4版姜启源数学模型复习总结(1)

2021-11第4版姜启源数学模型复习总结(1)

2021-11第4版姜启源数学模型复习总结(1) 第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。

建模的一般方法及其在建模中的应用。

建模的一般步骤(每步的主要内容与问题)。

建模的全过程(框图)4个环节的含义。

模型的特点(技艺性)。

模型分类(表现特征),建模中的能力培养。

数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。

模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。

抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。

数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。

1-1-1 模型是为了特定的目的,将原型的()而得到的原型替代物。

1-1-2数学模型可以描述为:对于一个现实对象,()。

1-1-3 关于数学模型的如下论述中正确的是() A。

数学模型是以现实世界的特定问题为研究对象。

B。

数学模型只是对实际问题的近似表示,其中包含一些简化假设。

C。

数学模型表示是某一特定问题的内在规律的数学表示,是以方程和函数关系表示的数学结构。

D。

数学模型是现实问题的真实的描述,不能做任何假设和简化。

1-1-4 关于数学建模的如下论述中正确的是() A。

数学模型和数学建模是完全相同的概念。

B。

数学建模是一个全过程,包括表述、求解、解释和验证四个环节。

C。

数学建模全过程涉及两个世界是现实世界和虚拟世界,涉及的“双向翻译”是同声翻译和文献翻译。

D.数学建模过程是一个从理论-实践-再理论-再实践不断改进的过程。

§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了; 数学进入一些新领域,为数学建模开辟了许多处女地. 数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。

姜启源编数学模型第四版第3章简单的优化模型-PPT精选

姜启源编数学模型第四版第3章简单的优化模型-PPT精选
建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
问题
3.1 存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费. 该厂 生产能力非常大,即所需数量可在很短时间内产出.
已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元. 试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小.
A
=QT/2
Q rT
0
T
t
一周期贮存费为
c2
T 0
q(t)dt
c2
QT 2
一周期 总费用
C~
c1
c2
QT 2
c1
c2
rT 2 2
每天总费用平均 值(目标函数)
C(T)C ~c1c2rT TT 2
模型求解 求 T 使C(T)c1c2rTmin
T2
dC 0 dT
T 2 c1 rc 2
模型解释
Q rT 2c1r c2
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系.
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元. • 每天生产一次, 每次100件,无贮存费,准备费5000元.
每天费用5000元 • 10天生产一次, 每次1000件,贮存费900+800+…+100 =4500元,准备费5000元,总计9500元.
第三章 简单的优化模型
--静态优化模型
3.1 存贮模型 3.2 生猪的出售时机 3.3 森林救火 3.4 消费者的选择 3.5 生产者的决策 3.6 血管分支 3.7 冰山运输
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T T 2rT
2rT
(目标函数)
求 T ,Q 使 C(T ,Q) min
C 0, C 0 为与不允许缺货的存贮模型 NhomakorabeaT
Q
相比,T记作T´, Q记作Q´.
T 2c1 c2 c3 rc2 c3
Q 2c1r c3 c2 c2 c3
允许
T'
2c1
c 2
c 3
缺货
rc2 c3
模型 Q' 2c1r c3 c2 c2 c3
C~
c1
c2
QT 2
c1
c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解 求 T 使C(T ) c1 c2rT min
T2
dC 0 dT
模型解释
T 2c1 rc2
Q rT 2c1r c2
定性分析 c1 T,Q
c2 T,Q
• 回答原问题
T 2c1 rc2
Q rT 2c1r c2
c1=5000, c2=1,r=100
T=10(天), Q=1000(件), C=1000(元)
思考: 为什么与前面计算的C=950元有差别?
• 用于订货供应情况每: 天需求量 r,每次订货费 c1, 每 天每件贮存费 c2 , T天订货一次(周期), 每次订货Q件, 当贮存量降到零时,Q件立即到货.
经济批量订货公式(EOQ公式)
不允许缺货的存贮模型
允许缺货的存贮模型
q
Q
当贮存量降到零时仍有需求r,
出现缺货,造成损失. 原模型假设:贮存量降到零时 A
Q件立即生产出来(或立即到货). O
r
T1 B T
Q rT1
t
现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足.
周期T, t=T1贮存量降到零
一周期
贮存费
c2
T1 q(t)dt
0
c2 A
一周期
缺货费
c3
T T1
q(t ) dt
c3B
一周期总费用
C
c1
c2
QT1 2
c3
r(T
T1)2 2
允许缺货的存贮模型
一周期总费用 C c 1 c QT 1 c r(T T )2
2 2 1
2
1
3
1
每天总费用 平均值
C(T ,Q) C c1 c2Q2 c3 (rT Q)2
不允许 缺货 模型
T 2c1 rc2
Q rT 2c1r c2
记 c2 c3
c3
T T , Q Q
不 允
1 T T , Q Q c3

缺 货
c3 1
T T , Q Q
允许 缺货
T
2c1
c 2
c 3
rc2 c3
q Q
模型 Q
2c r 1
c3
c c c
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系.
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1 •元每.天生产一次, 每次100件,无贮存费,准备费5000元.
每天费用5000元 • 10天生产一次, 每次1000件,贮存费 900+800+…+100 =4500元,准备费5000元,总计 9500元. 平均每天费用950元
2
2
3
r R
注意:缺货需补足
O
T1 T
t
Q~每周期初的存贮量
每周期的生产量
R rT
2c1r
c 2
c 3
R (或订货量)
c2
c3
R Q Q Q~不允许缺货时的产量(或订货量)
存贮模型
• 存贮模型(EOQ公式)是研究批量生产计划的 重要理论基础, 也有实际应用.
• 建模中未考虑生产费用, 为什么?在什么条件下 可以不考虑(习题1)?
• 这是一个优化问题,关键在建立目标函数.
显然不能用一个周期的总费用作为目标函数.
目标函数——每天总费用的平均值.
模型假设
1. 产品每天的需求量为常数 r; 2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2; 3. T天生产一次(周期), 每次生产Q件,当贮存量
为零时,Q件产品立即到来(生产时间不计); 4. 为方便起见,时间和产量都作为连续量处理.
建模目的
设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小.
模 型 建 立 离散问题连续化
q
贮存量表示为时间的函数 q(t)
t=0生产Q件,q(0)=Q, q(t)以 Q r
需求速率r递减,q(T)=0.
A
=QT/2
Q rT
0
T
t
一周期贮存费为
c2
T 0
q(t)dt
c2
QT 2
一周期 总费用
• 建模中假设生产能力为无限大(生产时间不计), 如果生产能力有限(大于需求量的常数), 应作怎 样的改动(习题2)?
3.2 生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80kg重的生猪体重增加2kg.
市场价格目前为8元/kg,但是预测每天会降低 0.1元,问生猪应何时出售?
• 50天生产一次,每次5000件, 贮存费 4900+4800+…+100 =122500元,准备费5000元, 总计127500元平.均每天费用2550元
10天生产一次,平均每天费用最小吗?
问题分析与思考
• 周期短,产量小 • 周期长,产量大
贮存费少,准备费多 准备费少,贮存费多
存在最佳的周期和产量,使总费用(二者之和)最小.
问题
3.1 存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费. 该厂 生产能力非常大,即所需数量可在很短时间内产出.
已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元. 试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小.
r T ,Q
敏感性分析 参数c1,c2, r的微小变化对T,Q的影响
T对c1的 (相对)敏
S(T , c1)
ΔT Δ c1
/T / c1
dT c1 dc1 T
1 2
c1增加1%, T增加
感S(T度,c2)=–1/2, S(T,r)=– 1/2
c2或r增加1%0, T.5减%少0.5%
模型应用
第三章 简单的优化模型
--静态优化模型
3.1 存贮模型 3.2 生猪的出售时机 3.3 森林救火 3.4 消费者的选择 3.5 生产者的决策 3.6 血管分支 3.7 冰山运输
简单的优化模型(静态优化)
• 现实世界中普遍存在着优化问题. • 静态优化问题指最优解是数(不是函数). • 建立静态优化模型的关键之一是根据 建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
相关文档
最新文档