大学课程设计-直线一级倒立摆控制系统设计
直线一级倒立摆系统的PID控制算法设计
摘要直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一。
设计直线一级倒立摆前,首先要应清楚直线一级倒立摆的定义及它的特性,其次用数学建模的方法建立直线一级倒立摆模型。
再次PID控制器的结构与参数设计,将直线一级倒立摆当作简单的单输入单输出系统(忽略了小车位移的控制),采用了 PID控制器设计方法进行了控制器结构设计和参数设计。
确定PID控制器主要参数KP、KI、KD,通过改变这三个参数的值,使直线一级倒立摆由开环不稳定系统变为闭环稳定系统。
直线一级倒立摆系统在PID控制器下用MATLAB进行仿真,通过改变控制器PID主要参数,使得仿真曲线更接近理论曲线。
这些便是直线一级倒立摆系统的PID控制算法设计的主要内容。
关键词:直线一级倒立摆;Matlab仿真;PID控制ABSTRACTInverted pendulum linear 1-stage stands upside down suspends is composed by the translation module and the level pendulum mass module, is most common stands upside down suspends one Front the design straight line level stands upside down suspends, first must be supposed the clear straight line level to stand upside down the definition and its characteristic which suspends, next stands upside down with mathematics modelling method establishment straight line level suspends the model. Once more the PID controller structure and the parameter design, stood upside down Inverted pendulum linear 1-stage suspends the regard simple single input list output system (to neglect car displacement control), used the PID controller design method to carry on the controller structural design and the parameter design. Determined PID controller main parameter KP, KI, KD, through change these three parameters the value, causes the straight line level to stand upside down suspends becomes the closed loop stable system by the split-ring unstable system. Inverted pendulum linear 1-stage stands upside down suspends the system to carry on the simulation under the PID controller with MATLAB, through the change controller PID main parameter, causes the simulation curve closer theoretical curve.These then are the straight line level stands upside down suspends the system the PID control algorithm design primary coverage.Keywords:Inverted pendulum linear;Matlab Simulation; PID control目录第1章绪论 (1)第2章倒立摆系统 (2)2.1 系统的组成 (3)2.1.1 倒立摆本体 (3)2.1.2 电控箱 (4)2.1.3 电机 (4)2.1.4 编码器 (4)2.1.5 控制卡 (5)2.2 系统使用说明 (5)2.2.1 直线一级摆硬件操作系统 (5)2.2.2 一级摆软件操作说明 (5)第3章自动控制及MATLAB软件介绍 (7)3.1自动控制概念 (7)3.2 自动控制系统的类型 (8)3.2.1 随机系统与自动调整系统 (8)3.2.2 线性系统和非线性系统 (9)3.2.3 连续系统和离散系统 (9)3.2.4 单输入单输出系统和多输入多输出系统 (9)3.2.5 确定系统与不确定系统 (9)3.2.6 集中参数系统和分布参数系统 (9)3.3 自动控制理论概要 (10)3.3.1 自动控制系统所要分析的问题 (10)3.3.2 自动控制系统的设计问题 (10)3.4 MATLAB实验软件 (10)3.5.1 MATLAB的基本介绍 (11)3.5.2 MATLAB程序设计基础 (12)第4章 PID控制 (13)4.1 PID控制原理 (13)4.2 数字PID控制 (14)4.2.1 位置式PID控制算法 (14)4.2.2 增量式PID控制算法 (15)4.3 常见的PID控制系统 (15)4.3.1 串级PID控制 (15)4.3.2 纯滞后系统的大林控制算法 (16)4.3.3 纯滞后系统的smith控制算法 (17)第5章直线一级倒立摆的牛顿—欧拉方法建模 (19)5.1 微分方程的推导 (19)5.2 传递函数 (21)5.3 状态方程 (21)5.4 实际系统模型 (23)5.5 采用MATLAB语句形式进行仿真 (24)第6章直线一级倒立摆控制器设计及仿真 (27)6.1 PID参数的调整 (28)6.2 PID控制回路运行 (28)6.3直线一级倒立摆PID控制器设计 (29)6.4直线一级倒立摆PID控制器设计MATLAB仿真 (32)结论 (37)参考文献 (38)致谢 (39)附录 (40)第1章绪论计算机的诞生和发展给自动控制增添了先进的工具,现代控制理论的发展,又给自动控制提供了新的理论支柱。
电气系统综合设计实验报告--直线一级倒立摆控制系统设计
电气控制系统设计——直线一级倒立摆控制系统设计学院轮机工程学院班级电气1111 姓名李杰学号 2011125036 姓名韩学建学号 2011125035 成绩指导老师肖龙海2014 年 12 月 25 日小组成员与分工:韩学建主要任务:二阶系统建模与性能分析,二阶控制器的设计,二阶系统的数字仿真与调试,二阶系统的实物仿真与调试。
二阶状态观测器的数字仿真与调试,二阶状态观测器的实物仿真与调试。
李杰主要任务:四阶系统建模与性能分析,四阶控制器的设计,四阶系统的数字仿真与调试,四阶系统的实物仿真与调试。
四阶状态观测器的数字仿真与调试,四阶状态观测器的实物仿真与调试。
前言倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统,倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
本报告通过设计二阶、四阶两种倒立摆控制器来加深对实际系统进行建模方法的了解和掌握随动控制系统设计的一般步骤及方法。
熟悉倒立摆系统的组成及基本结构并利用MATLAB对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,研究调节器参数对系统动态性能的影响,非常直观的了解控制器的控制作用。
目录第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构 (4)1.2 设计的目的 (4)1.3 设计的基本任务 (4)1.4 设计的要求 (4)1.5 设计的步骤 (5)第二章一级倒立摆建模及性能分析2.1 微分方程的推导 (5)2.2 系统的稳定性和能控能观性分析 (11)2.3 二阶的能观性、能控性分析 (13)2.4 四阶的能观性、能控性分析 (18)第三章倒立摆系统二阶控制器、状态观测器的设计与调试3.1 设计的要求 (22)3.2 极点配置 (22)3.3 控制器仿真设计与调试 (23)3.4 状态观测器仿真设计与调试 (28)第四章倒立摆系统四阶控制器、状态观测器的设计与调试4.1 设计的要求 (26)4.2 极点配置 (26)4.3 控制器仿真设计与调试 (27)4.4 状态观测器仿真设计与调试 (28)心得体会 (31)参考文献 (31)第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构与工作原理图1.1 倒立摆系统硬件框图图1.2 倒立摆系统工作原理框图倒立摆系统通过计算机、I/O卡、伺服系统、倒立摆本体和光电码盘反馈测量元件组成一个闭环系统。
一级倒立摆【控制专区】系统设计
基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。
设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。
二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。
三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。
计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。
四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。
大学课程设计-直线一级倒立摆控制系统设计
摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。
单级倒立摆系统课程设计
单级倒立摆系统课程设计一、课程目标知识目标:1. 理解单级倒立摆系统的基本原理,掌握其数学模型和动力学特性;2. 学会分析单级倒立摆系统的稳定性,并掌握相应的控制策略;3. 掌握利用传感器和执行器实现单级倒立摆系统的实时控制方法。
技能目标:1. 能够运用所学的理论知识,设计并搭建单级倒立摆实验系统;2. 能够编写程序,实现对单级倒立摆系统的实时控制,使系统保持稳定;3. 能够分析实验数据,优化控制参数,提高系统性能。
情感态度价值观目标:1. 培养学生对物理系统控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生的团队协作意识和解决问题的能力,增强学生的自信心;3. 引导学生关注科技创新,认识到所学知识在实际应用中的价值。
课程性质:本课程为理论与实践相结合的课程,旨在帮助学生将所学的理论知识应用于实际系统中,提高学生的实践能力和创新能力。
学生特点:学生具备一定的物理、数学基础,对控制原理有一定了解,但实践经验不足。
教学要求:注重理论与实践相结合,鼓励学生动手实践,培养解决实际问题的能力。
在教学过程中,注重引导学生自主学习,培养学生的创新意识和团队协作精神。
通过本课程的学习,使学生能够将所学知识应用于实际系统,提高自身综合素质。
二、教学内容1. 理论知识:- 单级倒立摆系统的基本原理及数学模型;- 单级倒立摆系统的稳定性分析;- 控制策略及控制算法在单级倒立摆系统中的应用;- 传感器和执行器在单级倒立摆系统中的作用及选型。
2. 实践操作:- 搭建单级倒立摆实验系统;- 编写程序实现实时控制;- 调试优化控制参数;- 分析实验数据,提高系统性能。
3. 教学大纲:- 第一周:介绍单级倒立摆系统基本原理,学习数学模型,进行稳定性分析;- 第二周:学习控制策略及控制算法,探讨其在单级倒立摆系统中的应用;- 第三周:了解传感器和执行器,学习其在单级倒立摆系统中的作用及选型;- 第四周:分组搭建单级倒立摆实验系统,进行程序编写和实时控制;- 第五周:调试优化控制参数,分析实验数据,提高系统性能。
直线一级倒立摆系统实验报告
直线一级倒立摆系统实验报告1. 实验目的:通过对直线一级倒立摆系统进行分析,掌握系统的基本原理、参数设置和控制策略;提高学生实际动手能力和科学实验能力。
2. 实验内容:(1)搭建直线一级倒立摆系统实验平台;(2)设置系统的动力学模型,采集系统的状态变量;(3)根据系统的特性设计控制策略,实现系统的稳定控制;(4)记录实验数据,并进行数据处理和分析。
3. 实验原理:直线一级倒立摆系统是一种经典的非线性控制系统,其原理和稳定性分析可以使用动力学建模方法来描述。
系统由直线弹簧、质量块、直线导轨和质量块的摆杆组成。
当摆杆处于垂直状态时,系统处于平衡状态;当摆杆被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
在实验中,我们选取了单摆系统作为直线一级倒立摆系统的原形。
单摆系统由一个质点和一个线性弹簧组成,其状态变量为质点的位置和速度。
当质点处于平衡位置时,系统拥有稳定状态;当质点被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
因此,我们可以使用单摆系统来研究直线一级倒立摆系统的控制策略。
4. 实验步骤:(1)搭建实验平台:搭建直线一级倒立摆系统实验平台,包括直线导轨、摆杆、质点、力传感器、位移传感器和控制电路等。
将质点放置在导轨上,并用摆杆将其固定在弹簧上。
使用力传感器和位移传感器来测量系统的状态变量。
(2)设置系统模型:对实验平台的动力学模型进行建模,将系统的状态变量与控制策略联系起来。
(3)设计控制策略:根据系统的特性设计相应的控制策略,使系统保持稳定状态。
常用的控制策略包括模型预测控制、PID控制、滑模控制等。
(4)记录实验数据:实验过程中需要记录系统的状态变量和控制参数,并进行数据处理和分析,得到实验结论。
5. 实验结果分析:通过对直线一级倒立摆系统的实验研究,我们发现系统的稳定控制需要根据其特性和实际情况来确定相应的控制策略。
在实验中,我们采用了模型预测控制策略,通过对系统的状态变量进行预测和调节,成功实现了系统的稳定控制。
直线一级倒立摆建模与控制
期望特征多项式为
s 2 k2 20 s 20 k1 k2 1
* 由设计者选取,考虑“引入状态反馈向量后系统特 1*、2
* f * s s 1* s 2 =s2 (1* 2* )s 1*2*
征多项式”和“期望特征多项式”的系数相等即可求出状态反 馈向量。
,线性化运动方程。
倒立摆系统单输入-单输出传递函数模型
线性化后运动方程(参考):
I ml mgl mlx
2
以小车加速度为输入、摆杆角度为输出,令
ax
拉普拉斯变换后系统传递函数模型(参考):
s ml G s A s I ml 2 s 2 mgl
双击“Controller1”,输入选取的4个闭环极点对应的增益,运行仿真后双击 “Scope1”观测响应曲线,其中小车位置应该很好的收敛到0.01,小车速度、摆杆角
度和角速度应该收敛到0。若响应曲线效果不好则需重新选取闭环极点。
状态空间极点配置实物控制
选取了合适的4个闭环极点并通过了仿真测试后即可进行倒立摆系统实物控制。 进入 MATLAB Simulink 实时控制工具箱“Googol Education Products”打 开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo,如下图。
状态空间极点配置仿真控制
参考上述实例,选取倒立摆系统的4个闭环极点,进入 MATLAB Simulink 实时 控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Placement Experiments”中的“Poles Control Simulink”,如下图。
直线一级倒立摆系统的PID控制算法设计
摘要直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一。
设计直线一级倒立摆前,首先要应清楚直线一级倒立摆的定义及它的特性,其次用数学建模的方法建立直线一级倒立摆模型。
再次PID控制器的结构与参数设计,将直线一级倒立摆当作简单的单输入单输出系统(忽略了小车位移的控制),采用了 PID控制器设计方法进行了控制器结构设计和参数设计。
确定PID控制器主要参数KP、KI、KD,通过改变这三个参数的值,使直线一级倒立摆由开环不稳定系统变为闭环稳定系统。
直线一级倒立摆系统在PID控制器下用MATLAB进行仿真,通过改变控制器PID主要参数,使得仿真曲线更接近理论曲线。
这些便是直线一级倒立摆系统的PID控制算法设计的主要内容。
关键词:直线一级倒立摆;Matlab仿真;PID控制ABSTRACTInverted pendulum linear 1-stage stands upside down suspends is composed by the translation module and the level pendulum mass module, is most common stands upside down suspends one Front the design straight line level stands upside down suspends, first must be supposed the clear straight line level to stand upside down the definition and its characteristic which suspends, next stands upside down with mathematics modelling method establishment straight line level suspends the model. Once more the PID controller structure and the parameter design, stood upside down Inverted pendulum linear 1-stage suspends the regard simple single input list output system (to neglect car displacement control), used the PID controller design method to carry on the controller structural design and the parameter design. Determined PID controller main parameter KP, KI, KD, through change these three parameters the value, causes the straight line level to stand upside down suspends becomes the closed loop stable system by the split-ring unstable system. Inverted pendulum linear 1-stage stands upside down suspends the system to carry on the simulation under the PID controller with MATLAB, through the change controller PID main parameter, causes the simulation curve closer theoretical curve.These then are the straight line level stands upside down suspends the system the PID control algorithm design primary coverage.Keywords:Inverted pendulum linear;Matlab Simulation; PID control目录第1章绪论 (1)第2章倒立摆系统 (2)2.1 系统的组成 (3)2.1.1 倒立摆本体 (3)2.1.2 电控箱 (4)2.1.3 电机 (4)2.1.4 编码器 (4)2.1.5 控制卡 (5)2.2 系统使用说明 (5)2.2.1 直线一级摆硬件操作系统 (5)2.2.2 一级摆软件操作说明 (5)第3章自动控制及MATLAB软件介绍 (7)3.1自动控制概念 (7)3.2 自动控制系统的类型 (8)3.2.1 随机系统与自动调整系统 (8)3.2.2 线性系统和非线性系统 (9)3.2.3 连续系统和离散系统 (9)3.2.4 单输入单输出系统和多输入多输出系统 (9)3.2.5 确定系统与不确定系统 (9)3.2.6 集中参数系统和分布参数系统 (9)3.3 自动控制理论概要 (10)3.3.1 自动控制系统所要分析的问题 (10)3.3.2 自动控制系统的设计问题 (10)3.4 MATLAB实验软件 (10)3.5.1 MATLAB的基本介绍 (11)3.5.2 MATLAB程序设计基础 (12)第4章 PID控制 (13)4.1 PID控制原理 (13)4.2 数字PID控制 (14)4.2.1 位置式PID控制算法 (14)4.2.2 增量式PID控制算法 (15)4.3 常见的PID控制系统 (15)4.3.1 串级PID控制 (15)4.3.2 纯滞后系统的大林控制算法 (16)4.3.3 纯滞后系统的smith控制算法 (17)第5章直线一级倒立摆的牛顿—欧拉方法建模 (19)5.1 微分方程的推导 (19)5.2 传递函数 (21)5.3 状态方程 (21)5.4 实际系统模型 (23)5.5 采用MATLAB语句形式进行仿真 (24)第6章直线一级倒立摆控制器设计及仿真 (27)6.1 PID参数的调整 (28)6.2 PID控制回路运行 (28)6.3直线一级倒立摆PID控制器设计 (29)6.4直线一级倒立摆PID控制器设计MATLAB仿真 (32)结论 (37)参考文献 (38)致谢 (39)附录 (40)第1章绪论计算机的诞生和发展给自动控制增添了先进的工具,现代控制理论的发展,又给自动控制提供了新的理论支柱。
直线一级倒立摆系统的PID控制算法设计
摘要直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一。
设计直线一级倒立摆前,首先要应清楚直线一级倒立摆的定义及它的特性,其次用数学建模的方法建立直线一级倒立摆模型。
再次PID控制器的结构与参数设计,将直线一级倒立摆当作简单的单输入单输出系统(忽略了小车位移的控制),采用了 PID控制器设计方法进行了控制器结构设计和参数设计。
确定PID控制器主要参数KP、KI、KD,通过改变这三个参数的值,使直线一级倒立摆由开环不稳定系统变为闭环稳定系统。
直线一级倒立摆系统在PID控制器下用MATLAB进行仿真,通过改变控制器PID主要参数,使得仿真曲线更接近理论曲线。
这些便是直线一级倒立摆系统的PID控制算法设计的主要内容。
关键词:直线一级倒立摆;Matlab仿真;PID控制ABSTRACTInverted pendulum linear 1-stage stands upside down suspends is composed by the translation module and the level pendulum mass module, is most common stands upside down suspends one Front the design straight line level stands upside down suspends, first must be supposed the clear straight line level to stand upside down the definition and its characteristic which suspends, next stands upside down with mathematics modelling method establishment straight line level suspends the model. Once more the PID controller structure and the parameter design, stood upside down Inverted pendulum linear 1-stage suspends the regard simple single input list output system (to neglect car displacement control), used the PID controller design method to carry on the controller structural design and the parameter design. Determined PID controller main parameter KP, KI, KD, through change these three parameters the value, causes the straight line level to stand upside down suspends becomes the closed loop stable system by the split-ring unstable system. Inverted pendulum linear 1-stage stands upside down suspends the system to carry on the simulation under the PID controller with MATLAB, through the change controller PID main parameter, causes the simulation curve closer theoretical curve.These then are the straight line level stands upside down suspends the system the PID control algorithm design primary coverage.Keywords:Inverted pendulum linear;Matlab Simulation; PID control目录第1章绪论 (1)第2章倒立摆系统 (2)2.1 系统的组成 (3)2.1.1 倒立摆本体 (3)2.1.2 电控箱 (4)2.1.3 电机 (4)2.1.4 编码器 (4)2.1.5 控制卡 (5)2.2 系统使用说明 (5)2.2.1 直线一级摆硬件操作系统 (5)2.2.2 一级摆软件操作说明 (5)第3章自动控制及MATLAB软件介绍 (7)3.1自动控制概念 (7)3.2 自动控制系统的类型 (8)3.2.1 随机系统与自动调整系统 (8)3.2.2 线性系统和非线性系统 (9)3.2.3 连续系统和离散系统 (9)3.2.4 单输入单输出系统和多输入多输出系统 (9)3.2.5 确定系统与不确定系统 (9)3.2.6 集中参数系统和分布参数系统 (9)3.3 自动控制理论概要 (10)3.3.1 自动控制系统所要分析的问题 (10)3.3.2 自动控制系统的设计问题 (10)3.4 MATLAB实验软件 (10)3.5.1 MATLAB的基本介绍 (11)3.5.2 MATLAB程序设计基础 (12)第4章 PID控制 (13)4.1 PID控制原理 (13)4.2 数字PID控制 (14)4.2.1 位置式PID控制算法 (14)4.2.2 增量式PID控制算法 (15)4.3 常见的PID控制系统 (15)4.3.1 串级PID控制 (15)4.3.2 纯滞后系统的大林控制算法 (16)4.3.3 纯滞后系统的smith控制算法 (17)第5章直线一级倒立摆的牛顿—欧拉方法建模 (19)5.1 微分方程的推导 (19)5.2 传递函数 (21)5.3 状态方程 (21)5.4 实际系统模型 (23)5.5 采用MATLAB语句形式进行仿真 (24)第6章直线一级倒立摆控制器设计及仿真 (27)6.1 PID参数的调整 (28)6.2 PID控制回路运行 (28)6.3直线一级倒立摆PID控制器设计 (29)6.4直线一级倒立摆PID控制器设计MATLAB仿真 (32)结论 (37)参考文献 (38)致谢 (39)附录 (40)第1章绪论计算机的诞生和发展给自动控制增添了先进的工具,现代控制理论的发展,又给自动控制提供了新的理论支柱。
一阶倒立摆控制系统设计
一阶倒立摆控制系统设计首先,设计一阶倒立摆控制系统需要明确系统的参数和模型。
一阶倒立摆通常由一个平衡杆和一个摆组成。
平衡杆的长度、摆的质量和位置等都是系统的参数。
根据平衡杆的转动原理和摆的运动方程,可以得到一阶倒立摆的数学模型。
接下来,根据系统的数学模型,进行系统的稳定性分析。
稳定性分析是判断一阶倒立摆控制系统是否能够保持平衡的重要步骤。
常用的稳定性分析方法有判据法和根轨迹法。
判据法通过计算特征方程的根来判断系统的稳定性,根轨迹法则通过特征方程的根随一些参数变化的路径来分析系统的稳定性。
在进行稳定性分析的基础上,选择合适的控制策略。
常见的控制策略有比例控制、积分控制和微分控制等。
比例控制通过将系统的输出与期望值之间的差异放大一定倍数来控制系统;积分控制通过积分系统误差来进行控制;微分控制通过对系统误差的微分来进行控制。
在选择控制策略时,需要考虑系统的动态响应、稳态误差和鲁棒性等指标。
在选定控制策略后,进行控制器的设计和参数调节。
控制器是实现控制策略的核心部分。
控制器可以是传统的PID控制器,也可以是现代控制理论中的模糊控制器、神经网络控制器等。
控制器的参数需要通过试探法、经验法或者系统辨识等方法进行调节,以使系统达到最佳的控制效果。
最后,进行实验验证和性能评估。
在实验中,需要将控制器与倒立摆系统进行连接,并输入一定的控制信号。
通过测量系统的输出响应和误差,可以评估控制系统的性能,并进行调整和改进。
综上所述,一阶倒立摆控制系统设计的步骤包括系统参数和模型确定、稳定性分析、控制策略选择、控制器设计和参数调节、实验验证和性能评估等。
在设计过程中,需要综合考虑系统的稳定性、动态响应和鲁棒性等因素,以实现一个稳定可靠、性能优良的一阶倒立摆控制系统。
直线型一级倒立摆系统的控制器设计
直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。
(2)对该系统的稳定性、能观性、能控性进行分析。
(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。
(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
直线一级倒立摆控制方法设计
直线一级倒立摆控制方法设计倒立摆的数学模型设计倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,许多抽象的控制概念都可以通过倒立摆直观地表现出来。
本设计是以一阶倒立摆为被控对象来进行设计的。
状态空间法:状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制。
根据设计要求,给小车加一个阶跃输入信号。
此次用Matlab 求出系统的状态空间方程各矩阵,并仿真系统的开环阶跃响应。
在这里给出一个state.m 文件,执行这个文件,Matlab 将会给出系统状态空间方程的A,B,C 和D 矩阵,并绘出在给定输入为一个0.2m 的阶跃信号时系统的响应曲线。
直线一级倒立摆系统数学建模 在忽略了空气阻力、各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。
如图所示:系统状态方程为:XAX Bu Y CX Du=+=+假设系统内部各相关参数为:M 小车质量 0.5kg m 摆杆质量 0.2kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.006kg*m*m T 采样时间 0.005s x 小车位置φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 应用牛顿-欧拉方法,可得到系统状态空间方程为:222222201()0()()0()0()()x I ml b m gl x I M m Mml I M m Mml lb mgl M m I M m Mml I M m Mml φφ⎡⎤⎢⎥⎡⎤-+⎢⎥⎢⎥⎢⎥++++⎢⎥=⎢⎢⎥⎢⎢⎥⎢-+⎢⎥⎣⎦⎢++++⎣⎦ 0 0 0 0 0 0m 0 2220()0()x I ml x I M m Mml u ml I M m Mml φφ⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥⎢⎥++⎢⎥+⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎥⎢⎥++⎣⎦1000000100x x x Y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦ 以上就是一阶倒车摆系统的状态空间表达式。
一阶倒立摆控制系统设计
课程设计说明书课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系: 信息与电气工程学院班级:设计者:学号:指导教师:设计时间:2013年2月25日到2013年3月8号课程设计(论文)任务书指导教师签字:系(教研室)主任签字:2013年3月5日目录一、建立一阶倒立摆数学模型41. 一阶倒立摆的微分方程模型42. 一阶倒立摆的传递函数模型63. 一阶倒立摆的状态空间模型7二、一阶倒立摆matlab仿真9三、倒立摆系统的PID控制算法设计13四、倒立摆系统的最优控制算法设计23五、总结错误!未定义书签。
六、参考文献28一、建立一阶倒立摆数学模型首先建立一阶倒立摆的物理模型.在忽略空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。
系统内部各相关参数定义如下:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)1.一阶倒立摆的微分方程模型对一阶倒立摆系统中的小车和摆杆进行受力分析,其中,N和 P为小车与摆杆相互作用力的水平和垂直方向的分量.图1—2 小车及摆杆受力图分析小车水平方向所受的合力,可以得到以下方程:(1—1)由摆杆水平方向的受力进行分析可以得到下面等式:(1-2)即:(1-3)把这个等式代入式(1-1)中,就得到系统的第一个运动方程:(1-4)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:(1—5)即:(1-6)力矩平衡方程如下:(1-7)由于所以等式前面有负号。
合并这两个方程,约去 P 和 N ,得到第二个运动方程:(1-8)设,(φ是摆杆与垂直向上方向之间的夹角),假设φ 〈〈1弧度,则可以进行近似处理:0)(,sin ,1cos 2=-=-=dtd θφθθ.用u 代表被控对象的输入力F ,利用上述近似进行线性化得直线一阶倒立摆的微分方程为:2. 一阶倒立摆的传递函数模型对式(1-9)进行拉普拉斯变换,得:注意:推导传递函数时假设初始条件为 0。
直线一级倒立摆控制器设计课程设计报告4
工业大学控制科学与工程系控制系统设计课程设计报告一.直线一阶倒立摆简介倒立摆是进行控制理论研究的典型实验平台。
倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
一阶倒立摆系统的结构示意图如下所示:摆杆滑轨电机图1-1 一阶倒立摆结构示意图系统组成框图如下所示:图1-2 一级倒立摆系统组成框图系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,白干的角度、角速度信号由光电码盘2反馈给运动控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动吗,保持摆杆平衡。
二.直线一阶倒立摆数学模型的推导首先建立一阶倒立摆的物理模型。
控制系统课程设计---直线一级倒立摆控制器设计
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:控制系统设计课程设计设计题目:直线一级倒立摆控制器设计院系:班级:设计者:学号:指导教师:罗晶周乃馨设计时间:2013.9.2——2013.9.13哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书*注:此任务书由课程设计指导教师填写。
第一章 直线一级倒立摆数学模型的推导及建立1.1直线一阶倒立摆数学模型的推导系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统. 下图是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆水平和垂直方向的分量。
b px图1-1(a )小车隔离受力图 (b )摆杆隔离受力图本系统相关参数定义如下:M : 小车质量 m :摆杆质量b :小车摩擦系数 l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力x :小车位置 φ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
直线一级倒立摆控制[garlic]
直线一级倒立摆控制
直线一级倒立摆系统输入为小车的加速度,输出为倒立摆系统摆杆的角度,被控对象的传递函数为:2()0.02725()0.01021250.26705
s V s s Φ=- 给系统施加脉冲扰动,输出量为摆杆的角度时,系统框图如下:
图 3-4 直线一级倒立摆闭环系统图(脉动干扰)
1) 绘制直线一级倒立摆开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性。
2)用根轨迹法设计控制器,使得校正后系统的要求如下:
调整时间t (2%) s = 0.5s ;最大超调量 M p ≤ 10%
绘制校正后系统的根轨迹图,并给出阶跃响应曲线。
3)通过改变控制器的极点和零点,得到不同的控制效果
4)用频域响应法设计超前校正控制器G c (s ) ,使得系统的静态位置误差常数为10,相位裕量为50o ,增益裕量等于或大于10 分贝。
给出阶跃响应曲线。
5)设计PID 控制器,并给出控制效果。
直线一级倒立摆控制详细报告
直线一级倒立摆控制一、课程设计目的学习直线一级倒立摆的数学建模方法,运用所学知识设计PID控制器,并应用MATLAB进行仿真。
通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。
二、课程设计要求1. 应用动力学知识建立直线一级倒立摆的数学模型(微分方程形式),并建立系统的开环传递函数模型。
2. 运用经典控制理论知识,按设计要求设计控制器。
3. 应用MATLAB的Simulink建立控制系统的仿真模型,得出仿真结果。
4. 控制要求:※小车的位置x和摆杆角度的稳定时间小于10秒;※阶跃响应摆杆角度的摆幅小于2°;※θ有≤8°扰动时,摆杆的稳定时间小于三秒。
对比仿真结果与控制要求,修正设计值,使之满足设计要求。
三、控制系统建模过程1、控制对象示意图图1.控制对象示意图图中对象参数:M 小车质量 1.32kg l 摆杆转动中心到杆质心的距离0.27mm 摆杆质量0.132kg F 作用在系统上的外力X 小车位移θ 摆杆与竖直方向的夹角,以垂直向上为起始位置,取逆时针方向为正方向。
b 小车摩擦阻尼系数 m/sec 2. 控制系统模拟结构图:图2.系统的模拟结构图其中G1(s )表示关于摆角θ的开环传递函数,D(S)表示PID 控制器的传递函数,G2(s )表示小车位移x 的传递函数。
由于摆角与垂直向上方向夹角为0时为平衡状态,故摆角的理想输出值应为R (S )=0。
3. 建模过程:T图3.小车及摆杆的受力分析图如图3所示,对小车及摆杆进行受力分析,得到以下平衡方程:对小车有: 22..................................(1)dx d xF F b N M dt dt=--=∑小车对摆杆有:2222(cos ) (2)(cos ).............................(3)d F N m x l dt d Fmg P m l l dtθθ==-=-=-∑∑水平竖直转矩:2222sin cos ...................................(4)1 (5)23ll d T I Pl Nl dt mr I dr ml l θθθ-==+==∑⎰为使摆杆直立,需使θ≪1,则有sin ,cos 1θθθ≈≈, 线性化(2)(3)(4)方程得:2222() (6)0.......................................................................(7)..............................d N m x l dtmg P d I Pl Nl dtθθθ=--==+................................(8) 由(1)(5)(6)(7)(8)式联立解得:222222222() (9)4 (10)3d x d dxF M m ml b dt dt dtd d xmgl ml ml dt dtθθθ=+-+=- 对(9)(10)两式进行拉式变换,得:22222()()()()()4()()()3F S M m s X s Mls s bsX s mgl s ml s s mls X s θθθ=+-+=- 传递函数:13222432()3()()(4)43()3()43()()(4)43()3s sG s F s Ml ml s bls M m gs gbX s ls gG s F s Ml ml s bls M m gs gbsθ==++-+--==++-+-将数值带入后得到系统的传递函数:132224323() 1.461240.10842.6888 2.941.0829.4() 1.461240.10842.6888 2.94sG s s s s s G s s s s s =+---=+--四、应用Simulink建立仿真模型进行实验1.控制系统的simulink仿真结构图及仿真结果其中PID控制器的传递函数参数的初步范围可以由劳斯判据确定,具体过程如下:设PID控制器的传递函数为1()P I DD s K K K ss=++,则以θ为输出量的系统特征方程为111()()0P ID K K K s G s s+++= 整理得321.46124(30.108)(342.6888)(3 2.94)0D P I s K s K s K +++-+-=通过劳斯判据可以确定,若使系统稳定,则有0.48708(3 2.94)0.98,0,14.22960.1083I I D P DK K K K K ->>>++通过模拟系统反复实验,根据PID 各个参数的作用进行数值调整,得到使系统满足要求的PID 控制器的传递函数为:1()90092650D s s s=++2. 系统响应曲线在单位阶跃输入下,θ(t )的响应曲线为:从该响应曲线可以看出,此时系统的稳定时间小于10s ,且摆杆的摆幅小于2度,满足控制要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。
(1)MATALB语言体系:MATLAB是高层次的矩阵/数组语言.具有条件控制、函数调用、数据结构、输入输出、面向对象等程序语言特性。
利用它既可以进行小规模编程,完成算法设计和算法实验的基本任务,也可以进行大规模编程,开发复杂的应用程序。
(2)MATLAB工作环境:这是对MATLAB提供给用户使用的管理功能的总称.包括管理工作空间中的变量据输入输出的方式和方法,以及开发、调试、管理M文件的各种工具。
(3)图形句相系统:这是MATLAB图形系统的基础,包括完成2D和3D数据图示、图像处理、动画生成、图形显示等功能的高层MATLAB命令,也包括用户对图形图像等对象进行特性控制的低层MATLAB命令,以及开发GUI应用程序的各种工具。
(4)MATLAB数学函数库:这是对MATLAB使用的各种数学算法的总称.包括各种初等函数的算法,也包括矩阵运算、矩阵分析等高层次数学算法。
(5)MATLAB应用程序接口(API):这是MATLAB为用户提供的一个函数库,使得用户能够在MATLAB环境中使用c程序或FORTRAN程序,包括从MATLAB中调用于程序(动态链接),读写MAT文件的功能。
可以看出MATLAB是一个功能十分强大的系统,是集数值计算、图形管理、程序开发为一体的环境。
除此之外,MA丁LAB还具有根强的功能扩展能力,与它的主系统一起,可以配备各种各样的工具箱,以完成一些特定的任务。
MATLAB有几种在不同电脑作业系统的版本,例如在视窗3.1上的MATLAB for Windows, SIMULINK,在麦金塔上的MATLAB for Macintch,另外还有在Unix上的各种工作站版本。
基本上这些版本主要是提供方便的操作环境,采用图形介面[6]。
1.2 MATLAB的仿真工具SIMULINKMATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件。
由于在WINDOWS界面下工作,所以对控制系统的方块图编辑、绘制很方便。
MATLAB命令窗口启动SIMULINK程序后,出现的界面如下。
分别为信号源、输出、离散系统库、线性系统库、非线性系统库、系统连接及扩展系统。
下面分别介绍:(1)信号源程序提供了八种信号源,分别为阶跃信号、正弦波信号、白噪声、时钟、常值信号、文件、信号发生器等可直接使用。
而信号发生器(singal gein)可产生正弦波、方波、锯齿波、随机信号等。
(2)信号输出程序提供了三种输出方式,可将仿真结果通过三种方式之一如仿真窗口、文件等形式输出。
(3)离散系统程序提供了五种标准模式,延迟、零-极点、滤波器、传递函数、状态空间等。
并且每种标准模式都可方便地改变参数以符合被仿真系统。
(4)线性系统程序提供了七种标准模式,加法器、比例、积分器、微分、传递函数、零-极点、状态空间等。
同离散系统一样,每种标准模式都可方便地改变参数以符合被仿真系统。
(5)非线性系统非线性系统库提供了十三种常用标准模式,如绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。
(6)系统连接系统连接库提供了四种模式,输入、输出、多路转换等。
(7)系统扩展考虑到各种复杂系统的要求,另外提供了十二种类型的扩展系统库,每一种又有不同的选择模式。
1.3 控制系统的动态仿真由于SIMULINK提供了丰富的数学模型,且兼容于WINDOWS,所以用WINDOWS提供的简单命令即形成各种复杂的系统模型。
下面分别介绍。
连续系统某一位置随动系统的方块图如下所示图1.1 传递函数图根据SIMULINK提供的方框图,转换为符合仿真要求的图形:图1.2 传递函数方块图输入仿真时间、仿真步长,选择数值计算方法即得到系统的阶跃响应。
图1.3 K=4系统阶跃响应图1.4 校正系统阶跃响应如果系统的动态响应特性不好,可以调出扩展库中的各种调节器,以改善系统的动态响应。
比如引入典型的PID调节器,加入调节器后的系统响应如上图所示。
(2)非线性系统某一带有死区的随动系统如下图所示。
死区范围±0.5,从系统的阶跃响应可以看出,由于系统的非线性,使得原来无差系统变为有差系统,同样可以引入各种调节器来校正系统,改善系统的动态响应。
图1.5 非线性系统方框图(3)离散系统从离散系统库调出离散模型,得到系统的方框图和系统的阶跃响应如图所示。
图1.6 离散系统图图1.7 非线性系统阶跃响应图1.8 离散系统阶跃响应1.4 小结MATLAB的SIMULINK对控制系统可以方便地进行仿真计算,分析控制系统的瞬态响应及稳态指标,同时仿真结果可以用图形和数据文件输出,数据文件可以在别的系统中应用。
不仅对单变量,而且对多变量及状态空间均可仿真计算,确实是一种方便、有效的工具。
限于篇幅,MATLAB的其它功能,如控制系统的频域、时域分析另文介绍。
第2章直线一级倒立摆系统及其数学模型GIP 系列倒立摆系统是固高科技有限公司为全方位满足各类电机拖动和自动控制课程的教学需要而研制、开发的实验教学平台。
GIP 系列的主导产品由直线运动型、旋转运动型和平面运动型三个子系列组成。
直线运动倒立摆的基本模块为直线运动控制模块,该模块由交流/直流伺服电机驱动滑动小车沿直线轴承滑动,完成定位控制和速度跟踪的任务。
在滑动小车上加装一个单摆系统,构成经典的控制教学产品:单节倒立摆系统,可完成各类控制课程的教学实验,让学生具有一个可供实验验证的平台。
该系统可用测试、研究和开发各类新的控制算法[7]。
2.1 系统组成倒立摆系统包含倒立摆本体、电控箱及由运动控制卡和普通PC机组成的控制平台等三大部分。
系统组成框图如图 3.1。
图2.1 倒立摆系统框图2.1.1 倒立摆的组成小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。
电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移),如图3.2 。
2.1.2 电控箱电控箱内安装有如下主要部件:交流伺服驱动器 I/O 接口板 开关电源开关、指示灯等电气元件2.1.3 其它部件图 2.3 电气控制箱 ①电机倒立摆使用的电机是由日本松下公司提供的小型小惯量电机(MSMA 系列,200W )。
电机配有专门的驱动器。
②编码器倒立摆系统使用的是光电编码器,其工作原理是:利用一块特制的光栅板作为位移检测元件,光栅板上方格之间的距离为0.5mm 左右。
编码器内部有一个发光元件和两个聚焦透镜,发射光经过透镜聚焦后从底部的小孔向下射出,照在编码器下面的光栅板上,再反射回编码器器内。
当在光栅板上转动编码器时,由于光栅板上明暗相间的条纹反射光有强弱变化,编码器内部将强弱变化的反射光变成电脉冲,对电脉冲进行计数即可测出移动的距离。
③控制卡倒立摆还使用了由固高提供的控制卡,型号是GT-400-SV 卡。
SV 卡的特点是输出类型可以是模拟量或者是脉冲量,它还采用了PID 滤波器,外加速度和加速度前馈。
通过调节,设置合适的参数,可提高控制系统的速度和精度。
2.1.4 倒立摆特性虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: ①非线性图2.2 一级倒立摆的模型示意图倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制,也可以利用非线性控制理论对其进行控制,倒立摆的非线性控制正成为一个研究的热点。
②不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
③耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
④开环不稳定性倒立摆的稳定状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
⑤约束限制由于机构的限制,如运动模块行程限制,电机力矩限制等。
为制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对于倒立摆的摆起尤为突出,容易出现小车的撞边现象。
2.2 模型的建立系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。