时间序列计量经济学模型的理论及其方法
第9章 时间序列计量经济学模型的理论与方法-李子奈计量经济学课件
![第9章 时间序列计量经济学模型的理论与方法-李子奈计量经济学课件](https://img.taocdn.com/s3/m/3be9fc88e53a580216fcfefb.png)
第九章时间序列计量经济学模型的理论与方法第一节 时间序列的平稳性及其检验第二节 随机时间序列模型的识别和估计第三节 协整分析与误差修正模型1§9.1 时间序列的平稳性及其检验一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程2一、问题的引出:非平稳变量与经典回归模型3⒊ 数据非平稳,往往导致出现“虚假回归”问题表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2):例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:情况往往是实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。
这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。
7时间序列分析模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论。
时间序列分析已组成现代计量经济学的重要内容,并广泛应用于经济分析与预测当中。
8二、时间序列数据的平稳性9时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{X t}(t=1, 2,t=1, 2, ……)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(X t)=µ是与时间t 无关的常数;2)方差Var(X t)=σ2是与时间t 无关的常数;3)协方差Cov(X t,X t+k)=γk是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。
初计量经济学之时间序列分析
![初计量经济学之时间序列分析](https://img.taocdn.com/s3/m/690ce0602bf90242a8956bec0975f46527d3a701.png)
初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。
时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。
时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。
本文将介绍时间序列分析的基本概念、方法和应用。
首先,我们将介绍时间序列分析的基本步骤和基本假设。
然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。
最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。
2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。
下面将对每个步骤进行详细介绍。
2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。
我们需要收集时间序列数据,并进行数据清洗和预处理。
数据清洗包括删除缺失值、处理异常值和去除趋势。
数据预处理包括对数据进行平滑处理、差分和变换。
2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。
我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。
可视化方法包括绘制时间序列图、自相关图和偏自相关图。
统计分析方法包括计算统计指标、分析趋势、季节性和周期性。
2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。
我们需要选择合适的时间序列模型,并进行参数估计。
常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。
2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。
我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。
然后,我们可以使用模型进行未来值的预测。
3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。
计量经济学试题时间序列分析与ARIMA模型
![计量经济学试题时间序列分析与ARIMA模型](https://img.taocdn.com/s3/m/b8fd39a6afaad1f34693daef5ef7ba0d4a736d27.png)
计量经济学试题时间序列分析与ARIMA模型计量经济学试题:时间序列分析与ARIMA模型1. 引言时间序列分析是计量经济学中重要的分析方法之一,能够揭示变量随时间变化的规律,并为未来趋势的预测提供依据。
ARIMA模型(差分自回归滑动平均模型)是时间序列分析中常用的模型之一,具有较强的建模和预测能力。
本文将介绍时间序列分析方法以及ARIMA模型的理论基础,并通过试题案例讲解其具体应用。
2. 时间序列分析方法概述时间序列是按时间顺序排列的一系列数据点,其特点是数据之间存在一定的时间关联性和趋势性。
时间序列分析方法可用于研究时间序列的规律,并对未来的变化进行预测。
常用的时间序列分析方法包括:平稳性检验、自相关函数(ACF)和偏自相关函数(PACF)的分析、白噪声检验、差分运算等。
3. ARIMA模型的基本原理ARIMA模型是一种广义的线性时间序列模型,它结合了自回归(AR)模型、差分(I)运算和滑动平均(MA)模型。
ARIMA模型的建立一般包括以下几个步骤:确定时间序列的平稳性、确定模型的阶数、拟合模型参数、模型检验与预测。
4. 时间序列分析与ARIMA模型的应用案例以某工业品生产量的时间序列数据为例,我们来演示时间序列分析与ARIMA模型的具体应用过程。
4.1 数据准备与描述性分析首先,我们收集了过去36个月的某工业品生产量数据,用于进行时间序列分析和ARIMA建模。
通过对数据的描述性统计分析,我们可以了解数据的分布特征、趋势以及季节性等信息。
4.2 平稳性检验为了应用ARIMA模型,首先需要检验时间序列的平稳性。
我们可以使用单位根检验(ADF检验)等方法判断时间序列是否平稳。
若时间序列不平稳,需要进行差分操作,直至得到平稳序列。
4.3 确定模型的阶数在ARIMA模型中,AR阶数表示自回归模型中的滞后阶数,MA阶数表示滑动平均模型中的滞后阶数。
通过观察自相关函数ACF和偏自相关函数PACF的图像,可以确定ARIMA模型的阶数。
时间序列计量经济学协整
![时间序列计量经济学协整](https://img.taocdn.com/s3/m/fd07242959fafab069dc5022aaea998fcc224031.png)
货币政策效果评估
总结词
时间序列协整分析在货币政策效果评估中,有助于评估货币政策对经济的影响,以及政 策效果在不同经济变量之间的传递。
详细描述
货币政策是中央银行通过调节货币供应量和利率来影响经济活动的政策。时间序列协整 分析可以用于评估货币政策对经济增长、通货膨胀等经济指标的影响,以及政策效果在 不同经济变量之间的传递。通过协整分析,可以揭示货币政策对经济变量的长期均衡关
时间序列计量经济学 协整
目录
• 协整理论概述 • 时间序列协整模型 • 协整分析方法 • 时间序列协整的应用 • 时间序列协整的局限与未来发展
01
协整理论概述
协整的定义
协整是指两个或多个非平稳时间序列 之间存在长期均衡关系。这种长期均 衡关系可以是线性的,也可以是非线 性的。
协整关系表明这些时间序列之间存在 一种共同的长期趋势,即使它们各自 的短期波动不同。
误差修正模型
误差修正模型是一种用来描述时间序列之间长期均衡关系和 短期调整机制的模型。它通过引入误差修正项,来反映长期 均衡关系对短期调整的影响。
误差修正项的系数表示了短期调整机制的强度和方向,如果 系数为负,则说明当短期波动偏离长期均衡时,系统会自动 调整回到均衡状态。
04
时间序列协整的应用
经济周期分析
05
时间序列协整的局限与未 来发展
模型假设的局限性
线性协整关系的假设
01
线性协整关系假设限制了模型对非线性时间序列关系的解释能
力。
长期均衡关系的假设
02
长期均衡关系的假设可能不适用于所有时间序列数据,特别是
对于短期波动较大的数据。
误差修正机制的假设
计量经济学中的时间序列分析
![计量经济学中的时间序列分析](https://img.taocdn.com/s3/m/2fc1ee454b7302768e9951e79b89680203d86b2f.png)
计量经济学中的时间序列分析计量经济学是应用经济学中比较基础的分支,主要研究经济学中的定量分析和增长趋势。
其中,时间序列分析作为计量经济学重要的一部分,被广泛运用于宏观经济学中的经济周期、经济增长率、通货膨胀以及个人收入等诸多领域。
时间序列分析是计量经济学中一种基本的研究方法,主要使用统计学技术处理时间序列数据,得出未来预测、检验理论假设和描述历史趋势等信息。
时间序列数据的重要性在于,它们反映了一个经济变量随着时间推移的变化规律。
这些数据可以被用来研究经济变量展现的时间趋势和季节性变化等。
因此,时间序列分析在宏观经济的长期趋势研究、短期波动分析、周期特征查验和经济结构变革判断等方面有重要的应用。
在时间序列分析中,经济变量随着时间的推移体现的规律通常被归纳为趋势、季节性、循环、随机波动四个方面。
趋势是一个时间序列中最为基本的成分,反映一项宏观经济变量的长期变化趋势,其普遍存在的原因可能是技术进步、人口变动、自然要素影响等等因素。
而季节性则是一项经济变量随着时间的相对固定的短期变化,反映的是因为季节性因素的影响而生的波动现象。
循环则是周期波动的一种体现,代表着长达数年的经济波动和周期性变化。
随机波动是时间序列中不可预测的无法被规律分析的随机性波动成分。
这种波动通常受到一些令人难以预测的特殊事件的影响,比如自然灾害、政府重大决策等。
时间序列分析方法有很多种,其中包括经典的时间序列分析方法,如白噪声检验、趋势分析、季节性分析、循环分析等。
同时也包括新兴的技术,如自回归移动平均模型(ARMA)、广义自回归条件异方差模型(GARCH)、立方样条获取非线性趋势和神经网络等。
这些方法涉及的内容比较复杂,因此初学者在学习中需要认真掌握这些方法和工具,并理解它们在数据处理和预测中的应用和限制。
总结而言,计量经济学中的时间序列分析是经济变量随时间推移表现出来的一种基本变化规律的统计学分析方法。
在宏观经济分析、政策研究、市场营销等方面有着广泛的应用。
计量经济学时间序列
![计量经济学时间序列](https://img.taocdn.com/s3/m/8baee15d5e0e7cd184254b35eefdc8d377ee1458.png)
计量经济学中的时间序列是指按照时间顺序排列的一系列数据,这些数据可以是同一指标在不同时间点的观测值,也可以是多个指标在不同时间点的观测值组合。
时间序列数据的分析主要涉及两个方面:一是数据平稳性检验,二是数据建模与分析。
数据平稳性检验是时间序列分析中非常重要的一个步骤。
平稳性是指时间序列数据的统计特性不随时间推移而发生变化。
如果数据不满足平稳性条件,那么传统的回归分析方法可能会出现问题。
因此,在利用回归分析方法讨论经济变量有意义的经济关系之前,必须对经济变量时间序列的平稳性与非平稳性进行判断。
如果数据是非平稳的,可能需要采用适当的处理方法,如差分、对数转换等,使其满足平稳性条件。
在数据平稳性检验通过后,接下来需要进行数据建模与分析。
在计量经济学中,自回归模型(AR模型)是一种常用的时间序列模型。
自回归模型是统计上一种处理时间序列的方法,它用同一变数例如x 的之前各期,亦即x 1至x t-1来预测本期x t的表现,并假设它们为一线性关系。
除了自回归模型外,还有其他的模型可用于时间序列分析,如移动平均模型(MA模型)、自回归移动平均模型(ARMA模型)等。
这些模型的参数估计与假设检验方法也是计量经济学中研究的重点内容之一。
总之,计量经济学中的时间序列分析是一个相对独立且完整的领域,它为经济学、金融学等领域的研究提供了重要的方法论支持和实践指导。
ARDL模型介绍
![ARDL模型介绍](https://img.taocdn.com/s3/m/5b64ba2e59fafab069dc5022aaea998fcc2240eb.png)
ARDL模型介绍ARDL模型(Autoregressive Distributed Lag Model)是一种用于分析时间序列数据的计量经济学模型。
它可以用于研究变量之间的长期和短期关系,并通过引入滞后变量和变量差分来考虑变量之间的动态调整机制。
ARDL模型以均衡模型为理论基础,通过引入滞后变量,可以捕捉到变量之间的长期关系。
与其他时间序列模型相比,它具有以下特点:可以同时考虑内生变量的滞后效应和外生变量的短期效应;可以处理非平稳时间序列数据;可以估计长期关系和短期动态调整参数;适用于小样本和大样本。
具体来说,ARDL模型可以用如下形式表示:$$Y_t = \alpha + \sum_{i=1}^{p}\beta_iY_{t-i} +\sum_{j=0}^{q}\delta_jX_{t-j} + \epsilon_t$$其中, $Y_t$ 是内生变量, $X_t$ 是外生变量, $p$ 和 $q$ 分别表示内生变量和外生变量的滞后阶数, $\alpha$ 是截距项,$\beta_i$ 和 $\delta_j$ 是系数, $\epsilon_t$ 是误差项。
在进行ARDL协整检验时,首先需要检验内生变量和外生变量是否存在协整关系。
常用的检验方法有Bounds检验和统一平稳性检验。
Bounds 检验是通过比较两个阈值来判断协整关系是否存在,而统一平稳性检验则是通过引入滞后变量和差分项来构建F统计量,判断协整关系是否显著。
如果ARDL协整检验结果表明存在协整关系,那么可以建立ARDL误差修正模型。
该模型可以解释长期和短期关系之间的调整速度。
用如下形式表示:$$\Delta Y_t = \gamma_0 + \sum_{i=1}^{p}\gamma_i(Y_{t-i} -\beta Y_{t-i}) + \sum_{j=0}^{q}\lambda_j\Delta X_{t-j} +\theta_1 ECM_{t-1} + \epsilon_t$$其中, $\Delta$ 表示变量的一阶差分, $ECM_{t-1}$ 是误差修正项, $\gamma_i$ 和 $\lambda_j$ 是系数, $\theta_1$ 是误差修正系数,反映了短期变量调整到长期均衡的速度。
计量经济学:时间序列模型习题与解析(1)复习课程
![计量经济学:时间序列模型习题与解析(1)复习课程](https://img.taocdn.com/s3/m/dc8a56ec76a20029bd642d4c.png)
第九章 时间序列计量经济学模型的理论与方法练习题1、 请描述平稳时间序列的条件。
2、 单整变量的单位根检验为什么从DF 检验发展到ADF 检验?3、设,10,sin cos ≤≤+=t t t x t θηθξ其中ηξ,是相互独立的正态分布N(0, 2σ)随机变量,θ是实数。
试证:{10,≤≤t x t }为平稳过程。
4、 用图形及LB Q 法检验1978-2002年居民消费总额时间序列的平稳性,数据如下:5、 利用4中数据,用ADF 法对居民消费总额时间序列进行平稳性检验。
6、 利用4中数据,对居民消费总额时间序列进行单整性分析。
7、 根据6中的结论,对居民消费总额的差分平稳时间序列进行模型识别。
8、 用Yule Walker 法和最小二乘法对7中的居民消费总额的差分平稳时间序列进行时间序列模型估计,并比较估计结果。
9、 有如下AR(2)随机过程: t t t t X X X ε++=--2106.01.0 该过程是否是平稳过程?10、求MA(3)模型3213.05.08.01---+-++=t t t t t u u u u y 的自协方差和自相关函数。
11、设动态数据,92.0,82.0,74.0,9.0,7.0,8.0654321======x x x x x x ,78.07=x,84.0,72.0,86.01098===x x x 求样本均值x ,样本方差0ˆγ,样本自协方差1ˆγ、2ˆγ和样本自相关函数1ˆρ、2ˆρ。
12、判断如下ARMA 过程是否是平稳过程:12114.01.07.0----+-=t t t t t x x x εε13、以t Q 表示粮食产量,t A 表示播种面积,t C 表示化肥施用量,经检验,他们取对数后都是I (1)变量且相互之间存在CI (1,1)关系。
同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮食生产模型:t t t t t t C C A Q Q μααααα+++++=--1432110ln ln ln ln ln推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。
时间序列计量经济学建模简介
![时间序列计量经济学建模简介](https://img.taocdn.com/s3/m/25d896fd9e314332396893b0.png)
第八章 时间序列计量经济学建模简介第一节 时间序列计量经济学模型的基本概念 一、时间序列计量经济学的发展趋势1、上个世纪70年代中期世界复杂的经济格局对计量经济学方法的挑战。
计量经济学模型的主要应用之一就是经济预测,而且早年计量经济学就是通过利用模型的短期预测发展起来的。
在上个世纪50——60年代西方国家经济预测中不乏成功的实例。
但是,进入20世纪70年代以后,人们对计量经济学模型提出了质疑,表现在1973年和1979年,各种计量经济学模型都无法预测到“石油危机”对经济会造成什么影响(尽管当时能够对石油危机提出预报)。
2、传统计量经济学方法存在的主要问题。
传统计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律的主要技术手段。
而对于非稳定发展的经济过程和缺乏规范行为理论的经济活动,传统计量经济学模型就显得无能为力。
同时,现实经济活动愈来愈复杂多变,对于社会经济的发展、体制的变迁、技术的创新,要用具有一定的计量经济学或动态多元非线性方程组对其加以描述并非易事。
因此,人们认为传统计量经济学的弱点是过分依赖先验理论,这种弱点一方面表现为缺乏动态的信息反馈;另一方面是所获得的理论与样本数据间满意的吻合结果往往要凭借建模者的艺术。
3、80年代初提出了与传统计量经济学完全不同的建模方法。
最初由萨甘(Sargan ,1964)提出,后经亨德里-安德森(Hendry-Anderson ,1977)和戴维森(Davidson ,1977)进一步完善的误差修正模型,以及由格兰杰(C.W.J.Granger ,1981)提出的协整理论,最终产生了Hendry 的“由一般到特殊”的建模方法。
时间序列的类型: (1)按时间是否连续分为一是离散型的随机过程或时间序列;二是连续型的随机过程或时间序列。
本章主要研究离散时间序列,并用t Y 或t X 表示。
对于连续时间序列,可通过等间隔采样使之转化为离散时间序列后加以研究。
经济学实证研究中的计量经济学方法与时间序列分析方法比较
![经济学实证研究中的计量经济学方法与时间序列分析方法比较](https://img.taocdn.com/s3/m/d0049e70366baf1ffc4ffe4733687e21ae45ff41.png)
经济学实证研究中的计量经济学方法与时间序列分析方法比较在经济学实证研究中,计量经济学方法和时间序列分析方法是常用的数据分析工具。
它们都旨在通过采集、处理和分析大量数据来揭示经济现象的内在规律和变化趋势。
然而,两种方法在理论基础、数据处理和模型建立上存在一些区别。
本文将对计量经济学方法和时间序列分析方法进行比较。
一、理论基础计量经济学方法的理论基础主要来自经济学理论和数理统计学。
它结合了经济学的理论模型和实证研究的要求,通过建立经济模型来分析经济现象,并通过数理统计学的方法对模型进行估计和检验。
计量经济学方法依赖于理论框架和假设,需要确保模型的合理性和可靠性。
时间序列分析方法的理论基础则主要来自于时间序列理论和统计学。
它主要关注数据随时间变化的规律和趋势,通过对时间序列数据的模型建立和分析,来揭示时间序列的内在规律。
时间序列分析方法在实证研究中强调数据的时间性,通过分析数据序列中的趋势、周期和季节性等特征,来预测未来的走势和变动。
二、数据处理计量经济学方法和时间序列分析方法在数据处理上也有些差异。
计量经济学方法更加注重横截面数据和面板数据的分析,即通过横向比较个体之间的差异,或通过纵向比较同一群体在不同时期的变动。
计量经济学方法在数据处理上需要考虑到交叉分析、回归分析和因果推断等因素。
时间序列分析方法则更加关注数据序列之间的动态关系,即通过对时间序列数据的处理和分析,来研究时间上的依赖关系和变动规律。
时间序列分析方法需要考虑到数据的平稳性和相关性,通过建立时间序列模型,如ARIMA模型、VAR模型等,来对数据进行长期和短期预测。
三、模型建立计量经济学方法和时间序列分析方法在模型建立上亦有不同。
计量经济学方法在建立模型时,常常基于经济理论并引入各种经济因素和变量,通过建立多元回归模型、面板数据模型等来进行实证分析。
计量经济学方法的模型建立强调经济变量之间的关系和影响力。
时间序列分析方法在模型建立上则更加关注数据序列本身的特征和性质。
计量经济学第十章 时间序列计量经济模型
![计量经济学第十章 时间序列计量经济模型](https://img.taocdn.com/s3/m/4479654a3b3567ec102d8a4f.png)
H0
第三步:对一阶差分序列作单位根检验得到序列的单整阶数 为了得到人均可支配收入(SR)序列的单整阶数,在单位根检 验(Unit Root Test)对话框(图10.3)中,指定对一阶差分序 列作单位根检验,选择带截距项(intercept),滞后差分项 (Lagged differences)选2阶,点击OK,得到估计结果,见表 10.5。
t(t T )
举例:
1、连续性随机过程:心电图,用 Y t 表示。
2、离散型随机过程:GDP,DPI等,用 Y1 , Y2 ,...,Yt 表示。记住,这 些Y中的每一个都是一个随机变量,而这些随机变量按时间编排形 成的集合就是一个随机过程。
讨论:如何理解GNP是一个随机过程呢?
理论上讲,某一年的GNP数字可能是任何一个数字,取决 于当时的政治与经济环境。某个数字只是所有这些可能性 中的一个特定的实现,也可以看成是某年GNP所有可能值 得均值。因此,我们可以说,GNP是一个随机过程,而我 们在某个时期期间所观测到的实际值只是这个过程的一个 特定实现(即样本)。与我们利用截面数据中的样本数据 对总体进行推断一样,在时间序列中,我们利用这些实现 对其背后的随机过程加以推断。
-0.7791体现了对偏离的修正,上一期偏离越远,本 期修正的量就越大,即系统存在误差修正机制。
第十章 时间序列计量经济模型
本章主要讨论:
时间序列的基本概念
时间序列平稳性的单位根检验 协整
第一节 时间序列基本概念
本节基本内容:
●伪回归问题 ●随机过程的概念 ●时间序列的平稳性
一、伪回归问题
传统计量经济学模型的假定条件:序列的平稳性、正态性。
所谓“伪回归”,是指变量间本来不存在相依关系,但回归 结果却得出存在相依关系的错误结论。即表现在:两个本来没 有任何因果关系的变量,却有很高的相关性(有较高的R2)。 例如:用美国人口数和中国GDP回归,也可能会得到很高的 可决系数。 20世纪70年代,Grange、Newbold 研究发现,造成“伪回归” 的根本原因在于时序序列变量的.,Ytn
时间序列计量经济学模型的理论与方法
![时间序列计量经济学模型的理论与方法](https://img.taocdn.com/s3/m/1abe5b4a773231126edb6f1aff00bed5b9f373e3.png)
时间序列计量经济学模型的理论与方法时间序列计量经济学是经济学中的一个重要分支,它研究的是时间序列数据之间的经济关系。
它利用统计学和经济学方法对时间序列数据进行建模和分析,从而揭示经济变量之间的内在规律和相互影响关系。
本文将介绍时间序列计量经济学模型的理论基础和应用方法。
时间序列经济学的理论基础主要包括回归分析、ARMA模型、ARIMA模型和VAR模型等。
首先是回归分析,它是经济学中最基本的分析方法。
回归分析通过线性回归方程描述了因变量和自变量之间的线性关系,并利用最小二乘法进行参数估计。
回归分析不仅可以研究截面数据的关系,还可以研究时间序列数据的动态关系。
其次是ARMA模型,它是自回归移动平均模型的简称。
ARMA模型假设时间序列数据可以由过去的自身值和随机误差表示,具有自相关和滞后效应。
通过对ARMA模型的参数估计,可以得到时间序列数据的预测值和其它统计性质。
再次是ARIMA模型,它是自回归积分移动平均模型的简称。
ARIMA模型在ARMA模型的基础上引入了差分运算,可以处理非平稳时间序列数据。
最后是VAR模型,它是向量自回归模型的简称。
VAR模型将多个时间序列变量作为回归自变量,可以同时估计它们之间的相互关系。
时间序列计量经济学的方法主要分为描述性分析、参数估计和模型选择三个阶段。
首先是描述性分析,它通过绘制时间序列图、计算统计量和做周期性分析等方法,来探索和描述时间序列数据的特征。
其次是参数估计,它是时间序列计量经济学的核心内容。
参数估计的目标是确定模型中的参数值,通常采用最大似然估计、广义最小二乘估计和贝叶斯估计等方法。
最后是模型选择,它是根据数据的特征和模型的拟合程度来选择合适的模型。
常用的模型选择准则包括赤池信息准则(AIC)、贝叶斯信息准则(BIC)和R平方等。
时间序列计量经济学模型的应用范围非常广泛,可以用于宏观经济预测、金融市场分析、企业经营决策等方面。
在宏观经济预测中,时间序列计量经济学模型可以通过对经济指标的预测,揭示经济增长趋势和周期性波动的规律,帮助政府和企业制定经济政策和战略。
计量经济学理论的模型解释与预测
![计量经济学理论的模型解释与预测](https://img.taocdn.com/s3/m/ce7226b3aff8941ea76e58fafab069dc502247ef.png)
计量经济学理论的模型解释与预测引言计量经济学是经济学中一个重要的分支,其研究方法主要基于经济理论和数理统计学,旨在通过使用数学和统计方法来解释经济现象,并进行预测和政策分析。
计量经济学理论的模型是实现这一目标的核心工具。
本文将对计量经济学理论的模型进行解释,并探讨其在预测方面的应用。
一、计量经济学理论的模型解释1.1 常见的计量经济学模型计量经济学模型是对经济现象进行抽象和概括的数学表达式。
常见的计量经济学模型包括线性回归模型、时间序列模型、面板数据模型等。
线性回归模型是计量经济学中最基础且广泛应用的模型之一。
它假设变量之间存在线性关系,并通过估计各个变量的系数来解释经济现象。
时间序列模型是用于分析时间序列数据的模型,其中包括自回归模型、移动平均模型、ARMA模型等。
时间序列模型主要用于分析时间上的趋势和周期性。
面板数据模型是同时包含横截面和时间序列数据的模型,通常用于分析跨国或跨地区的经济现象。
面板数据模型可以同时考虑个体特征和时间特征,提高了模型的解释能力。
1.2 模型解释的基本步骤模型解释是对计量经济学模型进行参数估计和推断的过程。
基本的模型解释步骤包括模型设定、估计方法选择、参数估计和模型诊断。
模型设定是根据研究目的和数据特征选择适当的计量经济学模型,并确定模型中包含的变量和假设条件。
估计方法选择是根据模型的性质和数据的特点选择合适的估计方法,常见的估计方法包括最小二乘法、广义最小二乘法、极大似然估计等。
参数估计是利用选定的估计方法对模型的参数进行估计,通常使用计算机软件进行参数的数值计算。
模型诊断是对估计结果进行评价和检验,包括残差分析、假设检验等。
模型诊断可以用于判断模型的拟合程度和参数的显著性。
1.3 模型解释的应用领域计量经济学模型的解释应用广泛,包括实证研究、政策评估和预测分析等。
实证研究是计量经济学模型应用的基本领域,通过对模型进行解释,可以验证和检验经济理论的有效性,并提供实证证据支持。
计量经济学4种常用模型
![计量经济学4种常用模型](https://img.taocdn.com/s3/m/e2985fc3710abb68a98271fe910ef12d2af9a98b.png)
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。
计量经济学8.3时间序列的协整和误差修正模型
![计量经济学8.3时间序列的协整和误差修正模型](https://img.taocdn.com/s3/m/54efea4cb42acfc789eb172ded630b1c59ee9b24.png)
首先用OLS对变量进行回归,然后对回归残差进行单 位根检验。如果残差是平稳的,则变量之间存在协 整关系。
Johansen检验
这是一种基于VAR模型的协整检验方法,适用于多 变量系统。通过检验特征根和特征向量的性质来判 断协整关系的存在性和个数。
其他检验方法
如基于残差的DF、ADF检验、PP检验等,这些方法 在特定情况下可能具有更好的适用性。
按时间顺序排列的一组数据,反映现象随时间变化的情况。
时间序列特点
动态性、时序性、规律性、随机性。
平稳性与非平稳性
平稳性
时间序列的统计特性不随时间变化而 变化。
非平稳性
时间序列的统计特性随时间变化而变 化,包括趋势性变化、周期性变化和 随机性变化。
趋势性与周期性
趋势性
时间序列在长期内呈现出的持续上升或下降的变化趋势。
误差修正模型
详细阐述了误差修正模型的构建 方法、优缺点以及适用范围,包 括ECM、VECM等模型。
实证分析与应用
通过多个案例,深入探讨了协整 和误差修正模型在实证分析中的 应用,包括政策评估、金融市场 分析等。
前沿动态介绍
非线性协整理论
随着计量经济学的发展,非线性协整理论逐 渐受到关注,其能够更好地刻画经济变量之 间的长期均衡关系。
系,则建立误差修正模型,并引入误差修正项。 • 实证结果:通过估计ECM模型参数,发现经济增长与通货膨胀之间存在长期
均衡关系。在短期内,经济增长率的波动会受到通货膨胀率的影响,并通过误 差修正项进行调整。此外,还发现其他控制变量如货币政策、财政政策等对经 济增长和通货膨胀也有显著影响。
04
时间序列数据预处理技术
工具变量法(IV)
在存在内生性问题的情况下,使用工具 变量来估计模型参数。需要找到与误差 项无关但与解释变量相关的工具变量。
常用计量经济学模型
![常用计量经济学模型](https://img.taocdn.com/s3/m/c2f8f40890c69ec3d5bb7557.png)
Box和Pierce的Q统计量
Q T
2 2 ˆ ( k ) ~ (K ) k 1
K
如果检验通过,则随机过程是白噪声。
自相关函数还可被用于检验一个序列是否平稳。
平稳时间序列的自相关函数随着滞后期k的增加而快速下降为0
(k )
(k )
k
k
平稳序列
非平稳序列
齐次非平稳过程
yt非平稳,但yt – yt-1平稳,称yt为一阶齐次非平稳过程 [例] 随机游走过程是一阶齐次非平稳过程
对于季度资料
~ 此时可大致认为 yt 已无季节和不规则波动,可看作 L C 的估计
1 ~ yt (0.5 yt 2 yt 1 yt yt 1 0.5 yt 2 ) 4
第二步 估计S×I
令
yt zt ~ yt
L S C I ( S I) LC
zt即为S×I的估计
第三步 消除不规则变动,得到S的估计
对S×I中同一季节的数据进行平均,从而消除掉I。
例如,对于月度数据,假定 y1是1月份的数据,
y2是1月份的数据,
y3是1月份的数据, 则 y4是1月份的数据,总共4年数据。
1 z1 ( z1 z13 z 25 z37 ) 4 1 z 2 ( z 2 z14 z 26 z38 ) 4
五、混合自回归-移动平均(ARMA)模型
ARMA (p , q):
yt 1 yt 1 p yt p t 1 t 1 q t q
ARMA(1 , 1):
yt 1 yt 1 t 1 t 1
美国商业部:1986年1月至1995年12月百货公司 的月零售额(亿元)
计量经济学-第6章⑴时间序列的平稳性及其检验精品文档
![计量经济学-第6章⑴时间序列的平稳性及其检验精品文档](https://img.taocdn.com/s3/m/645f28ddf121dd36a32d82db.png)
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。
n
P lim xi2/n Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
时间序列分析模型方法就是在这样的情况下, 以通过揭示时间序列自身的变化规律为主线而发 展起来的全新的计量经济学方法论。
Xt= 1Xt-1+2Xt-2…+kXt-k 该随机过程平稳性条件将在第二节中介绍。
三、平稳性检验的图示判断
• 给出一个随机时间序列,首先可通过该 序列的时间路径图来粗略地判断它是否 是平稳的。
• 一个平稳的时间序列在图形上往往表现 出一种围绕其均值不断波动的过程;
• 而非平稳序列则往往表现出在不同的时 间段具有不同的均值(如持续上升或持 续下降)。
⒉经典回归模型与数据的平稳性
• 经典回归分析暗含着一个重要假设:数据是平稳的。 • 数据非平稳,大样本下的统计推断基础——“一致
性”要求——被破怀。 • 经典回归分析的假设之一:解释变量X是非随机变
量
• 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 不相关∶Cov(X,)=0
时间序列分析已组成现代计量经济学的重要内
容,并广泛应用于经济分析与预测当中。
二、时间序列数据的平稳性
时间序列分析中首先遇到的问题是关于时间序列 数据的平稳性问题。
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
不难验证:1)||>1时,该随机过程生成的时间序列是 发散的,表现为持续上升(>1)或持续下降(<-1), 因此是非平稳的;
2)=1时,是一个随机游走过程,也是非平稳的。
第二节中将证明:只有当-1<<1时,该随机过程 才是平稳的。
• 1阶自回归过程AR(1)又是如下k阶自回归AR(K)过 程的特例:
时间序列计量经济学模型的理论及其方法
路漫漫其悠远
少壮不努力,老大徒悲伤
§9.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归 模型
二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程
一、问题的引出:非平稳变量与经典 回归模型
⒈常见的数据类型
到目前为止,经典计量经济模型常用到的数据有: • 时间序列数据(time-series data); • 截面数据(cross-sectional data) • 平行/面板数据(panel data/time-series cross-section
data) ★时间序列数据是最常见,也是最常用到的数据。
例1.一个最简单的随机时间序列是一具有零均值 同方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
例2.另一个简单的随机时间列序被称为随机游走 (random walk),该序列由如下随机过程生成:
(2)
(Xi X)2/n
依概率收敛: P li(m (X iX )2/n )Q n
第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致
性”特性P:lim(ˆ) n
注意:在双变量模型中:
ˆxiui xiui/n
xi2
xi2/n
因此:
P li m ˆP li m xiui/n0
一个时间序列的样本自相关函数定义为:
nk Xt X Xtk X
rk t1
n
Xt X 2
t1
k1,2,3,
易知,随着k的增加,样本自相关函数下降且趋
于零。但从下降速度来看,平稳序列要比非平稳
序列快得多。
rk
rk
1
1
0
k
0
k
(a)
(b)
图9.1.2 平稳时间序列与非平稳时间序列样本相关图
Xt=Xt-1+t
这里, t是一个白噪声。
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)
为了检验该序列是否具有相同的方差,可假设Xt的 初值为X0,则易知
X1=X0+1 X2=X1+2=X0+1+2 ……
Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序 列。
• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{Xt}是平稳的。
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
Xt
Xt
t
t
(a)
(b)
图9.1 平稳时间序列与非平稳时间序列图
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0 自相关函数是关于滞后期k的递减函数(Why?)。
实际上,对一个随机过程只有一个实现(样本), 因此,只能计算样本自相关函数(Sample elation function)。