实验报告随机信号

合集下载

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。

3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。

4、方差定义为随机过程的方差。

方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。

自相关函数可正,可负,其绝对值越大表示相关性越强。

6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。

哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

2011秋随机信号实验报告模板

2011秋随机信号实验报告模板

实验一一、实验目的熟悉并练习使用Matlab 的函数,明确各个函数的功能说明和内部参数的意义二、实验内容和步骤实验代码:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];rand(3)randn(3)n3 = normrnd([1 2 3;4 5 6],0.1,2,3)mean(A)mean(A,2)var(A)%%%xcorr%%%%%ww = randn(1000,1);[c_ww,lags] = xcorr(ww,10,'coeff');figure(7);stem(lags,c_ww) %%%%%%%%%%%%%%%%%%%%%%%%% %常用的傅立叶变换是找到在嘈杂的域%信号下掩埋了信号的频率成分。

%考虑数据采样在1000赫兹。

现有一信号%由以下部分组成,50赫兹振幅%为0.7的正弦和120赫兹振幅为1的正弦%并且受到一些零均值的随机噪声的污染%%%%%%%%%%%%%%%%%%%%%%%%% Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 信号长度t = (0:L-1)*T; % 时间矢量% 50赫兹正弦波与120赫兹正弦波的和x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); y = x + 2*randn(size(t)); % 正弦波加噪声figure(6);plot(Fs*t(1:50),y(1:50)) %画此信号的时域图title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')%这在寻找原始信号的频率成分上是很难%确定的。

转换到频域,噪音信号Y%的傅立叶变换采取快速傅立叶变换%(FFT):NFFT = 2^nextpow2(L); %y长度L附近%的幂级数Y = fft(y,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1); % 单边拉普拉斯变换plot(f,2*abs(Y(1:NFFT/2+1))) %画单边频谱图title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|') %%%%%%%%%%%%%%%%%%%%%%%%% mu = [0:0.1:2];[y i] = max(normpdf(1.5,mu,1));MLE = mu(i) %%%%%%%%%%%%%%%%%%%%%%%%% p = normcdf([-1 1]);p(2) - p(1) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0.1:0.1:0.6;y = unifpdf(x) %%%%%%%%%%%%%%%%%%%%%%%%% probability = unifcdf(0.75) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylpdf(x,1);figure(5);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylcdf(x,1);figure(4);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% y = exppdf(5,1:5) %%%%%%%%%%%%%%%%%%%%%%%%% mu = 10:10:60;p = expcdf(log(2)*mu,mu) %%%%%%%%%%%%%%%%%%%%%%%%% n = 5;X = pascal(n)R = chol(X)X(n,n) = X(n,n)-1 %%%%%%%%%%%%%%%%%%%%%%%%% x = [randn(30,1); 5+randn(30,1)];[f,xi] = ksdensity(x);figure(3);plot(xi,f); %%%%%%%%%%%%%%%%%%%%%%%%% x = -2.9:0.1:2.9;y = randn(10000,1);hist(y,x) %%%%%%%%%%%%%%%%%%%%%%%%% %求y=x*log(1+x)在[0 1]上的定积分,积分%变量为系统默认syms x;S=x.*log(1+x) Y=int(S,x,0,1) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 2 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %(1)产生数学期望为0,方差为1 的高斯随机变量SIGMA=sqrt(1);n2 = normrnd(0,SIGMA,[2 5]) %两行五列数学期望为0,方差为1 的高斯随机变量%产生数学期望为5,方差为10 的高斯随机变量SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[2 5])%利用计算机求上述随机变量的100个样本的数学期望和方差n1 = normrnd(0,1,[1 100]);SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[1 100]);M1 = mean(n1)M2 = mean(n2)V1 = var(n1)V2 = var(n2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 3 %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生自由度为2,数学期望为2,方差为 4 的具有中心2χ分布的随机变量SIGMA=sqrt(2);n1 = normrnd(2,SIGMA);n2 = normrnd(2,SIGMA);y=(n1).^2+(n2).^2%产生自由度为2,数学期望为4,方差为12 的具有中心2χ分布的随机变量SIGMA=sqrt(12);n1 = normrnd(4,SIGMA);n2 = normrnd(4,SIGMA);y=(n1).^2+(n2).^2%利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较SIGMA=sqrt(2);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y)SIGMA=sqrt(12);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 4 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %利用Matlab 现有pdf 和cdf 函数,画出均值为零、方差为4 的%高斯随机变量的概率密度曲线和概率分布曲线x=-10:0.1:10;Y1 = normpdf(x,0,2);Y2=normcdf(x,0,2);figure(1);plot(x,Y1)figure(2);plot(x,Y2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 5 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生长度为1000 数学期望为5,方差为10 的高斯随机序列,%并根据该序列值画出其概率密度曲线。

随机信号分析实验报告

随机信号分析实验报告

一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

本实验中算法都是一种估算法,条件是N要足够大。

2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。

噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。

②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。

对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。

对微弱信号检测与提取有很多方法,本实验采用多重自相关法。

多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。

即令:式中,是和的叠加;是和的叠加。

对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。

信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。

多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

随机信号处理实验报告

随机信号处理实验报告

随机信号处理实验报告院系名称学生姓名学号指导教师目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。

第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。

二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。

理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。

在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。

关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。

定义2:不同频率、不同强度无规则地组合在一起的声音。

如电噪声、机械噪声,可引伸为任何不希望有的干扰。

第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。

而第二种定义则相对抽象一些,大部分应用于机械工程当中。

在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。

为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。

实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。

确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。

随机信号实验_窄带系统特性

随机信号实验_窄带系统特性

《概率论与随机信号分析》实验报告姓名: 成绩: 学号: 专业:实验三 窄带系统特性实验名称:窄带系统特性 学时安排:2学时 实验类别:验证性 实验要求:必做一.实验目的和任务1.了解窄带系统的特性2. 了解信号和噪声经过窄带系统前后的统计特性二.实验原理介绍如果带通信号的带宽与中心频率相比非常小,即|ω2-ω1|<<ω0(或ωm <<ω0),则称它为窄带信号或准单频信号。

[]0()cos ()s t A t t ω=+Φ()()()v t s t n t =+00()()cos()()sin()v v v t i t t q t t ωω=- 00()()cos()()sin()n n n t i t t q t t ωω=- ()cos ()()()sin ()()v n v n i t A t i t q t A t q t =Φ+=Φ+2222022(;/),0nv r A r nn rrA f r t e I r σϕσσ+-⎛⎫=≥ ⎪⎝⎭只有噪声时,输出噪声幅度服从正态分布,而包络服从瑞利分布。

三.实验设备介绍1.IBM PC 机一台; 2. MATLAB 工具。

四、实验内容和步骤及结果分析%噪声经过窄带系统close allclear allf0=30e+6; %中心频率t1=10e-6; %信号时宽fs=5*f0; %采样频率t=0:1/fs:t1;x=sin(2*pi*f0*t);plot(t,x)xlabel('sin(x),f0=30e+6');grid onn=length(x);f=(0:n-1)/n*fs;fx=abs(fft(x));xlabel('Signal Spectrum,f0=30e+6');figureplot(f,fx);grid onfigureb=2e+6;[b a]=butter(2,[(f0-b/2)/(fs/2) (f0+b/2)/(fs/2)]);y=filter(b,a,x);plot(t,y)xlabel('Signal After Filtering');xn=rand(1,n)*2-1;figureplot(t,xn);xlabel('Uniform Distribution U(-1,1)');yn=filter(b,a,xn);figure;plot(t,yn);xlabel('Noise after Bandpass Filter');m1=mean(yn);c1=std(yn);figurehist(yn,20);xlabel('Noise Distribution after Filter');figure;yn1=xcorr(yn,yn);fn2=abs(fft(yn1));plot(f/2,fn2(1:n));xlabel('Noise Spectrum after Filter');运行上面的程序可得1当改变信号参数和滤波器带宽,观察不同带宽时输出噪声的波形和概率统计,其程序如下close allclear allf0=30e+6; %中心频率f1=26e+6t1=10e-6; %信号时宽fs=5*f0; %采样频率t=0:1/fs:t1;x=sin(2*pi*f1*t);plot(t,x)xlabel('sin(x),f0=30e+6');grid onn=length(x);f=(0:n-1)/n*fs;fx=abs(fft(x));xlabel('Signal Spectrum,f0=30e+6');figureplot(f,fx);grid onfigureb=3e+6;[b a]=butter(2,[(f0-b/2)/(fs/2) (f0+b/2)/(fs/2)]);y=filter(b,a,x);plot(t,y)xlabel('Signal After Filtering');xn=rand(1,n)*2-1;figureplot(t,xn);xlabel('Uniform Distribution U(-1,1)');yn=filter(b,a,xn);figure;plot(t,yn);xlabel('Noise after Bandpass Filter'); m1=mean(yn);c1=std(yn);figurehist(yn,20);xlabel('Noise Distribution after Filter'); figure;yn1=xcorr(yn,yn);fn2=abs(fft(yn1));plot(f/2,fn2(1:n));xlabel('Noise Spectrum after Filter');2信号和噪声同时加到滤波器上,求其输出信号的时域波形和功率。

大连理工大学随机信号实验报告完整

大连理工大学随机信号实验报告完整

大连理工大学实验预习报告学院(系):信息与通信工程学院专业:电子信息工程班级:姓名:学号:组:___实验时间:2015.12.14 实验室:C221 实验台:指导教师:实验I:随机信号的产生、相关分析及其应用实验实验1 均匀分布随机数的产生,统计特性分析及计算机仿真一、实验目的和要求掌握均匀分布随机信号的基本产生方法二、实验原理和内容较简单的伪随机序列产生方法是采用数论中基于数环理论的线性同余法(乘同余法、混合同余法),其迭代公式的一般形式为f(x) = (r·x+ b) Mod M,其离散形式为s(n + 1) = [r·s(n) + b] Mod M。

其中,s(n)为n 时刻的随机数种子,r 为扩展因子,b 为固定扰动项,M 为循环模,Mod M 表示对M 取模。

为保证s(n)的周期为M,r 的取值应满足r = 4k + 1,M 2p,k 与p的选取应满足:r < M,r(M-1) + 1< 231-1。

通常公式中参数常用取值为s(0) =12357,r = 2045,b = 1,M =1048576。

三、实验步骤1. 编程实现产生10000个在(0, 1)区间均匀分布随机数。

2. 计算生成随机数的1~4阶矩,最大值,最小值,频度直方图。

实验2 高斯分布随机数的产生,统计特性分析及计算机仿真一、实验目的和要求掌握高斯白噪声的基本产生方法二、实验原理和内容1.变换法2.较简单的高斯白噪声产生方法是基于概率论中的中心极限定理。

即无穷多个同分布随机变量之和构成随机变量服从高斯分布。

方便起见,可以使用多个均匀分布随机变量之和近似高斯分布随机变量。

三、实验步骤1.编程实现产生10000 个N(3, 4) 高斯随机数。

2.计算生成随机数的1~4 阶矩,最大值,最小值,频度直方图。

实验3 随机信号相关函数计算、相关分析及计算机仿真一、实验目的和要求掌握随机信号相关函数计算、相关分析及实现二、实验原理和内容根据自相关和互相关的定义,自相关,互相关计算随机信号的自相关和互相关。

随机信号实验报告

随机信号实验报告

班级:姓名:学号:指导老师:时间:一、信号基本参数1.均值及方差由上图可以看出,该语音信号的能量不是很大,因其均值在0.12左右,方差在0.02左右,故波动不是很大;当加入信噪比为5的白噪声后,其均值明显增大,在0.48左右,说明噪声的能量远大于信号的能量,其方差在0.13左右,故波动很大。

由此看出,白噪声携带能量加大,且波动加大。

2.正态概率分布函数上图为语音信号各点的幅度的概率分布,它与语音信号分布差不多,它放映的是语音信号在各点的能量大小。

当语音信号在某时刻幅值越大,则其概率越大,反之,则越小。

3.自相关上图可以看出,该语音信号的自相关不是很大,因此该语音信号前后相关性不是很大,因此,在信号处理及通信中对信号处理要求不是很高;当加入噪声后,可以看出自相关有明显减小的痕迹,所以白噪声的自相关不大。

4.互相关上图为两个不同的语音信号的互相关,可以看出在前半段完全没有相关性,而在后半段有一定的相关性;当加入白噪声后,互相关增强,且前半段也没有相关性,说明有一语音信号前半段没有信号。

由两图比较可得,高斯白噪声的互相关较大。

二、信号加噪及提取5.信号加入确定噪声后加入确定噪声sin(17500*t)后,时域图上可以看出,振幅较小的语音信号完全被噪声淹没,从回放的声音中可以听到刺耳的噪声信号,从频谱图中也可以看出,在1800Hz左右,有明显的高峰,所含的能量远大于语音信号。

因此,可以用带阻滤波器滤除该噪声信号。

6.去除确定噪声信号sin()从上面两图可以看出,去噪后的频谱中没有高峰突起,确实去掉了噪声信号,从回放的声音中,也听不到刺耳的声音,是比较清晰地声音。

从频谱图中可以明显看到有凹下去的部分,是因为不是理想滤波器,必定会滤掉临近的很小的一部分信号,但并不会语音信号造成太大的影响。

采用的是巴特沃斯带阻滤波器,fp=1700Hz,fs=100Hz,当增大fs后,可以明显看到凹下去的部分增大;而改变fp后,就不能滤掉噪声信号。

随机信号模块实验报告(一)

随机信号模块实验报告(一)

随机信号实验报告(一)学号: 姓名:熟悉Matlab 的随机信号处理相关命令(一)一、实验目的:1、掌握随机信号的简单分析方法。

2、熟悉语音信号的简单变换的分析方法及其编程 。

二、实验原理:1、声音的录入与读取在matlb 中实现对语音信号的读取可以用wavread 函数,如b=wavread('211.wav');括号中为语音信号的存储路径。

还可用sound 函数对录入的声音信号进行发声;用plot 函数把声音信号图谱绘制下来。

这是对声音信号的最基本处理。

2、时域与频域的简单分析语音信号是个随机信号,在matlab 中对随机信号可以有以下分析。

如概率密度分布,如果F X (x,t )对x 的一阶导数存在,则定义xt x F t x f X x ∂∂=),(),( 为随机过程X (t )的一维概率密度。

3、相关性与功率谱自相关估计,同一序列在不同时刻的取值之间的相关程度,自相关函数和功率谱密度函数是一对傅里叶变换。

互相关估计则是两个函数在同一时刻的不同取值之间的相关程度。

互相关函数是两个随机过程联合统计特性中重要的数字特征,它的定义为dxdy t t y x xyft Y t X E t t R xyXY ),,,()]()([),(212121⎰⎰∞∞-∞∞-==在频域要先对信号进行傅里叶变换,然后分析其频谱特性、相位等三、实验内容:对语音信号的读取,此为时域波形这是一个随机信号,横轴为时间t ,范围在0~350000 s 纵轴为声音幅度,范围在-0.25~0.25。

波形是关于x 轴对称的。

此图没有定义范围,是把录入的语音信号全程显示出来。

语音信号的相位分布进行了4096点傅里叶变换,横轴为采样点数,纵轴为信号在此点的相位。

范围集中于-3~3之间。

变换采样点数不一样,波形就会不一样。

概率密度分布直方图信号的概率密度类似正态分布,定义了-3~3之间的概率密度,密度最大在0附近可达450。

实验报告材料随机信号

实验报告材料随机信号

实用标准文案实验报告通信信号分析与处理专业通信工程学号j130510401姓名王溪岩日期2016.1.10实用标准文案通信信号分析与处理实验指导书实用标准文案1、实验过程与仿真该实验主要包括函数确定、参数选择、仿真和分析几个部分,具体仿真程序和结果分析如下:1.1二项分布随机过程1.1.1信号产生1)高斯分布随机过程:n=input('n=');x=0.25;o=1;m=1;R=normrnd(x,o,m,n);subplot(3,1,1);plot(R)R_a=xcorr(R);subplot(3,1,2);plot(R_a)Pf=abs(fft(R_a,2048));subplot(3,1,3);plot(Pf)(n输入1000,5000,10000)运行结果:实用标准文案结果分析:由图可看出,高斯随机分布的均值几乎在一条直线上,可看作为恒定值,与时间无关;自相关函数是仅与时间间隔T有关的函数,高斯随机分布为平稳过程;当n=1000时,值返回到0时的值,此时的自相关系数最大,表明自己与本身的自相关程度最高。

2)均匀分布:m=1;n=input('n=');a=0;b=0.5;R=unifrnd(a,b,m,n);R_a=xcorr(R);subplot(3,1,1);plot(R);title('均匀随机分布');实用标准文案Pf=abs(fft(R_a,10000));subplot(3,1,2);plot(R_a);title('自相关');subplot(3,1,3);plot(Pf);title('功率');结果分析:自相关系数在时间间隔为1的时候最高。

3)二项分布n=input('n=');m=1;p=0.02;N=1;R=binornd(N,p,m,n);subplot(3,1,1)plot(R);实用标准文案R_a=xcorr(R);subplot(3,1,2)plot(R_a)Pf=abs(fft(R_a,10000));subplot(3,1,3);plot(Pf)运行结果:结果分析:二项随机分布的值在0.5左右震荡,均值为0.5,与时间无关;自相关函数为仅与时间间隔t有关的函数,该过程为平稳过程。

四川大学随机信号分析实验报告

四川大学随机信号分析实验报告

随机信号分析基础实验报告课程随机信号分析基础实验题目随机信号通过线性系统学生姓名笔墨东韵专业电子信息科学与技术一、实验目的1.理解白噪声通过线性系统后统计特性的变化规律。

2.熟悉几种常用的时间序列。

二、实验内容1.白噪声通过线性系统后的统计特性分析。

(1)白噪声通过低通系统后的统计特性变化:对比输入输出的波形,自相关函数,功率谱密度,功率,互相关函数等;(2)白噪声通过不同带宽的低通系统后的概率密度;(3)窄带随机过程的产生与特性分析。

(调制,滤波)2.典型时间序列模型分析。

(1)模拟产生AR,ARMA模型序列,画出波形,并估计其均值,方差,自相关函数,功率谱密度;*(2)模拟产生指定功率密度的正态随机序列。

三、实验设备Matlab软件四、实验步骤以及实验结果分析1.白噪声通过线性系统后的统计特性分析。

>>l=(0:length(a2)-1)*200/length(a>>l=(0:length(a2)-1)*200/length(a2.典型时间序列的模拟分析模拟产生AR,ARMA模型序列:五、实验收获(本次实验的感受,对你的哪方面技能或知识有提高。

)本次实验我们收获很多,不仅理解了白噪声通过线性系统后统计特性的变化规律,同时也熟悉了如何使用matlab求信号的波形,自相关函数,功率谱密度,功率,互相关函数等等的统计特性。

深刻地理解到了线性系统对白噪声的影响。

除此之外,我们也深入地了解了AR 和ARMA模型序列。

最重要的是让我们加深了对课本知识的理解。

总之,本次实验我们受益匪浅。

随机信号分析实验百度

随机信号分析实验百度

《随机信号分析》试验报告班级班学号_______________姓名_________________实验一1、熟悉并练习使用下列 Matlab 的函数,给出各个函数的功能说明和内部参数 的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为 0,方差为 1 的正态分布1) Y = randn产生一个伪随机数 2) Y = randn(n) 产生 n x n 的矩阵, 的正态分布其元素服从均值为0,方差为 13)Y = randn(m,n)产生 m x n 的矩阵, 的正态分布其元素服从均值为0,方差为 14) Y= randn([m n]) 产生 m x n 的矩阵, 的正态分布其元素服从均值为0,方差为 1选择( 2)作为例子,运行结果如下: >> Y = randn(3)1.3005 0.0342 0.97920.2691 0.9913 -0.8863 -0.1551 -1.3618 -0.3562生成n 々随机矩阵,其元素在(0, 1)内 生成mxn 随机矩阵 生成m x n 随机矩阵生成mxn 和x …随机矩阵或数组 生成m x n 和x …随机矩阵或数组 生成与矩阵 A 相同大小的随机矩阵 选择( 3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.05790.0099 0.1987 0.19883)normrnd()产生服从均值为mu 标准差为sigma 的随机数, mu 和sigma 可以为向量、矩阵、或多维数组。

(2)R = normrnd (mu,sigma,v ) 产生服从均值为 mu 标准差为 sigma 的随机数,v 是一个行向量。

如果v 是一个1 X 2的向量, 则R 为一个1行2列的矩阵。

如果v 是1X n 的, 那么R 是一个n 维数组(3)R = normrnd (mu,sigma,m,n ) 产生服从均值为 mu 标准差为 sigma 的随机数,2)rand()(1)Y = rand(n) (2)Y = rand(m,n) (3)Y = rand([m n])(4) Y = rand(m,n,p,…) (5) Y = rand([m n p …]) (6) Y = rand(size(A)) 0.3529 0.81320.1389 0.2028 0.6038 0.2722 0.0153 0.7468产生服从正态分布的随机数(1)R= normrnd(mu,sigma)标量m和n是R的行数和列数。

随机信号分析实验报告范文

随机信号分析实验报告范文

随机信号分析实验报告范文HaarrbbiinnIInnttiittuutteeooffTTeecchhnnoollooggyy实验报告告课程名称:院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数得产生(一)实验原理1、、均匀分布随机数得产生原理产生伪随机数得一种实用方法就是同余法,它利用同余运算递推产生伪随机数序列.最简单得方法就是加同余法为了保证产生得伪随机数能在[0,1]内均匀分布,需要M为正整数,此外常数c与初值y0亦为正整数。

加同余法虽然简单,但产生得伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布得随机数ﻩﻩﻩ式中,a为正整数。

用加法与乘法完成递推运算得称为混合同余法,即ﻩﻩﻩ用混合同余法产生得伪随机数具有较好得特性,一些程序库中都有成熟得程序供选择。

常用得计算语言如Baic、C与Matlab都有产生均匀分布随机数得函数可以调用,只就是用各种编程语言对应得函数产生得均匀分布随机数得范围不同,有得函数可能还需要提供种子或初始化。

Matlab提供得函数rand()可以产生一个在[0,1]区间分布得随机数,rand(2,4)则可以产生一个在[0,1]区间分布得随机数矩阵,矩阵为2行4列。

Matlab提供得另一个产生随机数得函数就是random(’unif’,a,b,N,M),unif表示均匀分布,a与b就是均匀分布区间得上下界,N与M分别就是矩阵得行与列。

2、、随机变量得仿真根据随机变量函数变换得原理,如果能将两个分布之间得函数关系用显式表达,那么就可以利用一种分布得随机变量通过变换得到另一种分布得随机变量。

若X就是分布函数为F(某)得随机变量,且分布函数F(某)为严格单调升函数,令Y=F(某),则Y必为在[0,1]上均匀分布得随机变量.反之,若Y就是在[0,1]上均匀分布得随机变量,那么即就是分布函数为F某(某)得随机变量。

随机信号分析报告实验:随机过程通过线性系统地分析报告

随机信号分析报告实验:随机过程通过线性系统地分析报告

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

哈尔滨工业大学(威海)随机信号分析实验一报告

哈尔滨工业大学(威海)随机信号分析实验一报告

《随机信号分析》实验报告班级: 1302502学号:姓名:《随机信号分析》实验报告实验一一、实验目的:熟悉并练习使用随机信号Matlab的函数二、实验内容:1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)rand() 11)unifpdf()2)randn() 12)unifcdf()3)normrnd() 13)raylpdf()4)mean() 14)raylcdf()5)var() 15)exppdf()6)xcorr() 16)expcdf()7)periodogram() 17)chol()8)fft()18)ksdensity()9)normpdf() 19)hist()10)normcdf() 20)int()用法、功能、程序如下:1)randn(m,n)功能:返回一个从标准正态分布中得到的伪随机标量。

>> r = randn(5) %由标准正态分布随机数组成的5×5 矩阵。

r =-1.0689 -0.7549 0.3192 0.6277 -1.2141-0.8095 1.3703 0.3129 1.0933 -1.1135-2.9443 -1.7115 -0.8649 1.1093 -0.00681.4384 -0.1022 -0.0301 -0.8637 1.53260.3252 -0.2414 -0.1649 0.0774 -0.76972)rand(m,n)功能:返回一个从开区间(0,1) 上的标准均匀分布得到的伪随机标量。

r = rand(5) %生成一个由介于0 和1 之间的均匀分布的随机数组成的5×5 矩阵>>r =0.5469 0.9572 0.9157 0.8491 0.39220.9575 0.4854 0.7922 0.9340 0.65550.9649 0.8003 0.9595 0.6787 0.17120.1576 0.1419 0.6557 0.7577 0.70600.9706 0.4218 0.0357 0.7431 0.03183)normrnd(mu,sigma,m,n)功能:以均值μ和标准差σ为参数的正态分布随机数mxn>> normrnd(0,1,3,4) %生成均值μ=0,σ=1的3x4正态分布随机数ans =0.2761 0.3919 -0.7411 0.0125-0.2612 -1.2507 -0.5078 -3.02920.4434 -0.9480 -0.3206 -0.45704)mean(A,dim)功能:数组的平均值mean(A,dim) dim=1,返回列平均数,默认为1dim=2,返回列平均数dim>2,返回AA = [0 1 1; 2 3 2; 1 3 2; 4 2 2] %M = mean(A) 沿A 的大小不等于1 的第一个数组维度返回均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告通信信号分析与处理专业通信工程学号j130510401姓名王溪岩日期2016.1.10通信信号分析与处理实验指导书11、实验过程与仿真该实验主要包括函数确定、参数选择、仿真和分析几个部分,具体仿真程序和结果分析如下:1.1二项分布随机过程1.1.1信号产生1)高斯分布随机过程:n=input('n=');x=0.25;o=1;m=1;R=normrnd(x,o,m,n);subplot(3,1,1);plot(R)R_a=xcorr(R);subplot(3,1,2);plot(R_a)Pf=abs(fft(R_a,2048));subplot(3,1,3);plot(Pf)(n输入1000,5000,10000)运行结果:2结果分析:由图可看出,高斯随机分布的均值几乎在一条直线上,可看作为恒定值,与时间无关;自相关函数是仅与时间间隔T有关的函数,高斯随机分布为平稳过程;当n=1000时,值返回到0时的值,此时的自相关系数最大,表明自己与本身的自相关程度最高。

2)均匀分布:m=1;n=input('n=');a=0;b=0.5;R=unifrnd(a,b,m,n);R_a=xcorr(R);subplot(3,1,1);plot(R);title('均匀随机分布');Pf=abs(fft(R_a,10000));3subplot(3,1,2);plot(R_a);title('自相关');subplot(3,1,3);plot(Pf);title('功率');结果分析:自相关系数在时间间隔为1的时候最高。

3)二项分布n=input('n=');m=1;p=0.02;N=1;R=binornd(N,p,m,n);subplot(3,1,1)plot(R);R_a=xcorr(R);subplot(3,1,2)4plot(R_a)Pf=abs(fft(R_a,10000));subplot(3,1,3);plot(Pf)运行结果:结果分析:二项随机分布的值在0.5左右震荡,均值为0.5,与时间无关;自相关函数为仅与时间间隔t有关的函数,该过程为平稳过程。

T=0时,自相关系数最高。

1.2实验涉及函数及用法1)normrnd函数:生成服从正态分布的随机数语法:R=normrnd(MU,SIGMA,m,n)说明:R=normrnd(MU,SIGMA,m,n):生成m×n形式的正态分布的随机数矩阵。

MU参数代表均值,DELTA参数代表标准差参数:MU=2/4=0.5;SIGMA=2;m=1,n=1000。

52)unifrnd函数:是生成(连续)均匀分布的随机数语法:R = unifrnd(A,B) 生成被A和B指定上下端点[A,B]的连续均匀分布的随机数组R。

R = unifrnd(A,B,m,n,...) 或 R =unifrnd(A,B,[m,n,...]返回 m*n*...数组。

参数:学号=2,E=2/4=0.5,即A,B区间取[0,1],随机数长度为5000,则m=1,n=5000。

3)binornd函数:是生成(连续)二项分布的随机数语法:R=binornd(N,P,m,n,p,q,r........) 表示返回参数为N,P的二项分布随机数,其中m,n表示R的行数和列数,pqr后面的数,表示p*q*r*......这么多个返回的mxn随机数据矩阵参数:p=(1+2)/50=0.06; E=0.5=Np;N=E/p=8.33,N取8;m=1,n=10000;4) xcorr函数:是用于求解序列自相关和互相关的函数。

语法:若函数为x,则R=xcorr(x)即为函数x的自相关函数。

5)mean()求平均数2、实验中遇到的问题3、心得体会参考文献:…………程序源代码:1)高斯分布随机过程:n=input('n=');x=0.25;o=1;m=1;R=normrnd(x,o,m,n);subplot(3,1,1);plot(R)R_a=xcorr(R);subplot(3,1,2);plot(R_a)Pf=abs(fft(R_a,2048));subplot(3,1,3);plot(Pf)62)均匀分布:clear all;clc;m=1;n=input('n=');a=0;b=0.5;R=unifrnd(a,b,m,n);R_a=xcorr(R);subplot(3,1,1);plot(R);title('均匀随机分布');Pf=abs(fft(R_a,10000));subplot(3,1,2);plot(R_a);title('自相关');subplot(3,1,3);plot(Pf);title('功率');3)二项分布n=input('n=');m=1;p=0.02;N=1;R=binornd(N,p,m,n);subplot(3,1,1)plot(R);R_a=xcorr(R);subplot(3,1,2)plot(R_a)Pf=abs(fft(R_a,10000));subplot(3,1,3);plot(Pf)7通信信号分析与处理实验指导书姓名:王溪岩院(系):电子与信息工程学院专业:通信工程学号:j130510401实验日期:2016年1月5日成绩:实验二:平稳随机过程的频域特征分析实验目的:1、理解随机过程的采样定理2、理解功率谱密度函数与自相关函数的关系3、掌握对功率谱密度函数的求解和分析实验内容:1、分析实验一产生的各种随机序列的功率谱。

2、如果随机过程的自相关函数为其中T为各自学号后两位的3倍求其对应的功率谱。

实验要求:1、写出详细的计算步骤及设计原理;2、给出所用MATLAB函数涉及的参数和使用方法;3、所用实验均需提供对应的完整的源程序和对应的实验结果及其必要的分析;4、不得互相抄袭。

81.3二项分布随机过程1.3.1见实验一1.3.2信号产生自相关函数:t=(-3:3);R=(1-t/3).*(t>=0)+(1+t/3).*(t<0);subplot(2,1,1);plot(t,R) 自相关函数的傅立叶变换为功率谱:R_a=abs(fft(R)结果为:1.4abs():绝对值函数fft():快速傅里叶变换……………..92、实验中遇到的问题矩阵维度不一致需要用点乘,3、心得体会理解了功率谱与自相关函数之间的关系程序源代码:t=(-3:3);R=(1-t/3).*(t>=0)+(1+t/3).*(t<0); subplot(2,1,1);plot(t,R)R_a=abs(fft(R));subplot(2,1,2);plot(R_a)1011通信信号分析与处理实验 指导书姓 名: 王溪岩 院 (系):电子与信息工程学院 专 业: 通信工程 学 号:j130510401实验日期: 2016年1月 5日 成 绩:实验三:随机过程通过系统后的时频域特性分析实验目的:1、掌握随机信号通过线性和非线性系统的分析方法。

2、掌握系统输出信号的数字特征和功率谱密度的求解方法。

实验内容:已知平稳随机过程X (n )的相关函数为:线性系统的单位冲击响应为1(),0,11k h k r k r =≥=-+实验者学号后两位 非线性系统为Y =X 2。

通过仿真实验对比系统输入输出的均值、方差、自相关函数以及功率谱密度。

实验要求:1、写出时域分析、频域分析的必要原理,以及求上述特征的必要公式;2、输出上述各步骤的功率谱密度和相关函数的序列波型,输出各数字特征的值;3、附上程序和必要的注解;4、对比实验结果与理论结果的差异,并分析其原因。

5、给出所用MATLAB 函数涉及的参数和使用方法。

1、实验过程与仿真(黑体小三,段前段后个一行)该实验主要包括分析、编写程序、仿真及和***几个部分,具体仿真程序和结果分析如下:(汉字宋体小四,1.25倍修改行距,英文用Time new roman字体)1.5二项分布随机过程1.5.1信号产生clear all;clc;Rx=5*ones(1);n2=0:999;h=0.5.^n2;Rxy=conv(Rx,h);h2=0.5.^(-n2);Ry=conv(Rxy,h2);n=-999:999;subplot(3,1,1);stem(n,Ry);s1=abs(fft(Ry,2048));n=0:2047;subplot(3,1,2);plot(n,fftshift(s1));x=wgn(1,10000,5');y=x.^2;Ry2=xcorr(y,'unbiased');s2=abs(fft(Ry2,32768));n=0:32767;subplot(3,1,3);plot(n,fftshift(s2));.结果为:12.1.5.2期望.……………..2、实验中遇到的问题3、心得体会参考文献:…………程序源代码:clear all;clc;Rx=5*ones(1);n2=0:999;h=0.5.^n2;Rxy=conv(Rx,h);13h2=0.5.^(-n2);Ry=conv(Rxy,h2);n=-999:999;subplot(3,1,1);stem(n,Ry);s1=abs(fft(Ry,2048));n=0:2047;subplot(3,1,2);plot(n,fftshift(s1));x=wgn(1,10000,5');y=x.^2;Ry2=xcorr(y,'unbiased');s2=abs(fft(Ry2,32768));n=0:32767;subplot(3,1,3);plot(n,fftshift(s2));.14。

相关文档
最新文档