532命题定理证明人教版教案
人教版初中数学七年级下册5.3.2《命题、定理、证明(1)》教案
学生语句,获得感性认识.
从生活中常见的语句引入课题,唤起学生的学习兴趣及探索欲望.
二、自主探究 合作交流 建构新知
活动1:观察发现、认识命题
请同学读出下列语句:
(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(2)两平行线被第三条直线所截,同旁内角互补;
(3)对顶角相等;
5.3.2命题、定理、证明
第一课时 教学设计
教学目标:
1、理解命题的概念及构成、会判断所给命题的真假;
2、会判断命题及其真假的判断,为今后的学习打好基础,发展应用意识。
教学重、难点
教学重点:命题的概念、区分命题的题设和结论;判断命题的真假。
教学难点:区分命题的题设和结论。
教学过程
教学内容与教师活动
学生活动
2、将下列命题改成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.
3、下列命题哪些是真命题,哪些是假命题?
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
线中的一条,那么也垂直于另一条;
(2)如果两个角互补,那么它们是邻补角;
(3)如果 ,那么a=b;
(4)过直线外一点有且只有一条直线与之平行;
(5)两点确定一条直线.
观察口答
观察猜想
归纳命题的概念.
独立思考
合作交流
归纳命题的结构
思考感悟
仔细判断
仔细判断,
认识定理
为学生提供参与数学活动的时间和空间,培养学生的观察归纳能力.
532命题定理证明人教版教案
(2)邻补角一定互补. (3)垂线段是点到直线的距离. (4)两个锐角的和是锐角. (5)互补的角是邻补角. (6)两点之间线段最短.(7)如果一个数能被2整除,那么它也能被4整除. 解:(2)、(6)是真命题,其余是假命题. 活动4 真命题与定理有什么样的关系.1.命题:判断一件事情的语句,叫做命题.2.命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理.对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了.活动5 命题的证明例:求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG 平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等). 又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义),∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明. 二、 课堂小结1.命题:判断一件事情的语句叫命题.本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力。
人教版数学七年级下册《5-3-2命题、定理、证明 》教案
人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。
本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。
二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。
三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。
2.培养学生运用证明方法解决数学问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.命题、定理的概念及命题的真假判断。
2.证明方法的应用。
五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。
2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。
3.小组合作法:分组讨论,共同完成证明任务。
六. 教学准备1.教材、PPT课件。
2.相关例题和练习题。
3.教学工具:黑板、粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。
2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。
3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。
引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。
4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。
教师巡回指导,解答学生疑问。
5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。
鼓励学生运用所学知识,解决问题。
6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。
7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。
人教七下数学5.3.2命题、定理、证明教案
5.3.2命题、定理、证明(一)三维教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论。
难点:区分命题的题设和结论。
(三)教学过程活动一:情境引入教师与学生们打招呼,说出以下四句话:(1)七(1)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(2)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(2)的同学们你们好吗?()(2)大家今天都能认真听课吗?()(3)七(1)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
()问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行()(2)画一个角等于已知角()(3)对顶角相等;()(4)若a2=b2,则a=b。
()(5)两条平行线被第三条直线所截,同旁内角互补;()(6)若a2=4,求a的值;()活动二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。
人教版数学七年级下册教学设计5.3.2《 命题、定理、证明》
人教版数学七年级下册教学设计5.3.2《命题、定理、证明》一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册的教学内容。
教材通过引入日常生活中的实例,引导学生理解命题、定理和证明的概念,让学生掌握判断一个命题是否为定理的方法。
教材内容丰富,结构清晰,逻辑性强,有利于学生培养数学思维和解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对数学概念和公式的学习已经有一定的认识。
但学生在学习过程中,可能对抽象的数学概念和定理的证明过程感到难以理解,需要教师通过具体的生活实例和丰富的教学手段,帮助学生理解和掌握。
三. 教学目标1.让学生了解命题、定理和证明的概念,理解定理的判断方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生逻辑思维和数学表达能力。
四. 教学重难点1.重点:理解命题、定理和证明的概念,掌握判断一个命题是否为定理的方法。
2.难点:对抽象的数学概念和定理的证明过程的理解。
五. 教学方法1.采用问题驱动法,引导学生主动探究和理解命题、定理和证明的概念。
2.使用生活中的实例,帮助学生理解和掌握抽象的数学概念。
3.运用小组合作学习,培养学生团队合作和数学表达能力。
4.通过练习和反馈,巩固学生所学知识。
六. 教学准备1.准备相关的生活实例和数学问题,用于引导学生理解和掌握概念。
2.准备PPT,展示教材内容和实例。
3.准备练习题,用于巩固学生所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考和讨论,引出命题、定理和证明的概念。
例如,讲解“勾股定理”的发现过程,让学生了解定理的定义和证明方法。
2.呈现(10分钟)使用PPT展示教材中的相关内容,让学生对命题、定理和证明有一个清晰的认识。
同时,通过讲解和示范,让学生理解定理的判断方法。
3.操练(10分钟)让学生分组讨论,每组选取一个命题,判断它是定理还是假命题,并说明理由。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。
5.3.2命题、定理、证明(教案)(共五篇)
5.3.2命题、定理、证明(教案)(共五篇)第一篇:5.3.2 命题、定理、证明(教案)5.3.2 命题、定理、证明【知识与技能】1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理.2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式.【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理.【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.一、情境导入,初步认识问题1 分析下列判断事情的语句,指出它们的题设和结论.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(2)两条平行线被第三条直线所截,同旁内角互补.(3)对顶角相等.(4)等式两边加同一个数,结果仍是等式.问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题.(1)画线段AB=5cm.(2)两条直线相交,有几个交点?(3)如果直线a∥b,b∥c,那么a∥c.(4)直角都相等.(5)相等的角是对顶角.【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案.二、思考探究,获取新知思考1.真命题与定理有什么样的关系.2.对题设和结论不明显的命题,怎样找出它们的题设和结论.【归纳结论】1.命题:判断一件事情的语句,叫做命题.2.命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理.对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了.三、运用新知,深化理解判断下列命题是真命题还是假命题,如果是假命题.举出一个反例.(1)若a>b,则a2>b2.(2)两个锐角的和是钝角.(3)同位角相等.(4)两点之间,线段最短.【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断.【答案】略.四、师生互动,课堂小结请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真假命题.这节课一开始由教师提出问题,学生自学课本,让学生体验先学后教的理念,同时培养了学生的自学能力.第二篇:命题定理证明教案5、3命题定理证明教案学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一、自学基础:(看书20页---22页)1、对一件事情___________________的语句,叫做命题。
人教版七年级数学下册5.3.2命题、定理、证明教学设计
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册第五章第三节的内容。
在这一部分中,学生将学习到什么是命题,如何判断命题的真假,以及如何用定理来证明一个命题的正确性。
这是学生初步接触逻辑推理和数学证明的重要阶段,也是培养学生数学思维能力的关键环节。
二. 学情分析学生在之前的学习中已经接触过一些基本的数学概念和运算规则,具备一定的数学基础。
但是,对于命题、定理、证明这些较为抽象的数学概念,可能还存在一定的理解和应用困难。
因此,在教学过程中,需要注重引导学生理解这些概念的内涵和外延,以及如何运用这些概念来解决问题。
三. 教学目标1.了解命题、定理的概念,理解命题与定理之间的关系。
2.学会判断命题的真假,并能运用定理进行证明。
3.培养学生的逻辑思维能力和数学证明能力。
四. 教学重难点1.重点:命题、定理的概念,命题真假的判断,定理的证明。
2.难点:命题、定理之间的逻辑关系,证明方法的灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来获取知识。
2.利用实例和反例,让学生直观地理解命题的真假判断。
3.通过证明实例,让学生掌握定理的证明方法,并能够灵活运用。
六. 教学准备1.准备相关的教学PPT,内容包括命题、定理的定义,命题真假的判断,定理的证明等。
2.准备一些实际的数学问题,用于引导学生进行思考和讨论。
3.准备一些证明实例,用于让学生进行模仿和练习。
七. 教学过程1.导入(5分钟)通过一个简单的数学问题,引发学生对命题、定理、证明的思考。
例如:已知勾股定理,判断以下命题的真假:“所有的直角三角形都满足勾股定理”。
2.呈现(10分钟)介绍命题、定理的概念,以及命题真假的判断方法。
通过PPT展示相关的定义和判断方法,让学生理解和掌握。
3.操练(10分钟)让学生通过实际的例子来判断命题的真假。
人教初中数学七下 5.3.2 命题、定理、证明教案
8.怎样辨别一个命题的真假.
(l)实际生活问题,实践是检验真理的唯一标准.
(2)数学中判定一个命题是真命题,要经过证明.
(3)要判断一个命题是假命题,只需举一个反例即可.
三、巩固知、
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.
不同之处:(1)中的结论是正确的,(2)中的结论是错误的.
教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
4.给出真、假命题定义.
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.
(4)如果a>0,b>0,那么a+b>0.
(5)当a>0时,|a|=a.
(6)小于直角的角一定是锐角.
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.
(7)a>0,b>0,a+b=0.
(8)2与3的和是4.
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解.
(1)我是中国人。
(2)你吃饭了吗?
(3)两条平行线被第三条直线所截,同旁内角互补。
(4)两条直线平行,内错角相等。
(5)画一个45°的角。
(6)平角与周角一定不相等。
2.找出哪些是判断某一件事情的句子?
学生答:(1),(3),(4),(6)。
活动2
1.教师给出命题的概念,并举例.
命题:判断一件事情的语句,叫做命题。析(3),(5)为什么不是命题。
人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计
人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计一. 教材分析《人教版数学七年级下册5.3.2-2<命题、定理、证明2>》这一节的内容,主要让学生了解命题、定理和证明的概念,掌握如何阅读和理解数学证明,培养学生的逻辑思维能力。
教材通过具体的例子,引导学生理解命题、定理和证明之间的关系,以及如何应用这些知识解决实际问题。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程和不等式等基础知识,对数学概念和逻辑推理有一定的认识。
但部分学生可能对抽象的数学概念理解起来较为困难,需要通过具体的例子和实际操作来加深理解。
同时,学生可能对证明的过程和方法还不够熟悉,需要通过练习和指导来提高。
三. 教学目标1.了解命题、定理和证明的概念,理解它们之间的关系。
2.学会阅读和理解数学证明,培养逻辑思维能力。
3.能够运用所学知识解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:命题、定理和证明的概念,以及如何阅读和理解数学证明。
2.难点:如何理解和运用证明的方法,解决实际问题。
五. 教学方法采用问题驱动法、案例分析和小组合作讨论相结合的方法。
通过具体的例子和实际操作,引导学生理解命题、定理和证明的概念,培养学生的逻辑思维能力。
同时,学生进行小组合作讨论,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和例子,用于引导学生理解和运用命题、定理和证明的知识。
2.准备小组合作讨论的问题和任务,引导学生进行实践操作。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引导学生思考如何用数学语言来描述这个问题,以及如何用逻辑推理来解决这个问题。
从而引出命题、定理和证明的概念。
2.呈现(10分钟)呈现相关的案例和例子,引导学生理解命题、定理和证明的概念。
通过讲解和示范,让学生了解如何阅读和理解数学证明。
3.操练(10分钟)学生分组进行练习,运用命题、定理和证明的知识来解决实际问题。
人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计
人教版数学七年级下册《5-3-2命题、定理、证明》教学设计一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的教学内容,主要包括命题、定理和证明的概念及其关系。
本节课的内容是学生学习数学证明的基础,对于培养学生的逻辑思维和论证能力具有重要意义。
二. 学情分析学生在七年级上学期已经学习了基本的数学概念和运算,对于问题的解决有一定的基础。
但是,学生对于抽象的逻辑推理和证明过程可能存在理解上的困难,需要通过具体的事例和实践活动来帮助他们理解和掌握。
三. 教学目标1.了解命题、定理和证明的概念及其关系。
2.能够识别和判断一个数学命题是真还是假。
3.学会使用简单的逻辑推理和归纳推理写出简单的证明过程。
四. 教学重难点1.重点:命题、定理和证明的概念及其关系。
2.难点:证明过程的写法和逻辑推理的运用。
五. 教学方法采用问题驱动的教学方法,通过引导学生观察、思考和推理,激发学生的学习兴趣,培养学生的逻辑思维和论证能力。
同时,结合小组合作和讨论,促进学生之间的交流和合作。
六. 教学准备1.教学PPT:包括命题、定理和证明的概念及其关系的图片和示例。
2.练习题:包括判断命题真假和写证明过程的练习题。
3.小组合作的学习材料:包括相关的数学故事和案例。
七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入命题、定理和证明的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解命题、定理和证明的概念及其关系,通过示例让学生理解命题是陈述性语句,定理是经过证明的命题,证明是用来证实命题真假的过程。
3.操练(10分钟)让学生独立完成一些判断命题真假的练习题,并简要说明判断的依据。
通过小组讨论和分享,让学生理解不同的人可能会有不同的判断方法,但正确的判断应该基于逻辑推理和证明过程。
4.巩固(10分钟)让学生分组合作完成一些写证明过程的练习题。
在学生完成练习后,让各小组展示他们的证明过程,并解释他们的推理思路。
人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计2
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计2一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要让学生了解命题、定理、证明的概念,并学会如何应用这些概念解决实际问题。
教材通过具体的例子,引导学生理解命题的定义,了解定理的意义,掌握证明的方法。
同时,培养学生逻辑思维能力,提高学生分析问题、解决问题的能力。
二. 学情分析七年级的学生已经掌握了基本的代数知识和几何知识,具备一定的学习能力和逻辑思维能力。
但学生在面对抽象的数学概念时,理解起来较为困难,需要通过具体的例子和实际操作来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会如何阅读和理解数学证明,提高逻辑思维能力。
3.能运用命题、定理、证明解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:命题、定理、证明的概念及其关系。
2.难点:如何理解和应用数学证明,提高逻辑思维能力。
五. 教学方法1.采用实例教学法,通过具体的例子让学生理解和掌握概念。
2.采用问题驱动法,引导学生主动思考,提高解决问题的能力。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生理解和应用概念。
2.准备课件,用于辅助教学。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)通过一个具体的实例,引导学生理解命题的概念。
例如,给出一个命题:“所有的正整数都是奇数”,让学生判断这个命题是真是假。
2.呈现(10分钟)讲解命题、定理、证明的概念,并通过课件展示,让学生清晰地了解它们之间的关系。
3.操练(10分钟)让学生阅读教材中的例子,理解定理的意义,并尝试自己证明定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)布置一些相关的练习题,让学生独立完成,巩固所学知识。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生尝试解决一些实际问题,运用命题、定理、证明的方法进行分析。
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。
这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。
但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。
三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。
2.学会用几何语言表达命题和定理。
3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。
四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。
2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。
2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。
3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。
六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。
2.准备一些练习题和案例,用于巩固和拓展所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。
2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。
通过几何图形和实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。
人教版七年级下册5.3.2命题、定理、证明教学设计
人教版七年级下册5.3.2命题、定理、证明教学设计一、教学目标1.理解命题、定理、证明的定义与本质;2.掌握命题、定理、证明的基本方法;3.培养学生正确的逻辑思维方式;4.提高学生的实际问题解决能力。
二、教学重点和难点1.命题、定理、证明的区别;2.掌握证明的基本方法和要素;3.发现并利用生活中的具体例子。
三、教学过程1.导入环节1.老师与学生对话,引导学生探讨“世界上有哪些真理?”;2.引出知识点——命题、定理、证明。
2.讲授环节(1)命题1.定义:能够判断真假的陈述句;2.给出多个例子,使学生彻底领悟命题的概念。
(2)定理1.定义:在一定条件下成立的命题;2.给出具体定理的例子,并与学生一起探讨它的证明方法。
(3)证明1.定义:利用已知的命题或定理,通过演绎推理来证明给定命题的正确性;2.讲解证明的基本方法和注意事项:–观察分析,找出已知条件、所求结论以及中间步骤;–运用基本运算法则和逻辑法则进行推理;–从已知条件出发,按照逻辑关系,步步深入推理,直至得到所求结论;–在证明中,要小心使用某些特殊的词句,比如“一定”、“必然”、“当且仅当”等。
3.实践环节1.老师出一些具体的例子,让学生按照证明的方法,证明其正确性;2.或者让学生先猜测一些规律,再通过证明来验证其是否成立。
4.总结环节1.结合今天的学习内容,带领学生发现:命题、定理、证明有哪些联系和区别;2.老师总结本节课的内容,帮助学生理顺知识脉络;3.常见错题集讲解,总结容易犯的错误。
四、教学评估1.课堂上通过观察和听取学生的解答来了解他们掌握的程度;2.布置课后作业,检验学生学习效果;3.半个月后,再对此知识点进行检测,检查学习效果是否稳定。
5.3.2命题定理证明教案人教版数学七年级下册
三、真假命题的概念(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)如果两个角互补,那么它们是邻补角;(3)两条平行线被第三条直线所截,同旁内角互补;(4)对顶角相等;(5)如果一个数能被2整除,那它也能被4整除;(6)等式两边加同一个数,结果仍是等式.正确的:(1)(3)(4)(6)错误的:(2)(5)真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:命题中题设成立时,不能保证结论一定成立,这样的命题叫做假命题.思考:如何判断此命题为假命题?如果两个角互补,那么它们是邻补角举反例如图:AB∥CD∥A+∥C=180°,因此∥A与∥C互补,但不是邻补角。
判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.思考:如何判断此命题为假命题?相等的角是对顶角如图,OC是∥AOB的平分线,∥1=∥2,但它们不是对顶角。
四、定理、证明我们学过的一些图形的性质,都是真命题。
其中有些命题是基本事实。
如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据. 如“对顶角相等”“内错角相等,两直线平行”等在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:证明的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,也可以是学过的定义、基本事实、定理等。
活动意图说明:教师活动4:例1:如图,已知b∥c,a⊥b. 求证a⊥c.证明:∥a∥b(已知)∥∥1=90°(垂直的定义)又b∥c(已知)∥∥1=∥2(两直线平行,内错角相等)∥∥2=∥1=90°(等量代换)∥a∥c(垂直的定义)活动意图说明:2.下列语句中,不是命题的是(D)A.如果a>b,那么b<aB.同位角相等C.垂线对最短D.反向延长射线OA3.把命题“相等的角是对顶角”写成“如果...那么...”的形式是__如果两个角相等,那么这两个角是对顶角_。
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
人教初中数学七下 5.3.2 命题、定理、证明教案 【经典数学教学PPT课件】
5.3.2 命题、定理、证明教学目标1.知识目标:掌握命题的概念,并能分清命题的组成部分.经历判断命题真假的过程,对命题的真假有一个初步的了解。
2.能力目标:初步培养不同几何语言相互转化的能力。
3.情感目标:教学重点命题的概念和区分命题的题设与结论教学难点区分命题的题设和结论教学方法自主学习,合作探究教学器材多媒体课前预习设计1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断教学过程一.旧知设疑、情景引入(时间:3 分钟)二次备课1、预习疑难:。
2、填空:①平行线的3个判定方法的共同点是。
②平行线的判定和性质的区别是。
二.新课教学(时间:25分钟)教师导知活动1 学生探知活动1 二次备课定义:的语句,叫做命题练习:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 可以作一条直线与AB平行.请你再举出一些例子。
教师导知活动2 学生探知活动2 二次备课命题的构成:1、许多命题都由和两部分组成.是已知事项, 是由已知事项推出的事项.2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分.....是 , 1、指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°"那么"后接的的部分......是 . (三)命题的分类真命题:。
(定理:的真命题。
)假命题:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)垂线段是点到直线的距离.
(4)两个锐角的和是锐角.
(5)互补的角是邻补角.
(6)两点之间线段最短.
(7)如果一个数能被2整除,那么它也能被4整除.
解:(2)、(6)是真命题,其余是假命题.
活动4真命题与定理有什么样的关系.
1.命题:判断一件事情的语句,叫做命题.
2.命题由题设和结论两部分组成
3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.
4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.
但不是所有经过推理证实的真命题都把它当作定理.
对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式
或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是
结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简
单明了.
活动5 命题的证明
例:求证:两条直线平行,一组内错角的平分线互相平行.
解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根
据平行线的判定方法来证明.
解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG
平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .
证明:∵AB ∥CD (已知),
∴∠BPQ =∠CQP (两直线平行,内错角相等).
又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),
∴∠GPQ =12∠BPQ ,∠HQP =12
∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),
∴PG ∥HQ (内错角相等,两直线平行).
方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关
键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.
二、 课堂小结
1.命题:判断一件事情的语句叫命题.
(1)正确的命题称为真命题,错误的命题称为假命题.
本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力。