运算放大器组成函数信号发生器《模拟电路》课程设计报告

合集下载

函数信号发生器实验报告

函数信号发生器实验报告

北京邮电大学电子电路综合设计实验实验报告实验题目:函数信号发生器的设计院系:电子工程学院班级:2014211212姓名:李瑞平学号:2014211104班内序号:07一、课题名称:函数信号发生器的设计二、摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。

三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。

关键词:方波三角波正弦波频率可调幅度三、设计任务要求:1.基本要求:设计制作一个方波-三角波-正弦波信号发生器,供电电源为±12V。

1)输出频率能在1KHZ~10KHZ范围内连续可调;2)方波输出电压V opp=12V(误差<20%),上升、下降沿小于10μs;3)三角波输出信号电压V opp=8V(误差<20%);4)正弦波信号输出电压V opp≥1V,无明显失真。

2.提高要求:1)三种波形输出峰峰值V opp均在1~10V范围内连续可调;2)将输出方波改为占空比可调的矩形波,占空比可调范围30%~70%四、设计思路1. 结构框图实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。

此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。

除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。

由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。

其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

大学模电实验报告

大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。

2. 掌握模拟电路的搭建和调试方法。

3. 培养实验操作能力和数据分析能力。

二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。

本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。

2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。

3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。

- 调整偏置电阻,使晶体管工作在放大区。

- 使用函数信号发生器输入正弦波信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。

- 输入不同电压信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。

- 输入不同频率的信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。

- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。

2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。

- 同相比例放大电路:输入电压为1V,输出电压为2V。

- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。

- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。

3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。

- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。

运算放大器组成函数信号发生器《模拟电路》课程设计报告

运算放大器组成函数信号发生器《模拟电路》课程设计报告

《模拟电路》课程设计报告运算放大器组成函数信号发生器设计时间2008年1月目录一、设计任务与要求 (2)二、方案设计 (3)三、各部分电路设计 (4)四、总原理图 (9)五、安装与调试 (10)六、电路的实验结果 (12)七、实验心得 (14)八、参考文献 (14)一、设计任务与要求1.1.设计目的1.掌握电子系统的一般设计方法2.掌握模拟IC器件的应用3.培养综合应用所学知识来指导实践的能力4.掌握常用元器件的识别和测试5.熟悉常用仪表,了解电路调试的基本方法1.2.设计任务运算放大器设计方波——三角波——正弦波函数信号发生器1.3.课程设计的要求及技术指标1.设计、组装、调试函数发生器2.输出波形:正弦波、方波、三角波;3.频率范围:在10-10000Hz范围内可调;4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V;二、方案设计2.1. 原理框图2.2.函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。

本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

模拟电路课程设计实验报告

模拟电路课程设计实验报告

XX理工学院实验报告
系(院)、专业班级:电子工程学院姓名:XXX 学号:_XXXXX_____
课程名称《模拟电子技术》课程设计
实验名称应用实验-温度监测及控制电路
同组同学XXX 指导教师吴XX
1、实验目的
(1)学习由双臂电桥和差动输入集成运放组成的桥式放大电路。

(2)掌握滞回比较器的性能和调试方法。

(3)学会系统测量和调试。

2、实验设备与器件
12V直流电源函数信号发生器双踪示波器热敏电阻(NTC)运算放大器uA741*2、晶体三极管3DG12、稳压管2CW231、发光管LED、继电器KA、电阻器等
3、实验原理
1、实验电路是由负温度系数电阻特性的热敏电阻(NTC元件)Rf为一臂组成测温电桥,其输出经测量放大器放大后电滞回比较器输出“加热”与“停止”信号,经三极管放大后控制加热器“加热”与“停止”。

改变滞回比较器的比较电压Ur即改变控温的范围,而控温的精度则由滞回比较器的滞回宽度确定。

(1)测温电桥
(2)差动放大电路
(3)滞回比较器
温度监测及控制实验电路。

模电实验报告-运算放大电路

模电实验报告-运算放大电路
(2)
实验仪器: 稳压电源 示波器 信号发生器 运算放大器 电阻、电容
实验步骤: 1)首先检查所领用实验仪器、器件是否工作正常、引脚是否完好。 2)按实验图一接好电路,检查无误后接入电源,用万用表测量运放的输入、输出端的 静态电压,并记录。 3)利用信号发生器,在 Vi 端输入一正弦信号:频率为 1KHz,幅度为 100mV。 4)在 Vo 端观察信号输出,并记录输出幅度,同时比对 Vi 和 Vo 之间的相位,并记录。 5)再调整信号发生器的幅度值至 200mV,重复 3)的步骤。 6)按实验图二接好电路,检查无误后接入电源,用万用表测量运放的输入、输出端的 静态电压,并记录。 7)利用信号发生器,在 Vi 端输入一正弦信号:频率为 1KHz,幅度为 100mV。 8)重复 3) 、4)步骤,记录数据。
数据记录: 记录条目 静态工作电压 1 反相比例放大器 正向输入端: 反向输入端: 输出端: 正向输入端: 反向输入端: 输出端: 输出信号 (V0) 波形: 万用表测试 记录内容 备注
2
同相比例放大器
输入信号(Vi) 4 5 100mV
------------------------------
4
200mV
5
波形:Leabharlann ------------------------------
------------------------------
深圳大学学生实验报告用纸
实验结论:
指导教师批阅意见:
成绩评定:
指导教师签字: 年 月 日 备注:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
运算放大电路运算放大电路计算集成运算放大电路差分运算放大电路两级运算放大电路模拟运算放大电路基本运算放大电路模拟运算放大电路三差动放大电路实验负反馈放大电路实验

模拟电子函数发生器课程设计报告

模拟电子函数发生器课程设计报告

模拟电子函数发生器课程设计报告本次课程设计的主题为模拟电子函数发生器,旨在让学生深入理解电子函数发生器的原理和应用,同时通过实验操作,培养学生分析解决问题的能力和创新精神。

本文将从课程设计的目标、内容、方法、实验操作以及效果评价等方面进行阐述。

一、课程设计目标1. 理解电子函数发生器的原理和建立模型的方法;2. 掌握基本的模拟电子函数发生器电路设计方法;3. 能够完成模拟电子函数发生器的搭建和调试;4. 能够对模拟电子函数发生器进行性能测试和优化;5. 培养学生分析问题、创新思维和实验实践能力。

二、课程设计内容本次课程设计包括理论教学和实验操作,其中理论教学主要围绕模拟电子函数发生器的原理、特点、应用和建模方法展开;实验操作则包括以下几个步骤:1. 预备知识:学生要了解函数发生器的基本类型和结构,掌握函数发生器的实验操作流程,以及熟悉基本仪器的使用方法。

同时要学习课程设计所需要的电路设计方法和软件操作等相关知识。

2. 设计电路:学生在掌握预备知识后,开始进行电路的设计。

首先需要根据要设计的波形类型进行分析,然后选择相应的电路结构进行设计。

学生需要注意电路分析和计算,同时对电路中的元器件进行选择和配置,满足要求的波形输出。

3. 搭建和调试电路:学生需要在电路板上完成电路的搭建,并配合示波器、函数发生器、万用表等测试仪器进行调试和优化。

在调试的过程中,学生需要对电路的稳定性、波形精度和频率范围等进行检测和优化,直到满足要求为止。

4. 性能测试:学生需要通过实验测试、比较和分析电路的性能。

这一步需要通过波形观察、示波器测试、频谱测试等手段进行,得出电路的性能参数,并与设计要求进行比较分析。

5. 实验报告:学生需要撰写实验报告,介绍模拟电子函数发生器的原理和设计方法,详细说明实验方案、过程和结果,对实验中的问题进行思考和分析,并提出相应的改进方案和建议。

三、课程设计方法本次课程采用“理论教学、实验操作、自主学习和讨论交流”的教学方法。

模拟电路课程设计报告

模拟电路课程设计报告

模拟电路课程设计报告设计课题:OTL音频功率放大器专业班级:10电信本学生姓名:廖姝兰学号:100802038指导教师:曾祥华设计时间:2012年1月4日设计一OTL音频功率放大器一、设计任务与要求1.设音频信号为vi=10mV, 频率f=1KHz;;2.额定输出功率Po≥2W;3.负载阻抗RL=8Ω;4.失真度γ≤3%;5. 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源。

二、方案设计与论证方案一、图1 音频功率放大器组成框图1、前置放大电路音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。

可由两个集成运放构成,要选择低噪声、低漂移的集成运算放大器。

对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。

2、音调控制电路音调控制电路的主要功能是通过对放音频带内放大器的频率响应曲线的形状进行控制,从而达到控制放音音色的目的,可以用负反馈式放大电路。

3、功率放大电路功率放大器的作用是给音响放大器的负载(一般是扬声器)提供所需要的输出功率。

可用分立元件晶体管组成的功率放大器;也有采用集成运算放大器和大功率晶体管构成的功率放大器。

方案二、先用u A741进行放大,放大倍数调为1~5倍,然后对LM386进行放大,可在1和5号脚之间用可调电位器调节,放大倍数小于20倍。

方案三、先用u A741进行放大,放大倍数调为1~5倍,然后对LM386进行放大,在1和8号脚之间接一个电位器和一个电容,使其放大倍数在20~200倍。

电路图如2所示图2 OTL音频功率放大器图根据实验要求,最后输出功率要≥2W,Po=Uo^2/RL, RL =8Ω,又Po≥2W,所以的U o≥4V,而最大不失真电压为LM386输出的最大不失真电压Uom= Vcc /2,而我们设计的直流电压源输出电压为12v,所以Uom= 12 /2=4.24V,4.24>4,所以能达到要求。

设计要求输入Ui=10mv,即要求放大倍数大于400倍,但是LM386的最大放大倍数为200倍,远不能实现,所以在LM386之前要用u A741进行放大。

模拟运算电路实验报告

模拟运算电路实验报告

模拟运算电路实验报告实验目的,通过本次实验,我们旨在通过模拟运算电路的搭建和实验操作,加深对模拟电路基本原理的理解,掌握模拟运算电路的基本工作原理和实验方法。

实验仪器,本次实验所需的仪器设备包括,模拟运算电路实验板、示波器、信号发生器、直流稳压电源等。

实验原理,模拟运算电路是一种能够对输入信号进行放大、滤波、积分、微分等处理的电路。

常见的模拟运算电路包括比较器、反相放大器、非反相放大器、积分器、微分器等。

通过调整电路中的元件参数,可以实现对输入信号的不同处理效果。

实验步骤:1. 将模拟运算电路实验板连接好,接通直流稳压电源,并接入示波器和信号发生器。

2. 调节信号发生器产生不同频率和幅值的正弦波信号,并输入到模拟运算电路中。

3. 观察示波器上输出波形的变化,通过调节电路中的元件参数,比如电阻、电容值,观察输出波形的变化规律。

4. 尝试搭建比较器、反相放大器、非反相放大器、积分器、微分器等不同类型的模拟运算电路,观察其输入输出特性的差异。

5. 对比实验结果,总结不同类型模拟运算电路的特点和应用场景。

实验结果与分析:通过本次实验,我们成功搭建了比较器、反相放大器、非反相放大器、积分器、微分器等不同类型的模拟运算电路,并观察了它们的输入输出特性。

在实验过程中,我们发现不同类型的模拟运算电路对输入信号的处理效果各有不同,比如比较器可以实现信号的比较和判断,反相放大器可以实现信号的放大和反向输出,积分器可以实现对信号的积分处理等。

这些实验结果进一步加深了我们对模拟运算电路工作原理的理解,为今后的电路设计和应用提供了重要的参考。

实验总结:本次实验通过搭建模拟运算电路,加深了我们对模拟电路基本原理的理解,掌握了模拟运算电路的基本工作原理和实验方法。

在实验过程中,我们不仅学会了如何搭建模拟运算电路,还通过观察实验现象和分析数据,进一步理解了模拟运算电路对输入信号的处理方式和特点。

通过本次实验,我们对模拟运算电路有了更加深入的认识,为今后的学习和研究打下了良好的基础。

函数信号发生器模拟电路课程设计

函数信号发生器模拟电路课程设计

《模拟电子技术基础》课程设计任务书设计题目方波-三角波-正弦波函数发生器设计要求设计制作一个方波-三角波-正弦波频率范围100Z H ~1K Z H ,频率可调。

实验仪器设备:示波器,万用表,直流稳压源,毫伏表设计步骤和要求:(1) 根据设计要求,查阅相关资料,提出理论设计方案,画出电路原理图;(2) 根据已知条件及性能指标要求,选择元器件的型号及参数,并列出材料清单,画出电路连线图;(3) 将元器件安装在通用电路板,确认布线合理后再进行元器件的焊接。

(4) 测试性能指标,调整和修改元件参数值,使其满足电路设计要求,将修改后的元件参数值标在设计的电路图上。

(5) 上述各项完成后,再进行一些实验研究和讨论。

(6) 所有实验完成后,写出规范的设计报告。

目 录1 函数发生器的总方案及原理框图……………………………………(4) 1.1函数发生器的总方案论证.........................................................(4) 1.2原理框图.....................................................................(4) 2设计的目的及任务 (5)2.1 课程设计的目的 (5)2.2 课程设计的任务和要求 (5)2.3 课程设计的技术指标……………………………………………………(5) 3元器件选择……………………………………………………………(6) 4 各组成部分的工作原理及实现功能4.1 方波发生电路的工作原理 (6)4.2 方波---三角波转换电路的工作原理 (7)4.3 三角波---正弦波转换电路的工作原理 (10)4.4电路的参数选择及计算 (12)4.5 总电路图 (13)5电路的安装和调试 (14)5.1 方波---三角波发生电路的安装和调试 (14)5.2 三角波---正弦波转换电路的安装和调试 (14)5.3 总电路的安装和调试 (14)5.4 电路安装和调试中遇到的问题及分析解决方法 (14)6 实验总结 (15)7参考文献 (16)1. 函数发生器总方案及原理框图1.1函数发生器的总方案论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。

实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。

实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。

在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。

常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。

各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。

实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。

实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。

模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路

模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。

1) 反相比例运算电路电路如图6-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。

RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。

RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。

图中,用以减小漂移和起保护作用。

一般取10KΩ,太小起不到保护作用,太大则影响跟随性。

函数信号发生器实验报告

函数信号发生器实验报告

电子电路模拟综合实验实验报告2011年4月3日函数信号发生器的设计与调测摘要使用运放组成的积分电路产生一定频率和周期的三角波、方波(提高要求中通过改变积分电路两段的积分常数从而产生锯齿波电压,同时改变方波的占空比),将三角波信号接入下级差动放大电路(电流镜提供工作电流),利用三极管线性区及饱和区的放大特性产生正弦波电压并输出。

关键词三角波-正弦波运放积分电路差动放大电路镜像电流源实验内容1、基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。

1)输出频率能在1-10KHz范围内连续可调,无明显失真;2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%;3)三角波Uopp=8V;4)正弦波Uopp>1V。

b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)2、提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。

b)三种输出波形的输出阻抗小于100欧。

c)用PROTEL软件绘制完整的印制电路板图(PCB)。

实验原理1,方波三角波产生电路如图所示为方波-三角波产生电路,由于采用了运放组成的积分电路,可得到比较理想的方波和三角波。

该电路振荡频率和幅度便于调节,输出方波幅度的大小由稳压管VDW1,VDW2的稳压值决定。

改变R1和Rf的比值可调节Uo2m的大小。

电路与原件的确定:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率合适的运放。

②根据所需输出方波幅度的要求,选择稳压值合适的稳压管的型号和限流电阻Ro的大小。

③根据输出三角波的幅度要求,确定R1与Rf的大小R1=Uo2m*Rf/(Uz+Ud)2,电流镜偏震差动放大器的设计差动放大器具有很高的共模抑制比,被广泛地应用于集成电路中,常作为输入级或中间放大级。

⑴确定静态工作点电流Ic1.Ic2和Ic3静态时,差动放大器不加输入信号,对于电流镜Re3=Re4=ReIr=Ic4+Ib3+Ib4=Ic4+2Ib4=Ic4+2Ic4/β=Ic4=Ic3上式表明恒定电流Ic3主要有电源电压和电阻R,Re4决定,与晶体管的参数无关。

模拟信号运算电路实验报告

模拟信号运算电路实验报告

模拟信号运算电路实验报告实验名称:模拟信号运算电路实验实验目的:了解模拟信号运算电路的相关知识,掌握运算放大器的工作原理及应用。

实验器材:运算放大器、电阻、三角波信号发生器、示波器等。

实验内容:1.用运算放大器实现两个输入信号的加、减、乘、除等基本运算。

2.了解运算放大器的输入输出电阻、放大倍数、共模抑制比等相关参数,掌握运算放大器的放大倍数计算方法。

3.通过实验观察和测量,学习运算放大器的反相输入、同相输入、输出端及电源的连接方法及作用。

实验步骤:1.将运算放大器反相输入端输入三角波信号,同相输入端输入直流偏置电压,将运算放大器的输出连接至示波器,观察三角波信号的放大效果。

2.利用反相输入和同相输入实现两个信号的加、减运算,将运算放大器的输出连接至示波器,观察输出信号的波形和幅度。

3.利用反相输入和同相输入实现两个信号的乘、除运算,将运算放大器的输出连接至示波器,观察输出信号的波形和幅度。

4.通过实验测量运算放大器的输入输出电阻、放大倍数、共模抑制比等参数,计算运算放大器的放大倍数。

实验结果:1.经实验观察和测量,发现运算放大器的反相输入和同相输入可以实现两个信号的加、减、乘、除等基本运算。

同时,通过改变反相输入和同相输入的电压,可以实现不同幅度的信号输出。

2.运算放大器的输入输出电阻、放大倍数、共模抑制比等参数影响着电路的输入输出性能,正确计算这些参数有助于优化电路设计和性能。

3.实验结果表明,模拟信号运算电路在实际应用中具有广泛的应用价值,在信号放大、滤波、调节等领域发挥着重要的作用。

实验结论:通过本实验,我们成功掌握了模拟信号运算电路的相关知识和运算放大器的基本工作原理及应用。

同时,我们学习了运算放大器的输入输出电阻、放大倍数、共模抑制比等参数的测量方法和计算方法,加深了对电路的理解和掌握。

这对我们今后的电路设计和应用有着指导意义。

函数信号发生器课程设计报告

函数信号发生器课程设计报告

《模拟电子技术》课程设计函数信号发生器姓名:学号:系别:专业:年级:指导教师:年月日函数信号发生器摘要利用集成电路LM324设计并实现所需技术参数的各种波形发生电路。

根据电压比较器可以产生方波,方波再继续经过基本积分电路可产生三角波,三角波经过低通滤波可以产生正弦波。

经测试,所设计波形发生电路产生的波形与要求大致相符。

关键词:波形发生器;集成运放;RC充放电回路;滞回比较器;积分电路目录中文摘要 ............................................................. 错误!未定义书签。

1.系统设计 (4)1.1设计指标 (4)1.2方案论证与比较 (4)2.单元电路设计 (5)2.1方波的设计 (5)2.2三角波的设计 (8)2.3正弦波的设计 (7)3.参数选择 (11)3.1方波电路的元件参数选择 (11)4.结果分析 (11)5.工作总结 (12)6.附录 (12)1.系统设计1.1设计指标1.1.1 电源特性参数 ①输入:双电源 12V②输出:正弦波pp V >1V ,方波pp V ≈12 V ,三角波pp V ≈5V ,幅度连续可调,线性失真小。

1.1.2工作频率工作频率范围:10 HZ ~100HZ ,100 HZ ~1000HZ1.2方案论证与比较1.2.1 方案1:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的,通过RC 文氏电桥可产生正弦波,通过滞回比较器能调出方波,并再次通过积分电路就可以调试出三角波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,是一个优秀的可实现的方案。

1.2.2 方案2:采用集成运放电路设计方案产生要求的波形主要是应用集成运放LM324,其芯片的内部结构是由4个集成运放所组成的, 通过电压比较器可以形成方波,方波经过积分之后可以形成三角波,三角波再经过低通滤波可以形成正弦波,此电路方案能实现基本要求和扩展总分的功能,电路较简单,调试方便,相比第一方案,其操作成功率较低.2.单元电路设计2.1方波的设计2.1.1原理图2.1.2工作原理矩形波发生电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要成分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈,因为输出状态应按一定时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间.图所示的矩形波放生电路,它由反相输入的滞回比较器和RC电路组成.RC回路既作为延迟环节,又作为反馈网络,通过RC充放电实现输出状态的自动转换.设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+Ut。

模拟电路课程设计报告

模拟电路课程设计报告

《模拟电路》课程设计报告题目:直流稳压电源设计专业通信工程姓名蓝剑班级10通信本(1)班学号100918040指导教师晶时间2012.05—2012.06教师评分1 、设计任务及要求1、众所周知,现在所使用的大多数电子设备中,几乎都要用到直流稳压电源来使其正常工作,而最常用的是能将交流电压转换为稳定直流电压的直流电源,可见直流稳压电源在电子设备中起着主导作用,为设备能够稳定工作提供保证。

本次试验中,我们将首先设计并制作一个能输出电压±5V的双直流稳压电源,输入电压为交流220V。

2、很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了重要作用,在某种程度上主宰着整个系统能否提供良好的音质输出。

低频功率放大器广泛应用于控制系统和测量系统中,它在带宽、失真度、效率等方面具有较好的指标、较高的实用性。

本次试验中,我们将设计并制作具有弱信号放大能力的低频功率放大器.在直流电压5V作用下通过米头能够放大声音,插入MP3能够实现对音乐信号的放大。

2 设计方案1.直流稳压电源的设计220V、50Hz的单向交流电源经电源变压器降压后,再经过整流滤波可获得低电压小功率直流电源。

然而,由于电网电压可以有 %变化。

另外,负载变化引起直流电源阻上压降变化,均导致整10流滤波后输出直流电压发生变化。

为此,必须将整流、滤波后的直流电压由稳压电路稳定后再提供给负载,使负载上直流电源电压受上述因素的影响程度达到最小。

直流电压电源系统一般由四部分组成,它们分别是电源变压器、整流电路、滤波电路、稳压电路;其系统结构如图1所示。

RL+-稳压电路+-Ui滤波电路+-u3+-u2整流电路电源变压器u1+-Uo图1电路图如下所示:电路说明:a.变压器输出电压平均值约为9Vb.硅整流二极管,正向平均电流1.0A,正向峰值电压1.1V,反向恢复时间30us,最高结温175℃。

模电课程设计简易信号发生器报告

模电课程设计简易信号发生器报告

模电课程设计-简易信号发生器报告模电课程设计报告电子系课题名称:简易信号发生器设计专业名称:电子信息科学与技术学生班级:10电信科技师范2班第一章设计的目的及任务1.1 设计目的1.11掌握电子系统的一般设计方法1.12掌握模拟IC器件的应用1.13培养综合应用所学知识来指导实践的能力1.14掌握常用元器件的识别和测试1.15 熟悉常用仪表,了解电路调试的基本方法1.2设计任务设计正弦波函数信号发生器1.3课程设计的要求及技术指标1.31设计、组装、调试函数发生器1.32输出波形:正弦波;1.33频率范围:20Hz~20KHz;1.34输出电压:不小于1V有效值1.35失真度:γ<= 5%第二章函数发生器的总方案及原理框图2.1 原理框图图2-12.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件,也可以采用集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与RC桥式正弦波振荡器共同组成的正弦波函数发生器的设计方法。

本课题中函数发生器电路组成如下所示:采用RC选频网络构成的振荡电路称为RC振荡电路,它适用于低频振荡,一般用于产生1Hz~1MHz的低频信号。

因为对于RC振荡电路来说,增大电阻R即可降低振荡频率,而增大电阻是无需增加成本的。

放大电路是一种直接耦合的多级放大电路,用于将产生的正弦波幅值放大。

第三章元器件明细清单元器件明细清单如下名称参数数量电阻7.5k2电阻560k1电阻 4.7k1电阻 5.1k 2电阻24k2电阻 3.3k3电阻1k 2可变电阻100k2电容1042电容1032电容1022电解电容10uf4电解电容47uf1三极管npn3第四章单元电路设计3.1正弦波发生电路的工作原理正弦波振荡电路是一种选频网络和正反馈网络的放大电路。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告本次实验是针对模拟电路的搭建与分析。

在实验过程中,我们主要学习了基本的电子元器件,掌握了电路分析的基本方法,理解了不同元器件的工作原理,以及如何在实际电路中应用所学知识。

1. 实验一:直流电路在直流电路实验中,我们学习了电阻的基本特性以及如何计算电路中的电流和电压。

首先,我们使用万用表测量了几个不同电阻的电阻值,以了解电阻器的工作原理和阻值的计算方式。

随后,我们在电路板上搭建了一个简单的电路,包括一块电池、若干个电阻、开关和一个小灯泡。

通过测量电路中的电流和电压,我们能够计算出每个电阻元件所承载的电压和电流,并且成功点亮了小灯泡。

2. 实验二:交流电路在交流电路实验中,我们学习了正弦波信号的基本特性以及如何使用电容和电感元器件搭建交流电路。

首先,我们需要了解正弦波信号的周期、频率、幅值等基本特性,并且学习如何使用示波器观察正弦波信号。

随后,我们在电路板上搭建了一个RLC电路,包括一个信号发生器、一个电容、一个电感和一个电阻。

通过测量电路中的电流和电压,我们能够计算出电阻、电感及电容元件对电路的影响,理解了物理系统中的振动和共振现象。

3. 实验三:放大电路在放大电路实验中,我们学习了放大器的基本概念、工作原理以及放大器的分类方法,并利用运算放大器搭建了一个基本的放大电路。

首先,我们需要了解放大器的工作原理,即如何将输入信号进行放大并输出。

我们还学习了放大器的分类方法,如按输入输出信号类型分类、按工作模式分类等。

随后,我们在电路板上搭建了一个简单的非反向运算放大器电路,并使用函数发生器产生了不同幅值的输入信号,成功放大了输出信号。

通过这三个实验,我们深入理解了模拟电路的基本原理和相关知识点,掌握了搭建电路和分析电路的技能。

我们相信本次实验能够帮助我们更好地理解电子原理,为以后的学习和实践打下良好的基础。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告班级__________姓名___________学号____________实验一单极放大电路实验一、实验目的①掌握放大器静态工作点的调试方法及其对放大器性能的影响。

②学习测量放大器Q点,Av,Ii,Io的方法,了解共射级电路特性。

③掌握放大器的动态性能。

二、实验仪器和器材示波器、信号发生器、数字万用表,实验箱TD-AS三、实验原理1、单电源供电的单管共射放大电路,按图连接电路,注意:本实验箱的地线已经全部连接好,不需要将地线另外接入各实验单元,而各实验单元的电源要另外接入。

图1-12、静态工作点的测量:按图1-1连接电路,(注意:接线前先测量+12V 电源,交流U i 信号接地,断开电源后再连线)。

接线完毕后仔细检查,将恒压源中的+12V 电源接入到CC V ,确定无误后接通电源。

调节滑动变阻器Rp ,使Uc =5V 左右,三极管处于放大区内,用万用表测量完成表1-1. 测算参考公式:1/)(,/,,C C CC C C B E C CE E B BE R U V I I I U U U U U U -=≈-=-=β根据所测值利用公式E T bb be I V r r /)1('β++=其中mV V I I T C E 26,≈≈注:本实验中所用三极管的β为200左右,'bb r 为200Ω左右。

3、 放大倍数的测量1) 将信号发生器调到 f=500HZ ,幅值为10mv 左右(实验中交流信号的幅值均为峰值),接到放大器输入端Vi ,用示波器观察Vi 和V o 端的波形并比较相位,保证输出不失真情况下计算放大倍数i o V V V A /= 。

2) 将测量值与估算值比较,完成表1-2。

估算参考公式:be C V r R A /1β-=注意:输出波形毛刺、文波等干扰较大,测量时可以在输出端对地接入0.01uF 的电容进行滤波,但当输入信号频率大于1KHz 时不能采用此方法;由于输入信号幅值非常小,测量时容易引入干扰,可以采用示波器的探笔串接一个1千欧左右电阻后再进行测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《模拟电路》课程设计报告运算放大器组成函数信号发生器设计时间2008年1月目录一、设计任务与要求 (2)二、方案设计 (3)三、各部分电路设计 (4)四、总原理图 (9)五、安装与调试 (10)六、电路的实验结果 (12)七、实验心得 (14)八、参考文献 (14)一、设计任务与要求1.1.设计目的1.掌握电子系统的一般设计方法2.掌握模拟IC器件的应用3.培养综合应用所学知识来指导实践的能力4.掌握常用元器件的识别和测试5.熟悉常用仪表,了解电路调试的基本方法1.2.设计任务运算放大器设计方波——三角波——正弦波函数信号发生器1.3.课程设计的要求及技术指标1.设计、组装、调试函数发生器2.输出波形:正弦波、方波、三角波;3.频率范围:在10-10000Hz范围内可调;4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V;二、方案设计2.1. 原理框图2.2.函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。

本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

三、各部分电路设计3.1 方波发生电路的工作原理此电路由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。

Uo通过R3对电容C正向充电,如图中实线箭头所示。

反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up 从+Ut跃变为-Ut。

随后,Uo又通过R3对电容C反向充电,如图中虚线箭头所示。

Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。

上述过程周而复始,电路产生了自激振荡。

3.2 方波---三角波转换电路的工作原理工作原理如下:若a 点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。

运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。

比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。

设Uo1=+Vcc,则 312231231()0CC ia R RP R U V U R R RP R R RP ++=++=++++将上式整理,得比较器翻转的下门限单位Uia-为223131()CC CC ia R R U V V R RP R RP ---=+=++ 若Uo1=-Vee,则比较器翻转的上门限电位Uia+为223131()EE CC ia R R U V V R RP R RP +-=-=++ 比较器的门限宽度2312H CC ia ia R U U U I R RP +-=-=+ 由以上公式可得比较器的电压传输特性,如图3-71所示。

a 点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为214221()O O U U dt R RP C -=+⎰1O CC U V =+时,2422422()()()CC CC O V V U t t R RP C R RP C -+-==++ 1O EE U V =-时,2422422()()()CC EE O V V U t t R RP C R RP C --==++ 可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。

a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。

三角波的幅度为2231O m CC R U V R RP =+ 方波-三角波的频率f 为3124224()R RP f R R RP C +=+ 由以上两式可以得到以下结论:1. 电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。

若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。

2. 方波的输出幅度应等于电源电压+Vcc 。

三角波的输出幅度应不超过电源电压+Vcc 。

电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

3.3 三角波---正弦波转换电路的工作原理三角波——正弦波的变换电路主要由差分放大电路来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

分析表明,传输特性曲线的表达式为:022/1id TC E U U aI I aI e ==+011/1id T C E U U aI I aI e-==+ 式中 /1C E a I I =≈0I ——差分放大器的恒定电流;T U ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。

如果Uid 为三角波,设表达式为44434m id m U T t T U U T t T ⎧⎛⎫- ⎪⎪⎪⎝⎭=⎨-⎛⎫⎪- ⎪⎪⎝⎭⎩ 022T t T t T ⎛⎫≤≤ ⎪⎝⎭⎛⎫≤≤ ⎪⎝⎭式中 Um ——三角波的幅度;T ——三角波的周期。

为使输出波形更接近正弦波,由图可见:(1) 传输特性曲线越对称,线性区越窄越好;(2) 三角波的幅度Um 应正好使晶体管接近饱和区或截止区。

(3) 图为实现三角波——正弦波变换的电路。

其中Rp1调节三角波的幅度,Rp2调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。

电容C1,C2,C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。

3.4电路的参数选择及计算1.方波-三角波中电容C1变化(关键性变化之一)实物连线中,我们一开始很长时间出不来波形,后来将C2从10uf(理论时可出来波形)换成0.1uf时,顺利得出波形。

实际上,分析一下便知当C2=10uf 时,频率很低,不容易在实际电路中实现。

2.比较器A1与积分器A2的元件计算如下。

由式(3-61)得2231O m CC R U V R RP =+ 即223141123O m CCU R R RP V ===+ 取 210R K =Ω,则3130R RP K +=Ω,取320R K =Ω ,RP1为47K Ω的点位器。

区平衡电阻1231//()10R R R RP K =+≈Ω由式(3-62)3124224()R RP f R R RP C +=+ 即3141224R RP R RP R C ++=+ 当110Z H f Z ≤≤H 时,取210C F μ=,则42(75~7.5)R RP k +=Ω,取4 5.1R k =Ω,为100K Ω电位器。

当10100Z H f Z ≤≤H 时 ,取21C F μ=以实现频率波段的转换,R4及RP2的取值不变。

取平衡电阻510R k =Ω。

三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取345470C C C F μ===,滤波电容6C 视输出的波形而定,若含高次斜波成分较多,6C 可取得较小,6C 一般为几十皮法至0.1微法。

RE2=100欧与RP 4=100欧姆相并联,以减小差分放大器的线性区。

差分放大器的几静态工作点可通过观测传输特性曲线,调整RP 4及电阻R*确定。

四、总原理图五、安装与调试5.1 方波---三角波发生电路的安装与调试1.按装方波——三角波产生电路1. 把两块741集成块插入面包板,注意布局;2. 分别把各电阻放入适当位置,尤其注意电位器的接法;3. 按图接线,注意直流源的正负及接地端。

2.调试方波——三角波产生电路1. 接入电源后,用示波器进行双踪观察;2. 调节RP1,使三角波的幅值满足指标要求;3. 调节RP2,微调波形的频率;4. 观察示波器,各指标达到要求后进行下一部按装。

5.2三角波---正弦波转换电路的安装与调试1.按装三角波——正弦波变换电路1. 在面包板上接入差分放大电路,注意三极管的各管脚的接线;2. 搭生成直流源电路,注意R*的阻值选取;3. 接入各电容及电位器,注意C6的选取;4. 按图接线,注意直流源的正负及接地端。

2.调试三角波——正弦波变换电路1. 接入直流源后,把C4 接地,利用万用表测试差分放大电路的静态工作点;2. 测试V1、V2的电容值,当不相等时调节RP4使其相等;3.测试V3、V4的电容值,使其满足实验要求;4. 在C4端接入信号源,利用示波器观察,逐渐增大输入电压,当输出波形刚好不失真时记入其最大不失真电压;5.3总电路的安装与调试1. 把两部分的电路接好,进行整体测试、观察2. 针对各阶段出现的问题,逐各排查校验,使其满足实验要求,即使正弦波的峰值大于1V。

5.4调试中遇到的问题及解决的方法方波-三角波-正弦波函数发生器电路是由三级单元电路组成的,在装调多级电路时通常按照单元电路的先后顺序分级装调与级联。

1.方波-三角波发生器的装调由于比较器A1与积分器A2组成正反馈闭环电路,同时输出方波与三角波,这两个单元电路可以同时安装。

需要注意的是,安装电位器RP1与RP2之前,要先将其调整到设计值,如设计举例题中,应先使RP1=10KΩ,RP2取(2.5-70)KΩ内的任一值,否则电路可能会不起振。

相关文档
最新文档