四川省2020-2021年中考数学试卷(解析)
2020年四川省成都市中考数学试卷(后附答案及详尽解析)
2020年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6 8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9; (2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②. 16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB =10,tan B =43,求⊙O 的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 .25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件)12 13 14 15 16 y (件) 1200 1100 1000 900 800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC 的值.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 【解答】解:﹣2的绝对值为2.故选:C .2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .【解答】解:从左面看是一列2个正方形.故选:D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×104【解答】解:36000=3.6×104,故选:B .4.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)【解答】解:将点P (3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 【解答】解:把x =2代入分式方程得:k 2−1=1,解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴AB BC =DE EF ,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103,故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1 2.故答案为:m>1 2.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°2=30°,故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 {5x +2y =102x +5y =8 .【解答】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②.【解答】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3 =3;(2){4(x −1)≥x +2,①2x+13>x −1.②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【解答】解:原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3, 当x =3+√2时, 原式=√2.17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22°≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y =mx(x >0)的图象经过点A (3,4), ∴k =3×4=12,∴反比例函数的表达式为y =12x ; (2)∵直线y =kx +b 过点A , ∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点, ∴B (−bk,0),C (0,b ),∵△AOB 的面积为△BOC 的面积的2倍, ∴12×4×|−bk |=2×12×|−bk |×|b |,∴b =±2, 当b =2时,k =23, 当b =﹣2时,k =2,∴直线的函数表达式为:y=23x+2,y=2x﹣2.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x 2+9x 2=100, ∴x =2, ∴BC =6,∵AC =AD =8,AB =10, ∴BD =2, ∵OB 2=OD 2+BD 2, ∴(6﹣OC )2=OC 2+4, ∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE ≌△DOE (SAS ), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 . 【解答】解:∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 m ≤72.【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根, ∴△=(﹣4)2﹣4×2×(m −32)=16﹣8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:FA1̂的长=60⋅π⋅1180=π3,A 1B 1̂的长=60⋅π⋅2180=2π3, B 1C 1̂的长=60⋅π⋅3180=3π3, C 1D 1̂的长=60⋅π⋅4180=4π3, D 1E 1̂的长=60⋅π⋅5180=5π3, E 1F 1̂的长=60⋅π⋅6180=6π3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π, 故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 (√2,2√2)或(2√2,√2) .【解答】解:联立y =mx (m >0)与y =4x 并解得:{x =2√m y =±2√m,故点A 的坐标为(√m,2√m ),联立y =nx (n <0)与y =−1x 同理可得:点D (√−1n ,−√−n ),∵这两条直线互相垂直,则mn =﹣1,故点D (√m ,1√m ),则点B (−√m ,√m), 则AD 2=(√m−√m )2+(2√m √m )2=5m +5m ,同理可得:AB 2=5m +5m =AD 2,则AB =14×10√2,即AB 2=252=5m +5m , 解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2), 故答案为:(√2,2√2)或(2√2,√2).25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3√2,线段DH长度的最小值为√13−√2.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH ≥√13−√2,∴DH 的最小值为√13−√2, 故答案为3√2,√13−√2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件) 12 13 14 15 16 y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =﹣100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴BC =BF ,∠FBE =∠EBC , ∵BC =2AB , ∴BF =2AB , ∴∠AFB =30°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFB =∠CBF =30°, ∴∠CBE =12∠FBC =15°;(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴∠BFE =∠C =90°,CE =EF , 又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°, ∴∠AFB =∠DEF , ∴△F AB ∽△EDF , ∴AF DE=AB DF,∴AF •DF =AB •DE ,∵AF •DF =10,AB =5, ∴DE =2,∴CE =DC ﹣DE =5﹣2=3, ∴EF =3,∴DF =√EF 2−DE 2=√32−22=√5, ∴AF =10√5=2√5, ∴BC =AD =AF +DF =2√5+√5=3√5. (3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD , ∴NF =12AD =12BC , ∵BC =BF , ∴NF =12BF ,∵∠NFG =∠AFB ,∠NGF =∠BAF =90°, ∴△NFG ∽△BF A , ∴NG AB=FG FA=NF BF=12,设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF , ∴AN =NG =x , 设FG =y ,则AF =2y , ∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2, 解得y =43x .∴BF =BG +GF =2x +43x =103x . ∴AB BC=AB BF=2x103x =35.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4). ∵将C (0,﹣2)代入得:4a =2,解得a =12,∴抛物线的解析式为y =12(x +1)(x ﹣4),即y =12x 2−32x ﹣2.(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG , ∴△AKE ∽△DFE , ∴DF AK =DEAE , ∴S 1S 2=S △BDE S △ABE=DE AE=DF AK,设直线BC 的解析式为y =kx +b ,∴{4k +b =0b =−2,解得{k =12b =−2, ∴直线BC 的解析式为y =12x ﹣2, ∵A (﹣1,0), ∴y =−12−2=−52, ∴AK =52,设D (m ,12m 2−32m ﹣2),则F (m ,12m ﹣2),∴DF =12m −2−12m 2+32m +2=−12m 2+2m . ∴S 1S 2=−12m 2+2m52=−15m 2+45m =−15(m −2)2+45.∴当m =2时,S 1S 2有最大值,最大值是45.(3)符合条件的点P 的坐标为(689,349)或(6+2√415,3+√415). ∵l ∥BC ,∴直线l 的解析式为y =12x ,设P (a ,a2),①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC =√5,AB =5,BC =2√5,∵AC 2+BC 2=AB 2,∴∠ACB =90°, ∵△PQB ∽△CAB ,∴PQ PB=AC BC=12,∵∠QMP =∠BNP =90°,∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°, ∴∠MQP =∠PBN ,∴△QPM ∽△PBN , ∴QM PN=PM BN=PQ PB =12,∴QM =a4,PM =12(a ﹣4)=12a ﹣2, ∴MN =a ﹣2,BN ﹣QM =a ﹣4−a4=34a ﹣4, ∴Q (34a ,a ﹣2),将点Q 的坐标代入抛物线的解析式得12×(34a)2−32×34a ﹣2=a ﹣2,解得a =0(舍去)或a =689. ∴P (689,349).②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(54a ,2).此时点P 的坐标为(6+2√415,3+√415).。
最新整理四川省绵阳市2021年中考数学试卷和答案解析详解完整版
2021年四川省绵阳市中考数学真题及答案一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求。
1.整式﹣3xy2的系数是()A.﹣3 B.3 C.﹣3x D.3x2.计算×的结果是()A.6 B.6C.6D.63.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是()A.2 B.3 C.D.5.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是()A.1 B.C.D.26.近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件7.下列数中,在与之间的是()A.3 B.4 C.5 D.68.某同学连续7天测得体温(单位:℃)分别是36.5、36.3、36.7、36.5、36.7、37.1、37.1,关于这一组数据,下列说法正确的是()A.众数是36.3 B.中位数是36.6C.方差是0.08 D.方差是0.099.如图,在等腰直角△ABC中,∠ACB=90°,M、N分别为BC、AC上的点,∠CNM=50°,P为MN上的点,且PC=MN,∠BPC=117°,则∠ABP=()A.22°B.23°C.25°D.27°10.如图,在平面直角坐标系中,AB∥DC,AC⊥BC,CD=AD=5,AC=6,将四边形ABCD向左平移m个单位后,点B恰好和原点O重合,则m的值是()A.11.4 B.11.6 C.12.4 D.12.611.关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,若x2=2x1,则4b﹣9ac的最大值是()A.1 B.C.D.212.如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是()A.B.C.D.二、填空题:本大题共6个小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)如图,直线a∥b,若∠1=28°,则∠2=.14.(4分)据统计,截止2021年3月,中国共产党党员人数超过9100万.数字91000000用科学记数法表示为.15.(4分)若x﹣y=,xy=﹣,则x2﹣y2=.16.(4分)端午节是中国传统节日,人们有吃粽子的习俗.某商场从6月12日起开始打折促销,肉粽六折,白粽七折,打折前购买4盒肉粽和5盒白粽需350元,打折后购买5盒肉粽和10盒白粽需360元.轩轩同学想在今天中考结束后,为敬老院送肉粽和白粽各5盒,则他6月13日购买的花费比在打折前购买节省元.17.(4分)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H 分别为CE、GE中点,∠EHF=∠DGE,CF=,则AB=.18.(4分)在直角△ABC中,∠C=90°,+=,∠C的角平分线交AB于点D,且CD=2,斜边AB的值是.三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤. 19.(16分)(1)计算:2cos45°+|﹣|﹣20210﹣;(2)先化简,再求值:﹣﹣,其中x=1.12,y=0.68.20.(12分)为庆祝中国共产党建党100周年,某校开展了党史知识竞赛.某年级随机选出一个班的初赛成绩进行统计,得到统计图表,已知在扇形统计图中D段对应扇形圆心角为72°.分段成绩范围频数频率A90~100 a mB80~89 20 bC70~79 c0.3D70分以下10 n注:90~100表示成绩x满足:90≤x≤100,下同.(1)在统计表中,a=,b=,c=;(2)若该年级参加初赛的学生共有2000人,根据以上统计数据估计该年级成绩在90分及以上的学生人数;(3)若统计表A段的男生比女生少1人,从A段中任选2人参加复赛,用列举法求恰好选到1名男生和1名女生的概率.21.(12分)某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400件,乙种工艺品不少于680件.该厂家现准备购买A、B两类原木共150根用于工艺品制作,其中,1根A类原木可制作甲种工艺品4件和乙种工艺品2件,1根B类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A、B两类原木各多少根时获得利润最大,最大利润是多少?22.(12分)如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M 逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.23.(12分)如图,在平面直角坐标系xOy中,直角△ABC的顶点A,B在函数y=(k>0,x>0)图象上,AC∥x轴,线段AB的垂直平分线交CB于点M,交AC的延长线于点E,点A纵坐标为2,点B横坐标为1,CE=1.(1)求点C和点E的坐标及k的值;(2)连接BE,求△MBE的面积.24.(12分)如图,四边形ABCD是⊙O的内接矩形,过点A的切线与CD的延长线交于点M,连接OM与AD交于点E,AD>1,CD=1.(1)求证:△DBC∽△AMD;(2)设AD=x,求△COM的面积(用x的式子表示);(3)若∠AOE=∠COD,求OE的长.25.(14分)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.2021年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求。
2020年四川省中考数学试卷(含答案)
四川省中考数学试卷 A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题 (每小题3分,共30分) 1、4的算术平方根是( )A .4B .2C .2±D .4± 2、下面四个几何体中,俯视图为四边形的是( )3、钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为( ) A .44×105 B .0.44×105 C .4.4×106 D .4.4×1054、下列运算中正确的是( )A .3a -a =3B .a 2 + a 3 = a 5C .(—2a )3 = —6a 3D .ab 2÷a = b 2 5、等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A .25 B .25或32 C .32 D .19 6、函数1-=x y 自变量x 取值范围是( )A. 1>xB.1x ≥C.1-≥xD.1≤x 7、如图,已知OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C .3 D .328、如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是( ) A .24 B .16 C .134 D .329、已知二次函数1)3(2+-=x y .下列说法:①其图象的开口向下;②其图象的对称轴为直线3=x ;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A.1个B.2个C.3个D.4个10、如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y=x 的图象被⊙PA B C D第7题图 第8题图第10题图截得的弦AB 的长为24,则a 的值是( )A .4B .23+C .23D .33+第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11、不等式423>-x 的解集是__________.12、如图,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC = 度13、如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sinB 的值为________ 14、如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于_______ 三、解答题:(本大题共6个小题,共54分) 15、(本小题满分12分,每小题6分)(1)计算:1845sin 6)2(2022-+--- (2)解不等式组⎩⎨⎧+<+>-②① . , 7)2(2513x x x16、(本小题满分6分) 先化简,再求值:2)441(2-÷-+a aa ,其中5=a17、(本小题满分8分)如图,山顶有一铁塔AB 的高度为20米,为测量山的高度BC ,在山脚点D 处测得塔顶A 和塔基B 的仰角分别为60º和45º,求山的高度BC.(结果保留根号)第12题图第14题图CB A图2第13题图yxODCBA18、(本小题满分8分)我市某中学艺术节期间,向学校学生征集书画作品。
2024年四川省成都市中考数学试题+答案详解
2024年四川省成都市中考数学试题+答案详解(试题部分)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5B. ﹣5C. 15−D.152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+D. ()()2224x x x +−=−4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−−B. ()1,4−C. ()1,4D. ()1,4−5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______. 10. 分式方程132x x=−的解是____. 11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l上一动点,连接PO,PA,则PO PA+的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242 +︒−−+.(2)解不等式组:2311123xx x+≥−⎧⎪⎨−−<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0ky k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______. 21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg . (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值. 【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学试题+答案详解(答案详解)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5 B. ﹣5C. 15−D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案. 【详解】解:|﹣5|=5. 故选A .2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可. 【详解】解:该几何体的主视图为,故选:A .3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+ D. ()()2224x x x +−=−【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意; D .()()2224x x x +−=−,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−− B. ()1,4−C. ()1,4D. ()1,4−【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P −关于原点对称的点的坐标为()1,4−; 故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53 B. 55C. 58D. 64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可. 【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55, 把这6个数从小到大排序:50,51,55,55,61,64, ∴这组数据的中位数是:5555552+=, 故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠, ∴选项A 中AB AD =不一定正确,故不符合题意; 选项B 中AC BD ⊥不一定正确,故不符合题意; 选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意, 故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可. 【详解】解:设人数为x ,琎价为y , 根据每人出12钱,会多出4钱可得出1y x 42=−, 每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定. 【详解】解:由作图可知,BF 为ABC ∠的角平分, ∴ABE CBE ∠=∠,故A 正确; ∵四边形ABCD 为平行四边形, ∴,,AD BC AB CD AD BC ==, ∵AD BC ∥ ∴AEB CBE ∠=∠, ∴AEB ABE ∠=∠, ∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△, ∴BE AB AE EF DF ED==, ∴332BE EF DF ==, ∴32BE EF =,2DF =,故D 错误; ∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n −=,解得4m =−,5n =,∴()()22451m n +=−+=,故答案为:1.10. 分式方程132x x=−的解是____. 【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得AB 的长为π120π64π180180n r ⨯==, 故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可. 【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38, ∴38x x y =+,则35x y =, 故答案为:35. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒−−+.(2)解不等式组:2311123x x x +≥−⎧⎪⎨−−<⎪⎩①②【答案】(1)5;(2)29x −≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可; (2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒−−−42122=+⨯−+−5=+5=;(2)解不等式①,得2x ≥−,解不等式②,得9x <,∴该不等式组的解集为29x −≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人), 选择“世界公园打卡线”的人数为9016040360⨯=(人), 故答案为:160,40;【小问2详解】 解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒; 【小问3详解】解:选择“园艺小清新线”的人数为16044404828−−−=(人), ∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人). 16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺. ∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈, ∵26.6ADB ∠=︒, ∴tan AB ADB BD∠=,即8160.50BD ≈=, ∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈. 答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C ∴∠=︒=∠又CEB FDB ∠∠=EBC DBF ∴∽ EC CB DF FB ∴= BC DF BF CE ⋅=⋅∴【小问2详解】由(1)可知,EBC DBF ∽EBC DBF ∴∠=∠EBC FBE DBF FBE ∴∠−∠=∠−∠CBF EBA ∴∠=∠A CBF ∠=∠A EBA ∴∠=∠AE BE ∴=A CBF ∠=∠9090A CBF ∴︒−∠=︒−∠ABC CFB ∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB AC CF BC∴==不妨设CF x =,那么CB = 4AF ==x ∴=CF ∴=5CB ==不妨设EF y =,那么AE AF EF y BE =−==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y =222(5)y y ∴++=−y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB ∠∠=tan tan CEB FDB ∴∠=∠CB BF CE DF∴=DF =DF ∴=BD ∴===∴O 的直径是故答案为:CF =O 直径是 【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键. 18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4−或()4,4−,16k =−(3)1−【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x −,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =−,则()2,0D −,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +−=,根据题意,方程220x x k +−=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =−+中,得42m =−+,则6m =,∴6y x =−+,将(),0B b 代入6y x =−+中,得06b =−+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =−⎧⎨=⎩, ∴()4,4C −,则4416k =−⨯=−;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=−⎩, ∴()4,4C −,则4416k =−⨯=−;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4−或()4,4−,16k =−;【小问3详解】解:如图,设点(),0D x ,则(),0E x −,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅, ∴()()()()22264066x x −+−=+−,即24x =,解得2x =±,∵0x <,∴2x =−,则()2,0D −,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨−+=⎩,解得12p q =⎧⎨=⎩, ∴直线AC 的表达式为2y x =+, 联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +−=, ∵有且只有一点C ,∴方程220x x k +−=有且只有一个实数根,∴2402k +==∆,解得1k =−;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1−.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒−∠−∠=︒−︒−︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根,∴2520n n −+=,5b m n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==; 故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==; 依次类推,当n 为偶数时,()()2135314n k n n =−+−++++=, 故当24n =时,2242321195311444k =++++++==, 故答案为:9,144. 22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】 【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =, ∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠, ∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽, ∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠, ∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==−=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽, ∴AC BC BF EF= ∴221m x x m +=+,则()()2212m x x =++, ∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①. > ②. 112m −<< 【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =−+−=−−+得抛物线的对称轴为直线2x =,开口向下, ∵101x <<,24x >,∴1222x x −<−,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近, ∴132222x x x −>−>−,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>, 解得112m −<<, 故答案为:>;112m −<<. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可. (2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩, 解得:1000500x y =⎧⎨=⎩, ∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a −≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠= (3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a −−=,整理得2230x x −−=,即可知()()1,0,3,0,A B −则有4AB =;(2)由题意得抛物线L :()222314y x x x =−−=−−,则()1,4,C −设()2,23,D n n n −−()03n <<,可求得2246ABD S n n =−++△,结合题意可得直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,即可求得21ACD S n =−,进一步解得点720,39D ⎛⎫− ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH ∠=; (3)设()2,23,D n an an a −−可求得直线AD 解析式为()()31y a n x =−+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=−++,结合题意得1,EM n =+()2,23,A n an an a −++'()24,23,B n an an a '+−++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+−−++,根据()22232463ax ax a ax an a x an a −−=+−−++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点, ∴2230ax ax a −−=,整理得2230x x −−=,解得121,3,x x =−=∴()()1,0,3,0,A B −则()314AB =−−=;【小问2详解】当1a =时,抛物线L :()222314y x x x =−−=−−, 则()1,4,C −设()2,23,D n n n −−()03n <<,则()221142324622ABD D S AB y n n n n =⋅=−⨯⨯−−=−++, 设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n −−=+,解得3k n =−, 则直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,。
四川省2020-2021年中考数学试卷(解析)
2020年中考数学试卷一.选择题(共8小题)1.(2018宜宾)﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点:倒数。
解答:解:根据倒数的定义得:﹣3×(﹣)=1,因此倒数是﹣.故选:D.2.(2018宜宾)下面四个几何体中,其左视图为圆的是()A.B. C.D.考点:简单几何体的三视图。
解答:解:A.圆柱的左视图是矩形,不符合题意;B.三棱锥的左视图是三角形,不符合题意;C.球的左视图是圆,符合题意;D.长方体的左视图是矩形,不符合题意.故选C.3.(2018宜宾)下面运算正确的是()A.7a2b﹣5a2b=2 B.x8÷x4=x2 C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答:解:A.7a2b﹣5a2b=2a2b,故本选项错误;B.x8÷x4=x4,故本选项错误;C.(a﹣b)2=a2﹣2ab+b2,故本选项错误;D.(2x2)3=8x6,故本选项正确.故选D.4.(2018宜宾)宜宾今年5月某天各区县的最高气温如下表:区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃)32 32 30 32 30 31 29 33 30 32A.32,31.5 B.32,30 C.30,32 D.32,31考点:众数;中位数。
解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.5.(2018宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4 考点:配方法的应用。
解答:解:x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7.故选B.6.(2018宜宾)分式方程的解为()A. 3 B.﹣3 C.无解 D.3或﹣3考点:解分式方程。
2021年四川省成都市中考数学试题及参考答案(word解析版)
2021年成都市高中阶段教育学校统一招生考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2 6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAFC.AE=AD D.∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π第Ⅱ卷(非选择题共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.因式分解:x2﹣4=.12.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.根据图表信息,解答下列问题:(1)分别求出表中m ,n 的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角∠MBC =33°,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角∠MEC =45°(点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x+的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.20.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为,△ABC 的面积为2,求CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若=,求BF 的长. B 卷(共50分)课程人数 篮球 m 足球 21 排球 30 乒乓球 n一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.答案与解析A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.7【知识考点】倒数.【思路分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解题过程】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.【总结归纳】此题主要考查了倒数,正确掌握倒数的定义是解题关键.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解题过程】解:3亿=300000000=3×108.故选:D.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()。
四川成都2020-年中考数学试卷(附答案,解析)
数学A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.-2的绝对值是()A. -2B. 1C. 2D. 1 2【答案】C【解析】【分析】根据绝对值的性质解答即可.【详解】解:−2的绝对值是2.故选:C.【点睛】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.2.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.【答案】D【解析】【分析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.【详解】从主视图的左边往右边看得到的视图为:故选:D.【点睛】本题考查了左视图的识别,熟练掌握相关方法是解题关键.3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A. 33.610⨯B. 43.610⨯C. 53.610⨯D. 43610⨯ 【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a <,n 为整数,据此判断即可.【详解】解:436000 3.610=⨯.故选:B .【点睛】本题考查了用科学记数法表示较大的数,科学记数法的表示形式为10n a ⨯,其中1||10a <,确定a 与n 的值是解题的关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 4.在平面直角坐标系中,将点(3,2)P 向下平移2个单位长度得到的点的坐标是( )A. (3,0)B. (1,2)C. (5,2)D. (3,4) 【答案】A【解析】【分析】根据点的坐标平移规律“左减右加,下减上加”,即可解答.【详解】解:将点P ()3,2向下平移2个单位长度所得到的点坐标为()3,22-,即()3,0,故选:A .【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.5.下列计算正确的是( )A. 325a b ab +=B. 326a a a ⋅=C. ()2362a b a b -=D. 233a b a b ÷= 【答案】C【解析】分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;同底数幂相除,底数不变指数相相减;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A .不是同类项,不能合并,选项A 错误;B .325a a a ⋅=; 选项B 错误;C .()2362a b a b -=,选项C 正确;D .233a b a ab ÷=,选项D 错误.故选:C .【点睛】本题考查了整式运算的法则,涉及了合并同类项,同底数幂的乘法和幂的乘方、同底数幂除法,解题关键是熟记运算法则.6.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人 【答案】A【解析】【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:5,5,7,11,12所以这组数据的众数为5,中位数为7.故选:A .【点睛】本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.7.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若6AC =,2AD =,则BD 的长为( )A. 2B. 3C. 4D. 6【答案】C【解析】【分析】由作图可知, M N 是线段BC 的垂直平分线,据此可得解.【详解】解:由作图可知, M N 是线段BC 的垂直平分线,∴BD=CD=AC-AD=6-2=4,故选:C【点睛】本题考查了线段垂直平分线的性质,灵活的利用线段垂直平分线上的点到线段两端的距离相等这一性质添加辅助线是解题的关键.8.已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A. 3B. 4C. 5D. 6 【答案】B【解析】【分析】将2x =代入原方程,即可求出k 值.【详解】解:将2x =代入方程311k x x x -+=-中,得 231221k +=-- 解得:4k = .故选:B .【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.9.如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A. 2B. 3C. 4D. 103【答案】D【解析】【分析】 根据平行线分线段成比例定理得出比例式,代入已知线段得长度求解即可.【详解】解:∵直线l 1∥l 2∥l 3, ∴AB DE BC EF=. ∵AB=5,BC=6,EF=4, ∴564DE =. ∴DE=103. 故选:D .【点睛】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.10.关于二次函数228=+-y x x ,下列说法正确的是( )A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(2,0)-和(4,0)D. y 的最小值为-9【答案】D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可.【详解】∵2228=(1)9y x x x =+-+-∴抛物线的对称轴为直线:x=-1,在y 轴的左侧,故选项A 错误;令x=0,则y=-8,所以图象与y 轴的交点坐标为(0,8)-,故选项B 错误;令y=0,则228=0x x +-,解得x 1=2,x 2=-4,图象与x 轴交点坐标为(2,0)和(4,0)-,故选项C 错误; ∵2228=(1)9y x x x =+-+-,a=1>0,所以函数有最小值-9,故选项D 正确.故选:D .【点睛】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键.第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:23x x +=___________.【答案】()3x x +【解析】23(3)x x x x +=+.12.一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【解析】【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0.解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.13.如图,A ,B ,C 是O 上的三个点,50AOB ∠=︒,55B ∠=︒,则A ∠的度数为_________.【答案】30°【解析】【分析】根据圆的基本性质以及圆周角定理,分别求出∠OCB=55°,∠ACB=12∠AOB=25°,即可求出∠OCA=30°,再求出∠A 即可.【详解】解:∵OB=OC ,∴∠B=∠OCB=55°,∵∠AOB=50°,∴∠ACB=12∠AOB=25°, ∴∠OCA=∠OCB-∠AOB=55°-25°=30°,∵OA=OC ,∴∠A=∠OCA=30°,故答案为:30°.【点睛】本题考查了圆的基本性质以及圆周角定理,解题的关键是熟练掌握圆的性质以及圆周角定理. 14.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【解析】【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系 “①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩. 故答案为:5210258x y x y +=⎧⎨+=⎩. 【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:212sin 6022-⎛⎫︒++ ⎪⎝⎭(2)解不等式组:4(1)22113x x x x -≥+⎧⎪+⎨>-⎪⎩ 【答案】(1)3;(2)24x ≤<【解析】【分析】(1)根据特殊角的三角函数值、负整数指数幂性质、绝对值的性质及二次根式的化简分别求出各数的值,由此进一步计算即可;(2)首先将原不等式组中各个不等式的解集求出来,然后进一步分析得出答案即可.【详解】(1)原式=2423+63=3;(2)解不等式4(1)2x x -≥+可得:2x ≥, 解不等式2113x x +>-可得:4x <, ∴原不等式组的解集为24x ≤<.【点睛】本题主要考查了含有特殊角的三角函数值的实数的混合运算以及解不等式组,熟练掌握相关概念及方法是解题关键.16.先化简,再求值:212139x x x +⎛⎫-÷ ⎪+-⎝⎭,其中3x =+【答案】3x -【解析】【分析】括号内先通分进行分式减法运算,然后再进行分式除法运算,化简后代入x 的值进行计算即可. 【详解】212139x x x +⎛⎫-÷ ⎪+-⎝⎭ =2312339x x x x x ++⎛⎫-÷ ⎪++-⎝⎭=()()312333x x x x x +-+÷++- =()()33232x x x x x +-+++ =3x -.当3x =+33==【点睛】本题考查了分式的混合运算——化简求值,涉及了分式的加减法、乘除法、实数的混合运算等,熟练掌握各运算的运算法则是解题的关键.17.2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有_________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为_________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)180;(2)126°;(3)16.【解析】【分析】(1)根据跳水的人数及其百分比求得总人数;(2)先求出田径及游泳的人数,再用总人数减去田径人数、游泳人数、跳水人数即可得到篮球人数,求出其所占总数的百分比,最后乘以360°即可得到结果;(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解..【详解】(1)54÷30%=180(人)故答案为:180;(2)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:63360=126180︒⨯︒,故答案为:126°;(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.所以P (恰好选中甲、乙两位同学)=21=126. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 18.成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶D 处测得塔A 处的仰角为45°,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值. (结果精确到1米;参考数据:sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈)【答案】观景台的高AB 约为214米.【解析】【分析】过点D 作DM ⊥AB 于点M ,由题意可得四边形DCBM 是矩形,由矩形的性质可得BM=CD=61米;在Rt △BDM 中,∠BDM=22°,BM=61米,由此可得tan22°=61DM,即可求得DM=152.5米;再证明△ADM 为等腰直角三角形,可得DM=AM=152.5米,由此即可求得观景台的高AB 的长.【详解】过点D 作DM ⊥AB 于点M ,由题意可得四边形DCBM 是矩形,∴BM=CD=61米,在Rt △BDM 中,∠BDM=22°,BM=61米, tan ∠BDM=BM DM , ∴tan22°=61DM, 解得,DM=152.5米;∵∠ADM=45°,DM ⊥AB ,∴△ADM 为等腰直角三角形,∴DM=AM=152.5米, ∴AB=BM+AM=61+152.5=213.5≈214(米).答:观景台的高AB 约为214米.【点睛】本题考查了解直角三角形的应用,正确作出辅助线,构建直角三角形是解决问题的关键. 19.在平面直角坐标系xOy 中,反比例函数m y x=(0x >)的图象经过点(3,4)A ,过点A 的直线y kx b =+与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若AOB 的面积为BOC 的面积的2倍,求此直线的函数表达式.【答案】(1)12y x =;(2)223y x =+或22y x =- 【解析】【分析】(1)根据题意将点A 坐标代入原反比例函数解析式,由此进一步求解即可;(2)根据题意,将直线解析式y kx b =+分k 0<以及0k >两种情况结合AOB 的面积为BOC 的面积的2倍进一步分析求解即可.【详解】(1)∵反比例函数m y x =(0x >)的图象经过点A(3,4), ∴43m =, 解得:12m =,∴原反比例函数解析式为:12y x=; (2)①当直线y kx b =+的k 0<时,函数图像如图所示,此时BOC AOB S S >△△,不符合题意,舍去;②当直线y kx b =+的0k >时,函数图像如图所示,设OC 的长度为m ,OB 的长度为n ,∵AOB 的面积为BOC 的面积的2倍∴114222n mn ⨯=⨯, ∴2m =,∴OC 的长为2,∴当C 点在y 轴正半轴时,点C 坐标为(0,2),∴2y kx =+∵点A 坐标为(3,4),∴432k =+,∴23k =, ∴直线解析式为:223y x =+, 当C 点在y 轴负半轴时,点C 坐标为(0,−2),∴2y kx =-∵点A 坐标为(3,4),∴432k =-,∴2k =,∴直线解析式为:22y x =-, 综上所述,直线解析式为:223y x =+或22y x =-. 【点睛】本题主要考查了一次函数与反比例函数的图象及性质的综合运用,熟练掌握相关方法是解题关键. 20.如图,在ABC 的边BC 上取一点O ,以O 为圆心,OC 为半径画⊙O ,⊙O 与边AB 相切于点D ,AC AD =,连接OA 交⊙O 于点E ,连接CE ,并延长交线段AB 于点F .(1)求证:AC 是⊙O 的切线;(2)若10AB =,4tan 3B =,求⊙O 的半径; (3)若F 是AB 的中点,试探究BD CE +与AF 的数量关系并说明理由.【答案】(1)见解析;(2)83;(3)AF BD CE =+,理由见解析 【解析】【分析】(1)连接OD ,由切线的性质可得∠ADO=90°,由“SSS”可证△ACO ≌△ADO ,可得∠ADO=∠ACO=90°,可得结论;(2)由锐角三角函数可设AC=4x ,BC=3x ,由勾股定理可求BC=6,再由勾股定理可求解;(3)连接OD ,DE ,由“SAS”可知△COE ≌△DOE ,可得∠OCE=∠OED ,由三角形内角和定理可得∠DEF=180°-∠OEC-∠OED=180°-2∠OCE ,∠DFE=180°-∠BCF-∠CBF=180°-2∠OCE ,可得∠DEF=∠DFE ,可证DE=DF=CE ,可得结论.【详解】解:(1)如图,连接OD ,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)在Rt△ABC中,tanB=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6-OC)2=OC2+4,∴OC=83,故⊙O的半径为83;(3)连接OD,DE,由(1)可知:△ACO ≌△ADO ,∴∠ACO=∠ADO=90°,∠AOC=∠AOD ,又∵CO=DO ,OE=OE ,∴△COE ≌△DOE (SAS ),∴∠OCE=∠ODE ,∵OC=OE=OD ,∴∠OCE=∠OEC=∠OED=∠ODE ,∴∠DEF=180°-∠OEC-∠OED=180°-2∠OCE , ∵点F 是AB 中点,∠ACB=90°,∴CF=BF=AF ,∴∠FCB=∠FBC ,∴∠DFE=180°-∠BCF-∠CBF=180°-2∠OCE , ∴∠DEF=∠DFE ,∴DE=DF=CE ,∴AF=BF=DF+BD=CE+BD .【点睛】本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21.已知73a b =-,则代数式2269a ab b ++的值为_________.【答案】49【解析】【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.【详解】解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==, 故答案为:49.【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换.22.关x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是_________. 【答案】72m ≤【解析】【分析】 方程有实数根,则△≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,△=23(4)42()2m --⨯⨯-≥0, ∴72m ≤, 故答案为72m ≤. 【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.如图,六边形ABCDEF 是正六边形,曲线111111FA B C D E F …叫做“正六边形的渐开线”,1FA ,11A B ,11C B ,11C D ,11 D E ,11 E F ,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当1AB =时,曲线111111FA B C D E F 的长度是_________.【答案】7π【解析】【分析】利用弧长公式,分别计算出1FA ,11A B ,11C B ,11C D ,11 D E ,的长,然后将所有弧长相加即可.【详解】解:根据题意,得1FA =60=13180ππ⨯⨯; 11A B =60=180322ππ⨯⨯; 11C B =360=180ππ⨯⨯; 11C D =60=180344ππ⨯⨯; 11D E =60=180355ππ⨯⨯; 11E F =60=21680ππ⨯⨯. 曲线111111FA B C D E F 的长度是245+++++23333ππππππ=7π. 故答案是:7π.【点睛】本题考查的是弧长的计算,熟练运用弧长公式进行计算是解题得关键.24.在平面直角坐标系xOy 中,已知直线y mx =(0m >)与双曲线4y x =交于A ,C 两点(点A 在第一象限),直线y nx =(0n <)与双曲线1y x=-交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD的周长为A 的坐标为_________.【答案】或【解析】【分析】首先根据题意求出点A 坐标为,从而得出244OA m m =+,然后分两种情况:①当点B 在第二象限时求出点B 坐标为(,),从而得出()21OB n n =-+-,由此可知()222414AB OA OB m n m n =+=+-+-,再利用平面直角坐标系任意两点之间距离公式可知:2414AB m n m n =++-,所以0,据此求出1n m=-,由此进一步通过证明四边形ABCD 是菱形加以分析求解即可得出答案;②当点B 在第四象限时,方法与前者一样,具体加以分析即可.【详解】∵直线y mx =(0m >)与双曲线4y x=交于A ,C 两点(点A 在第一象限),∴联立二者解析式可得:4y mxy x =⎧⎪⎨=⎪⎩,由此得出点A 坐标为(4m ,4m ), ∴244OA m m=+, ①当点B 在第二象限时,如图所示:∵直线y nx =(0n <)与双曲线1y x=-交于B ,D 两点, ∴联立二者解析式可得:1y nx y x =⎧⎪⎨=-⎪⎩,由此得出点B 坐标为(1n --n -, ∴()21OB n n=-+-, ∵AC ⊥BD , ∴()222414AB OA OB m n m n=+=+-+-, 根据平面直角坐标系任意两点之间的距离公式可知:2224144142424AB m n m mn n m n m mn n=-+-=+-+--, ∴42240mn mn--, 解得:1n m =-, ∴241545AB m m m m m m=+++=+, 根据反比例函数图象的对称性可知:OC=OA ,OB=OD ,∵AC ⊥BD ,∴四边形ABCD 是菱形,∴10252 AB==,∴25525mm⎛⎫+= ⎪⎪⎝⎭,解得:12m=或2,∴A点坐标为(22,2)或(2,22),②当点B在第四象限时,如图所示:∵直线y nx=(0n<)与双曲线1yx=-交于B,D两点,∴联立二者解析式可得:1y nxyx=⎧⎪⎨=-⎪⎩,由此得出点B坐标为1n-n--,∴()21OB nn=-+-,∵AC⊥BD,∴()222414AB OA OB m nm n=+=+-+-,根据平面直角坐标系任意两点之间的距离公式可知:2224144142424AB m n m mn n m n m mn n=-+-=--++-,∴42240mnmn---=,解得:1nm=-,∴241545AB m m mm m m=+++=+,根据反比例函数图象的对称性可知:OC=OA,OB=OD,∵AC ⊥BD ,∴四边形ABCD 是菱形, ∴10252AB ==, ∴25525m m ⎛⎫+= ⎪ ⎪⎝⎭, 解得:12m =或2, ∴A 点坐标为(22,2)或(2,22),综上所述,点A 坐标为:(22,2)或(2,22),故答案为:(2,22)或(22,2).【点睛】本题主要考查了反比例函数与一次函数图象及性质和菱形性质的综合运用,熟练掌握相关方法是解题关键.25.如图,在矩形ABCD 中,4AB =,3BC =,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH PQ ⊥于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为_________,线段DH 长度的最小值为_________.【答案】 (1). 32 (2).132【解析】【分析】 连接EF ,则EF ⊥AB ,过点P 作PG ⊥CD 于点G ,如图1,由于222PQ PG QG =+,而PG=3,所以当GQ 最大时PQ 最大,由题意可得当P 、A 重合时GQ 最大,据此即可求出PQ 的最大值;设EF 与PQ 交于点M ,连接BM ,取BM 的中点O ,连接HO ,如图2,易证△FQM ∽△EPM ,则根据相似三角形的性质可得EM 为定值2,于是BM 的长度可得,由∠BHM=∠BEM=90°可得B 、E 、H 、M 四点共圆,且圆心为点O ,于是当D 、H 、O 三点共线时,DH 的长度最小,最小值为DO -OH ,为此只需连接DO ,求出DO 的长即可,可过点O 作ON ⊥CD 于点N ,作OK ⊥BC 于点K ,如图3,构建Rt △DON ,利用勾股定理即可求出DO 的长,进而可得答案.【详解】解:连接EF ,则EF ⊥AB ,过点P 作PG ⊥CD 于点G ,如图1,则PE=GF ,PG=AD=3, 设FQ=t ,则GF=PE=2t ,GQ=3t ,在Rt △PGQ 中,由勾股定理得:()2222223399PQ PG QG t t =+=+=+, ∴当t 最大即EP 最大时,PQ 最大,由题意知:当点P 、A 重合时,EP 最大,此时EP=2,则t=1,∴PQ 的最大值=9932+=;设EF 与PQ 交于点M ,连接BM ,取BM 的中点O ,连接HO ,如图2,∵FQ ∥PE ,∴△FQM ∽△EPM ,∴12FM FQ EM PE ==, ∵EF=3,∴FM=1,ME=2, ∴2222BM ME BE =+=,∵∠BHM=∠BEM=90°,∴B 、E 、H 、M 四点共圆,且圆心为点O , ∴122OH OB BM ===, ∴当D 、H 、O 三点共线时,DH 的长度最小,连接DO ,过点O 作ON ⊥CD 于点N ,作OK ⊥BC 于点K ,如图3,则OK=BK=1,∴NO=2,CN=1,∴DN=3,则在Rt △DON 中,2213DO DN ON =+=,∴DH 的最小值=DO -OH=132-.故答案为:32,132-.【点睛】本题考查了矩形的性质、勾股定理、相似三角形的判定和性质、四点共圆以及线段的最值等知识,涉及的知识点多、综合性强、具有相当的难度,属于中考压轴题,正确添加辅助线、熟练掌握上述知识是解题的关键.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,1224x ≤<)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.【答案】(1)1002400y x =-+;(2)当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元.【解析】【分析】(1)由待定系数法求出y 与x 的函数关系式即可;(2)设线上和线下月利润总和为w 元,则w=400(x-2-10)+y (x-10)=400x-4800+(-100x+2400)(x-10)=-100(x-19)2+7300,由二次函数的性质即可得出答案.【详解】解:(1)因为y 与x 满足一次函数的关系,所以设y=kx+b.将点(12,1200),(13,1100)代入函数解析式得121200,131100,k b k b +=⎧⎨+=⎩ 解得100,2400,k b =-⎧⎨=⎩∴y 与x 的函数关系式为1002400y x =-+.(2)设商家线上和线下的月利润总和为w 元,则可得400(210)(10)w x y x =--+-=400(x-12)+(-100x+2400)(x-10)=-100x 2+3800x-28800=2100(19)7300x --+,因为-100<0,所以当x=19时,w 有最大值,为7300,所以当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元.【点睛】本题考查了二次函数的应用、待定系数法求一次函数的解析式等知识;弄清题意,找准各量间的关系,熟练掌握二次函数的性质是解题的关键.27.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处. (1)如图1,若2BC BA =,求CBE ∠的度数;(2)如图2,当5AB =,且10AF FD ⋅=时,求BC 的长;(3)如图3,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,求AB BC出的值.【答案】(1)15°;(2)35(3)35【解析】【分析】 (1)根据矩形的性质和直角三角形的性质,先得到30AFB ∠=︒,再由折叠的性质可得到15CBE ∠=°; (2)由三等角证得FAB EDF ∆∆∽,从而得2DE =,3EF CE ==,再由勾股定理求出DE ,则35BC AD ==(3)过点N 作NG BF ⊥于点G ,可证得NFG BFA ∆∆∽.再根据相似三角形的性质得出对应边成比例及角平分线的性质即可得解.【详解】(1)∵矩形ABCD ,∴90A ∠=︒,//AD BC由折叠性质可知BF=BC=2AB ,12CBE CBF ∠=∠, ∴30AFB ∠=︒,∴30FBC AFB ∠=∠=°,∴15CBE ∠=°(2)由题意可得90A D ∠=∠=︒,90AFB DFE ∠+∠=︒,90FED DFE ∠+∠=°∴AFB DEF ∠=∠∴FAB EDF ∆∆∽ ∴AF AB DE DF=, ∴1025AF DF DE AB === ∴3EF CE ==,由勾股定理得DF=∴AF ==, ∴BC AD AF FD ==+=(3)过点N 作NG BF ⊥于点G .∴90NGF A ∠=∠=°又∵BFA NFG ∠=∠ ∴NFG BFA ∆∆∽.∴NG FG NF AB FA BF ==. ∵NF AN FD =+,即111222NF AD BC BF === ∴12NG FG NF AB FA BF ===, 又∵BM 平分ABF ∠,90NG BF A ⊥∠=︒,,∴NG=AN , ∴12NG AN AB ==, ∴111222FG BF BG BC AB FA AN NF AB BC --===++ 整理得:35AB BC =.【点睛】本题是一道矩形的折叠和相似三角形的综合题,解题时要灵活运用折叠的性质和相似三角形的判定与性质的综合应用,是中考真题.28.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -.(1)求抛物线的函数表达式(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记BDE ∆的面积为1S ,ABE ∆的面积为2S,求12S S 的最大值;(3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB∆∆∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)213222y x x =--;(2)45;(3)存在,6834,99⎛⎫ ⎪⎝⎭或6241341++⎝⎭【解析】【分析】(1)利用待定系数法进行求解即可;(2)过点D 作DG x ⊥轴于点G ,交BC 于点F ,过点A 作AK x ⊥轴交BC 的延长线于点K ,则可得△AEK ∽△DEF ,继而可得DE DF AE AK=,先求出BC 的解析式,继而求得AK 长,由12BDE ABE S S DE S S AE ∆∆==可得12S DF S AK =,设点213,222D m m m ⎛⎫-- ⎪⎝⎭,进而可得2122DF m m =-+,从而可得2121455S m m S =-+,再利用二次函数的性质即可求得答案;(3)先确定出∠ACB=90°,再得出直线l 的表达式为12y x =.设点P 的坐标为,2t t ⎛⎫ ⎪⎝⎭,然后分点P 在直线BQ 右侧,点P 在直线BQ 左侧两种情况分别进行讨论即可.【详解】(1)∵抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -. ∴016402a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, ∴12232a c b ⎧=⎪⎪=-⎨⎪⎪=-⎩,∴抛物线的函数表达式为213222y x x =--; (2)过点D 作DG x ⊥轴于点G ,交BC 于点F ,过点A 作AK x ⊥轴交BC 的延长线于点K . 则DG//AK ,∴△AEK ∽△DEF , ∴DE DF AE AK=, 设直线BC 的解析式为y=kx+n ,将(4,0)B 、(0,2)C -代入则有:402k n n +=⎧⎨=-⎩, 解得122k n ⎧=⎪⎨⎪=-⎩,∴直线BC的表达式为122y x=-,当x=-1时,15222 =-=-y x,即K(-1,52-),∴52AK=.∵12BDEABES S DES S AE∆∆==.∴12S DFS AK=设点213,222D m m m⎛⎫--⎪⎝⎭,则F点坐标为(m,122m-),∴2212131222222DF m m m mm=--⎛⎫--=⎝⎭-+⎪.∴()2221212141422555552m mSm m mS-+==-+=--+,当2m=时,12SS有最大值45.(3)∵(1,0)A-,(4,0)B,(0,2)C-.∴22125+=224225+=AB=5,∴AC2+BC2=25=52=AB2,∴∠ACB=90°,∵过点O作直线//l BC,直线BC的表达式为122y x=-,∴直线l 的表达式为12y x =. 设点P 的坐标为,2t t ⎛⎫ ⎪⎝⎭. ①当点P 在直线BQ 右侧时,如图,∠BPQ=90°,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥PN 于点M , ∴∠M=∠PNB=90°,∴∠BPN+∠PBN=90°,∵∠QPM+∠BPN=180°-∠QPB=180°-90°=90°, ∴∠QPM=∠PBN ,∴QPM PBN ∆∆∽, ∴QM PM PQ PN BN PB==, 又∵PQB CAB ∆∆∽, ∴PQ CA PB BC=, ∴12QM PM PQ CA PN BN PB BC ====, ∵NB=t-4,PN=2t , ∴1422QM PM t t ==-,∴QM=4t ,PM=122t -, ∴MN=122t -+122t t =-,344t t t -=, ∴点Q 的坐标为3,24t t ⎛⎫- ⎪⎝⎭. 将点Q 的坐标为3,24t t ⎛⎫-⎪⎝⎭代入213222y x x =--,得 29922328t t t -=--, 解得:1689t =,t 2=0(舍去), 此时点P 的坐标为6834,99⎛⎫ ⎪⎝⎭.②当点P 在直线BQ 左侧时.如图,∠BPQ=90°,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥PN 于点M , ∴∠M=∠PNB=90°,∴∠BPN+∠PBN=90°,∵∠QPM+∠BPN=180°-∠QPB=180°-90°=90°, ∴∠QPM=∠PBN ,∴QPM PBN ∆∆∽, ∴QM PM PQ PN BN PB==, 又∵PQB CAB ∆∆∽, ∴PQ CA PB BC=, ∴12QM PM PQ CA PN BN PB BC ====, ∵NB=4-t ,PN=2t , ∴1422QM PM t t ==-,∴QM=4t ,PM=122t -, ∴MN=122t -+122t =,544t t t +=, ∴点Q 的坐标为5,24t ⎛⎫ ⎪⎝⎭. 将点Q 的坐标为5,24t ⎛⎫ ⎪⎝⎭代入213222y x x =--,得 2252285231t t =--, 解得:162415t +=,262415t -=<0(舍去),此时点P的坐标为6241341,⎛⎫++⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,涉及了待定系数法,二次函数的性质,勾股定理的逆定理,相似三角形的判定与性质等,综合性较强,难度较大,熟练掌握相关知识,正确进行分类讨论是解题的关键.考试小提示:同学们,天道酬勤,十年寒窗十年苦,大巧若拙勤为路。
四川省德阳市2021年中考数学真题(含答案解析)
【答案】6
【解析】
【分析】根据平方差公式即可求出答案.
【详解】解:当a+b=2,a-b=3时,
a2-b2=(a+b)(a-b)=2×3=6.
故选:6.
【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.
14.要想了解九年级1500名学生 心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,以下说法:①1500名学生是总体;②每名学生的心理健康评估报告是个体;③3被抽取的300名学生是总体的一个样本;④300是样本容量.其中正确的是__________________.
【答案】D
【解析】
【分析】根据合并同类项的法则,同底数幂的乘法,幂的乘方,积的乘方的法则计算即可.
【详解】解:A、a3与a4不是同类项不能合并,故错误,不符合题意;
B、a3•a4=a7,故错误,不符合题意;
C、(a3)4=a12,故错误,不符合题意;
D、(-2a3)4=16a12,故正确,符合题意;
【详解】解:圆锥侧面展开图的弧长是:2π×1=2π,
设圆心角的度数是n度,
则 =2π,
解得:n=120.
故选:C.
【点睛】本题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
11.关于x,y的方程组 的解为 ,若点P(a,b)总在直线y=x上方,那么k的取值范围是( )
四川省德阳市2021年中考数学真题
一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.
四川省绵阳市2020年中考数学试题(Word版,含答案与解析)
四川省绵阳市2020年中考数学试卷一、单选题(共12题;共24分)1.﹣3的相反数是()A. ﹣3B. ﹣1C. √3D. 33【答案】 D【考点】相反数及有理数的相反数【解析】【解答】解:-3的相反数是3故答案为:D.【分析】利用相反数的定义得出即可.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A. 2条B. 4条C. 6条D. 8条【答案】B【考点】轴对称图形,作图﹣轴对称【解析】【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故答案为:B.【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×106【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:690万=6900000=6.9×106 .故答案为:D .【分析】绝对值大于10的数用科学记数法表示一般形式为 a ×10n , n 为整数位数减1.4.下列四个图形中,不能作为正方体的展开图的是( )A. B.C. D.【答案】 D【考点】几何体的展开图【解析】【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D 符合题意,故答案为:D .【分析】根据正方体的展开图的11种不同情况进行判断即可.5.若 √a −1 有意义,则a 的取值范围是( )A. a≥1B. a≤1C. a≥0D. a≤﹣1【答案】 A【考点】二次根式有意义的条件【解析】【解答】解:若 √a −1 有意义,则 a −1⩾0 ,解得: a ⩾1 .故答案为:A .【分析】直接利用二次根式有意义的条件分析得出答案.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱【答案】 C【考点】二元一次方程组的实际应用-销售问题【解析】【解答】解:设共有x 人合伙买羊,羊价为y 钱,依题意,得: {5x +45=y 7x +3=y, 解得: {x =21y =150. 故答案为:C .【分析】设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E 恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 4【答案】B【考点】角平分线的性质,矩形的判定与性质【解析】【解答】解:过E作EM⊥BC,交FD于点N,∵DF//BC,∴EN⊥DF,∴EN//HG,∴ENHG =EDHD,∵E为HD中点,∴EDHD =12,∴ENHG =12,即HG=2EN,∴∠DNM=∠NMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM−MN=3−2=1,则HG=2EN=2.故答案为:B.【分析】过E作EM⊥BC,交FD于点H,可得EH⊥GD,得到EH与GH平行,再由E为HD中点,得到HG=2EH,同时得到四边形NMCD为矩形,再由角平分线定理得到AE=ME,进而求出EH的长,得到HG的长.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ) A. 23 B. 12 C. 13 D. 16【答案】 A【考点】列表法与树状图法,概率公式【解析】【解答】解:三个不同的篮子分别用A 、B 、C 表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为 69=23 .故答案为:A .【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.9.在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( )A. 16°B. 28°C. 44°D. 45°【答案】 C【考点】平行线的性质,等腰三角形的性质【解析】【解答】解:延长 ED ,交 AC 于F ,∵ΔABC 是等腰三角形, ∠ABC =124° ,∴∠A =∠ACB =28° ,∵AB//DE ,∴∠CFD =∠A =28° ,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°−28°=44°,故答案为:C.【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时C. 1.8小时D. 2小时【答案】C【考点】分式方程的实际应用【解析】【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为180x km/h,乙的速度为803−xkm/h,根据题意得:180(3−x)x =803−x,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故答案为:C.【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为180xkm/h,乙的速度为803−xkm/h,根据“各匀速行驶一半路程”列出方程求解即可.11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A. 4 √3米B. 5 √2米C. 2 √13米D. 7米【答案】B【考点】二次函数的实际应用-拱桥问题【解析】【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+ 32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+ 32,∴a=- 350,∴大孔所在抛物线解析式为y=- 350x2+ 32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,- 3625),∴- 3625=m(x﹣b)2,∴x1= 65√1m+b,x2=- 65√−1m+b,∴MN=4,∴| 65√−1m+b-(- 65√−1m+b)|=4∴m=- 925,∴顶点为A的小孔所在抛物线的解析式为y=- 925(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=- 92,∴- 92=- 925(x﹣b)2,∴x1= 52√2+b,x2=- 5√22+b,∴单个小孔的水面宽度=|(52√2+b)-(- 52√2+b)|=5 √2(米),故答案为:B.【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2 √7,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若B B′=2,则A A′=()A. √11B. 2 √3C. √13D. √14【答案】A【考点】等腰三角形的性质,勾股定理,矩形的判定与性质,相似三角形的判定与性质,旋转的性质【解析】【解答】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD//BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2√7,∵将ΔABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴A′AB′B =ACBC,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=√2B′C,设B′C=BC=x,则CD=√2x,CE=x−2,∵CD2=CE2+DE2,∴(√2x)2=(x−2)2+(2√7)2,∴x=4(负值舍去),∴BC=4,∴AC=√AB2+BC2=2√11,∴A′A2=2√114,∴A′A=√11,故答案为:A.【分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的性质得BE=AD=2,DE=AB=2√7,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=√2B′C,设B′C=BC= x,则CD=√2x,CE=x−2,根据勾股定理即可得到结论.二、填空题(共7题;共16分)13.因式分解:x3y﹣4xy3=________.【答案】xy(x+2y)(x﹣2y)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【分析】原式提取公因式xy,再利用平方差公式分解即可;14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为________.【答案】(﹣3,3)【考点】点的坐标,平移的性质,坐标与图形变化﹣平移【解析】【解答】解:∵将点A(﹣1,2)先向左平移2个单位横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.15.若多项式xy|m−n|+(n−2)x2y2+1是关于x,y的三次多项式,则mn=________.【答案】0或8【考点】多项式的项和次数【解析】【解答】解:∵多项式xy|m−n|+(n−2)x2y2+1是关于x,y的三次多项式,∴n−2=0,1+|m−n|=3,∴n=2,|m−n|=2,∴m−n=2或n−m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.【分析】直接利用多项式的次数确定方法得出答案.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额﹣种植成本)【答案】125【考点】一元一次不等式组的应用【解析】【解答】解:设甲种火龙果种植x亩,乙钟火龙果种植(100−x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:{0.9x+1.1(100−x)⩾980.9x+1.1(100−x)⩽100,解得:50⩽x⩽60,此项目获得利润w=1.1x+1.4(100−x)=140−0.3x,∵−0.3<0∴w随x的增大而减小,∴当x=50时,w的最大值为140−15=125万元,故答案为:125.【分析】设甲种火龙果种植x 亩,乙钟火龙果种植(100-x) 亩,此项目获得利润w ,根据题意列出不等式求出x 的范围,然后根据题意列出w 与x 的函数关系即可求出答案.17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.【答案】3√3−2【考点】三角形三边关系,含30°角的直角三角形,直角三角形斜边上的中线,四边形-动点问题【解析】【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC 于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2 √3,GF=√3,OF=3 √3,∴ME≥OF﹣OM=3 √3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3 √3﹣2.【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.18.若不等式x+52>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是________.【答案】236≤m≤6【考点】不等式及其性质,解一元一次不等式【解析】【解答】解:解不等式x+52>﹣x﹣72得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>2m+1m−6,∵x>﹣4都能使x>2m+1m−6成立,∴﹣4≥ 2m+1m−6,∴﹣4m+24≤2m+1,∴m≥ 236,综上所述,m的取值范围是236≤m≤6.故答案为:236≤m≤6.【分析】解不等式x+52>﹣x ﹣ 72 得x >﹣4,据此知x >﹣4都能使不等式(m ﹣6)x <2m+1成立,再分m ﹣6=0和m ﹣6≠0两种情况分别求解.19.如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数y = kx (k <0)的图象在第二象限交于A (﹣3,m ),B (n ,2)两点.(1)当m =1时,求一次函数的解析式;(2)若点E 在x 轴上,满足∠AEB =90°,且AE =2﹣m ,求反比例函数的解析式. 【答案】 (1)解:当 m =1 时,点 A(−3,1) , ∵ 点A 在反比例函数 y =kx 的图象上, ∴k =−3×1=−3 ,∴ 反比例函数的解析式为 y =−3x ;∵ 点 B(n,2) 在反比例函数 y =−3x 图象上, ∴2n =−3 , ∴n =−32 ,设直线 AB 的解析式为 y =ax +b ,则 {−3a +b =1−32a +b =2 ,∴ {a =23b =3, ∴ 直线 AB 的解析式为 y =23x +3 ;(2)解:如图,过点 A 作 AM ⊥x 轴于 M ,过点 B 作 BN ⊥x 轴于 N ,过点 A 作 AF ⊥BN 于 F ,交 BE 于 G ,则四边形 AMNF 是矩形, ∴FN =AM , AF =MN , ∵A(−3,m) , B(n,2) , ∴BF =2−m , ∵AE =2−m , ∴BF =AE ,在 ΔAEG 和 ΔBFG 中, {∠AGE =∠BGF(对顶角相等)∠AEG =∠BFG =90°AE =BF,∴ΔAEG ≅Rt ΔBFG (AAS ) , ∴AG =BG , EG =FG ,∴BE =BG +EG =AG +FG =AF ,∵ 点 A(−3,m) , B(n,2) 在反比例函数 y =kx 的图象上, ∴k =−3m =2n , ∴m =−23n ,∴BF =BN −FN =BN −AM =2−m =2+23n , MN =n −(−3)=n +3 , ∴BE =AF =n +3 ,∵∠AEM +∠MAE =90° , ∠AEM +∠BEN =90° , ∴∠MAE =∠NEB , ∵∠AME =∠ENB =90° , ∴ΔAME ∽ΔENB , ∴ME BN=AE BE=2−m n+3=2+23n n+3=23, ∴ME =23BN =43,在 Rt ΔAME 中, AM =m , AE =2−m ,根据勾股定理得, AM 2+ME 2=AE 2 , ∴m 2+(43)2=(2−m)2 , ∴m =59 ,∴k=−3m=−53,∴反比例函数的解析式为y=−53x.【考点】待定系数法求一次函数解析式,三角形全等及其性质,三角形全等的判定,勾股定理,相似三角形的判定与性质【解析】【分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出ΔAEG≅RtΔBFG(AAS),得出AG=BG,EG=FG,即BE=BG+EG=AG+FG=AF,再求出m=−23n,进而得出BF=2+23n,MN=n+3,即BE=AF=n+3,再判断出ΔAME∽ΔENB,得出MEBN=AEBE=23,得出ME=23BN=43,最后用勾股定理求出m,即可得出结论.三、解答题(共6题;共75分)20.(1)计算:| √5﹣3|+2 √5cos60°﹣√2× √8﹣(﹣√22)0.(2)先化简,再求值:(x+2+ 3x−2)÷ 1+2x+x2x−2,其中x=√2﹣1.【答案】(1)解:原式=3−√5+2√5×12−√22×2√2−1=3−√5+√5−2−1=0;(2)解:原式=(x2−4x−2+3x−2)÷(x+1)2x−2=(x+1)(x−1)x−2⋅x−2 (x+1)2=x−1x+1,当x=√2﹣1时,原式=√2−1−1√2−1+1=√2−22=1﹣√2.【考点】实数的运算,分式的混合运算,利用分式运算化简求值,0指数幂的运算性质,二次根式的乘除法,特殊角的三角函数值【解析】【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【答案】(1)解:甲书店:y=0.8x,乙书店:当x⩽100时,y=x,当x>100时,y=100+0.6(x-100)=0.6x+40,乙书店:y={x(x⩽100)0.6x+40(x>100).(2)解:令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.【考点】分段函数,一次函数的实际应用【解析】【分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.22.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【答案】(1)解:把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是75+752=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:110(74+75+75+75+73+77+78+72+76+75)=75(克);(2)解:根据题意得:100×310=30(个),答:质量为75克的鸡腿有30个;(3)解:选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定【考点】分析数据的集中趋势【解析】【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.23.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【答案】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB//CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在 Rt ΔADC 中,由勾股定理得: AC =√AD 2+CD 2=√82+62=10 , ∴cos ∠ACD =CD AC=610=35, ∵CD 是 ⊙O 的切线, AB//CD , ∴∠ABC =∠ACD =∠CAB ,∴BC =AC =10 , AB =2BC ·cos ∠ABC =2×10×35=12 , 过点B 作 BG ⊥AC 于C ,如图2所示:设 GC =x ,则 AG =10−x ,由勾股定理得: AB 2−AG 2=BG 2=BC 2−GC 2 , 即: 122−(10−x)2=102−x 2 , 解得: x =145,∴GC =145,∴BG =√BC 2−GC 2=√102−(145)2=485,∴tan ∠ACB =BGGC =485145=247【考点】勾股定理,圆周角定理,切线的性质,切线的判定,锐角三角函数的定义【解析】【分析】(1)由圆周角定理与已知得 ∠BAC =∠DCA ,即可得出结论;(2)连接 EO 并延长交 ⊙O 于G ,连接 CG ,则 EG 为 ⊙O 的直径, ∠ECG =90° ,证明 ∠DCE =∠EGC =∠OCG ,得出 ∠DCE +∠OCE =90° ,即可得出结论;(3)由三角函数定义求出 cos ∠ACD =35 ,证出 ∠ABC =∠ACD =∠CAB ,求出 BC =AC =10 , AB =12 ,过点 B 作 BG ⊥AC 于 C ,设 GC =x ,则 AG =10−x ,由勾股定理得出方程,解方程得 GC =145,由勾股定理求出 BG =485,由三角函数定义即可得答案.24.如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ( √3 ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为 4√33,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△PAB 面积最大时,求点P 的坐标及△PAB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【答案】 (1)解:设抛物线的解析式为y =ax 2+bx+c (a≠0), ∵A (0,1),B ( √3 ,0), 设直线AB 的解析式为y =kx+m , ∴ {√3k +m =0m =1,解得 {k =−√33m =1, ∴直线AB 的解析式为y =﹣ √33x+1,∵点F 的横坐标为 4√33,∴F 点纵坐标为﹣ √33×4√33+1=﹣ 13 ,∴F 点的坐标为( 43√3 ,﹣ 13 ), 又∵点A 在抛物线上, ∴c =1,对称轴为:x =﹣ b2a =√3 , ∴b =﹣2 √3 a ,∴解析式化为:y =ax 2﹣2 √3 ax+1, ∵四边形DBFE 为平行四边形. ∴BD =EF , ∴﹣3a+1=163a ﹣8a+1﹣(﹣ 13 ), 解得a =﹣1,∴抛物线的解析式为y =﹣x 2+2 √3 x+1;(2)解:设P (n ,﹣n 2+2 √3 n+1),作PP'⊥x 轴交AC 于点P',则P'(n ,﹣ √33n+1),∴PP'=﹣n 2+ 73√3 n ,S △ABP = 12 OB•PP'=﹣ √32n 2+72n =﹣ √32(n −76√3)2+4924√3 ,∴当n = 76√3 时,△ABP 的面积最大为 4924√3 ,此时P ( 76√3 , 4712 ).(3)解:∵ {y =√33x +1y =−x 2+2√3x +1 , ∴x =0或x = 73√3 , ∴C ( 73√3 ,﹣ 43 ), 设Q ( √3 ,m ), ①当AQ 为对角线时, ∴R (﹣ 43√3,m +73 ),∵R 在抛物线y = −(x −√3)2 +4上, ∴m+ 73 =﹣ (−43√3−√3)2 +4, 解得m =﹣443,∴Q (√3,−443) ,R (−43√3,−373) ; ②当AR 为对角线时, ∴R (103√3, m −73 ),∵R 在抛物线y = −(x −√3)2 +4上, ∴m ﹣ 73=−(103√3−√3)2 +4, 解得m =﹣10,∴Q ( √3 ,﹣10),R (103√3,−373 ).综上所述,Q (√3,−443) ,R (−43√3,−373) ;或Q ( √3 ,﹣10),R ( 103√3,−373 ).【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,三角形的面积,二次函数与一次函数的综合应用,二次函数的其他应用【解析】【分析】(1)由待定系数法求出直线AB 的解析式为y =﹣ √33x+1,求出F 点的坐标,由平行四边形的性质得出﹣3a+1=163a ﹣8a+1﹣(﹣ 13 ),求出a 的值,则可得出答案;(2)设P (n ,﹣n 2+2 √3 n+1),作PP'⊥x 轴交AC 于点P',则P'(n ,﹣ √33n+1),得出PP'=﹣n 2+ 73√3 n ,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C ( 73√3 ,﹣ 43 ),设Q ( √3 ,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.25.如图,在矩形ABCD 中,对角线相交于点O ,⊙M 为△BCD 的内切圆,切点分别为N ,P ,Q ,DN =4,BN =6.(1)求BC ,CD ;(2)点H 从点A 出发,沿线段AD 向点D 以每秒3个单位长度的速度运动,当点H 运动到点D 时停止,过点H 作HI ∥BD 交AC 于点I ,设运动时间为t 秒.①将△AHI 沿AC 翻折得△A H ′ I ,是否存在时刻t ,使点 H ′ 恰好落在边BC 上?若存在,求t 的值;若不存在,请说明理由;②若点F 为线段CD 上的动点,当△OFH 为正三角形时,求t 的值.【答案】 (1)解:∵⊙M 为△BCD 的内切圆,切点分别为N ,P ,Q ,DN =4,BN =6, ∴BP =BN =6,DQ =DN =4,CP =CQ ,BD =BN+DN =10, 设CP =CQ =a ,则BC =6+a ,CD =4+a , ∵四边形ABCD 是矩形, ∴∠BCD =90°,∴BC 2+CD 2=BD 2 , 即(6+a )2+(4+a )2=102 , 解得:a =2,∴BC =6+2=8,CD =4+2=6;(2)解:①存在时刻t = 2512 s ,使点H′恰好落在边BC 上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴AC=BD=√BC2+CD2=√82+62=10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴AH′AC =AIAH′,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴AIAO =AHAD,即AI5=3t8,解得:AI=158t,∴(3t)2=158t×10,解得:t=2512,即存在时刻t=2512s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=12CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=√3OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴OMHN =OHHP=√3,∴HN=√3OM=3 √3,∴DH=HN﹣DN=3 √3﹣4,∴AH=AD﹣DH=12﹣3 √3,∴t=AH3=4﹣√3,即当△OFH为正三角形时,t的值为(4﹣√3)s.【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,四边形-动点问题【解析】【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP =CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;(2)①由折叠的性质得∠AH'I=∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=158t,得出(3t)2=158t×10,解方程即可;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=√3OH,DN=DM=4,证明△OMH∽△HNP,求出HN=√3OM=3 √3,则DH=HN﹣DN=3 √3﹣4,得出AH=AD﹣DH=12﹣3 √3,即可得出答案.。
四川省自贡市2021年中考[数学]考试真题与答案解析
四川省自贡市2021年中考[数学]考试真题与答案解析一、选择题共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的。
1. 自贡恐龙博物馆是世界三大恐龙遗址博物馆之一.今年“五一黄金周”共接待游客8.87万人次,人数88700用科学记数法表示为( )A. B. C. D. 50.88710⨯38.8710⨯48.8710⨯388.710⨯答案:C2. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A. 百B. 党C. 年D. 喜答案:B3. 下列运算正确的是( )A. B. 22541a a -=()22346a b a b-=C. D. 933a a a ÷=222(2)4a b a b-=-答案:B4. 下列图形中,是轴对称图形且对称轴条数最多的是( )A.B.C.D.5. 如图,AC 是正五边形ABCDE 的对角线,的度数是()ACD ∠A. 72°B. 36°C. 74°D. 88°答案:A6. 学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是( )A. 16,15 B. 11,15C. 8,8.5D. 8,9答案:C7. 已知,则代数式的值是( )23120x x --=2395x x -++A. 31 B. C. 41D. 31-41-答案:B8. 如图,,,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于()8,0A ()2,0C -点B ,则点B 的坐标为()A. B. C. D. ()0,5()5,0()6,0()0,69. 已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是()ΩA. 函数解析式为B. 蓄电池的电压是18V 13I R=C. 当时, D. 当时,10A I ≤ 3.6R ≥Ω6R =Ω4AI =答案:C10. 如图,AB 为⊙O 的直径,弦于点F ,于点E ,若,,CD AB ⊥OE AC ⊥3OE =5OB =则CD 的长度是()A. 9.6B.C.D. 19答案:A11. 如图,在正方形ABCD 中,,M 是AD 边上的一点,.将6AB =:1:2AM MD =沿BM 对折至,连接DN ,则DN 的长是( )BMA △BMN △A. B.C. 3D.5212. 如图,直线与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动22y x =-+点,过点P 作y 轴的平行线交直线于点Q ,绕点O 顺时针旋转3y x =-+OPQ △45°,边PQ 扫过区域(阴影部份)面积的最大值是()A. B. C. D. 23π12π1116π2132π答案:A二、填空题13. 请写出一个满足不等式的整数解_________.7x >答案:6(答案不唯一)14. 某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是_________.答案:83分.15. 化简: _________.22824a a -=--答案:22a +16. 某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.答案:14354917. 如图,的顶点均在正方形网格格点上.只用不带刻度的直尺,作出ABC 的角平分线BD (不写作法,保留作图痕迹).ABC答案:.18. 当自变量时,函数(k 为常数)的最小值为,则满足条13x -≤≤y x k =-3k +件的k 的值为_________.答案:2-三、解答题19. .|7|(2-+-答案:1-20. 如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF .答案:证明见试题解析.21. 在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据,)tan 370.75︒≈tan 53 1.33︒≈ 1.73≈答案:办公楼的高度约为10.4米.22. 随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?答案:A 型机平均每小时运送70件,B 型机平均每小时运送50件23. 为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A (优秀)、B (良好)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)本次抽样调查的样本容量是_________,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.答案:(1)100,补全条形统计图见解析;(2)P(恰好回访到一男一女);35=(3)700人24. 函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数的图象,并探究其性质.284xy x =-+列表如下:x (4)-3-2-1-01234…y…852413a85b2-2413-85-…(1)直接写出表中a 、b 的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数的图象,判断下列关于该函数性质的命题:284xy x =-+①当时,函数图象关于直线对称;22x -≤≤y x =②时,函数有最小值,最小值为;2x =2-③时,函数y 的值随x 的增大而减小.11x -<<其中正确的是_________.(请写出所有正确命题的序号)(3)结合图象,请直接写出不等式的解集_________.284xx x >+答案:(1),,画出函数的图象见解析;(2)②;(3)2a =85b =-0x <25. 如图,点D 在以AB 为直径的⊙O 上,过D 作⊙O 的切线交AB 延长线于点C ,于点E ,交⊙O 于点F ,连接AD ,FD .AE CD ⊥(1)求证:;DAE DAC ∠=∠(2)求证:;DF AC AD DC ⋅=⋅(3)若,EF 的长.1sin 4C ∠=AD =答案:(1)见解析;(2)见解析;(3)EF .6=26. 如图,抛物线(其中)与x 轴交于A 、B 两点,交y 轴于点(1)()y x x a =+-1a >C .(1)直接写出的度数和线段AB 的长(用a 表示);OCA ∠(2)若点D 为的外心,且与,求此抛物ABC BCD △ACO △:4线的解析式;(3)在(2)的前提下,试探究抛物线上是否存在一点P ,使得(1)()y x x a =+-若存在,求出点P 的坐标;若不存在,请说明理由.CAP DBA ∠=∠答案:(1)∠OCA =45°,AB = a +1;(2);(3)存在,P 1(,2y x x 2=--12-),P 2(1,-2).54-。
2020年四川省成都市中考数学试卷-含详细解析
2020年四川省成都市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是()A. −2B. 1C. 2D. 122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A. 3.6×103B. 3.6×104C. 3.6×105D. 36×1044.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A. (3,0)B. (1,2)C. (5,2)D. (3,4)5.下列计算正确的是()A. 3a+2b=5abB. a3⋅a2=a6C. (−a3b)2=a6b2D. a2b3÷a=b36.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人7.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A. 2B. 3C. 4D. 68.已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A. 3B. 4C. 5D. 69.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310. 关于二次函数y =x 2+2x −8,下列说法正确的是( )A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(−2,0)和(4,0)D. y 的最小值为−9二、填空题(本大题共9小题,共36.0分) 11. 分解因式:x 2+3x =______.12. 一次函数y =(2m −1)x +2的值随x 值的增大而增大,则常数m 的取值范围为______.13. 如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为______. 14. 《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.15. 已知a =7−3b ,则代数式a 2+6ab +9b 2的值为______.16. 关于x 的一元二次方程2x 2−4x +m −32=0有实数根,则实数m 的取值范围是______.17. 如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA⏜1,A 1B 1⏜,B 1C 1⏜,C 1D 1⏜,D 1E 1⏜,E 1F 1⏜,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是______.18. 在平面直角坐标系xOy 中,已知直线y =mx(m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx(n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为______.19.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为______,线段DH长度的最小值为______.三、计算题(本大题共1小题,共8.0分)20.成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题(本大题共8小题,共76.0分)21.(1)计算:2sin60°+(12)−2+|2−√3|−√9;(2)解不等式组:{4(x−1)≥x+2, ①2x+13>x−1. ②.22. 先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.23. 2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为______;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.24. 在平面直角坐标系xOy 中,反比例函数y =m x(x >0)的图象经过点A(3,4),过点A的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.25.如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB 于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=4,求⊙O的半径;3(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求AB的值.BC28.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(−1,0),B(4,0)两点,与y轴交于点C(0,−2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1的最大值;S2(3)如图2,连接AC,BC,过点O作直线l//BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2的绝对值为2.故选:C.利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】D【解析】解:从左面看是一列2个正方形.故选:D.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】B【解析】解:36000=3.6×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2−2),即(3,0),故选:A.纵坐标,上移加,下移减,横坐标不变可得点的坐标为(3,0).此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3⋅a2=a5,原计算错误,故此选项不符合题意;C、(−a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.根据合并同类项、同底数幂的乘法和除法、积的乘方进行计算即可.本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法,积的乘方,需熟练掌握且区分清楚,才不容易出错.6.【答案】A【解析】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.故选:A.根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),即可得出答案.此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.【答案】C【解析】解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.根据线段垂直平分线的性质即可得到结论.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.【答案】B【解析】解:把x=2代入分式方程得:k2−1=1,解得:k=4.故选:B.把x=2代入分式方程计算即可求出k的值.此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【答案】D【解析】解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=103,故选:D.根据平行线分线段成比例定理得出比例式,代入求出即可.本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.10.【答案】D【解析】解:∵二次函数y=x2+2x−8=(x+1)2−9=(x+4)(x−2),∴该函数的对称轴是直线x=−1,在y轴的左侧,故选项A错误;当x=0时,y=−8,即该函数与y轴交于点(0,−8),故选项B错误;当y=0时,x=2或x=−4,即图象与x轴的交点坐标为(2,0)和(−4,0),故选项C错误;当x=−1时,该函数取得最小值y=−9,故选项D正确;故选:D.根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.11.【答案】x(x+3)【解析】解:x 2+3x =x(x +3).观察原式,发现公因式为x ;提出后,即可得出答案. 主要考查提公因式法分解因式,此题属于基础题.12.【答案】m >12【解析】解:∵一次函数y =(2m −1)x +2中,函数值y 随自变量x 的增大而增大, ∴2m −1>0,解得m >12. 故答案为:m >12.先根据一次函数的性质得出关于m 的不等式2m −1>0,再解不等式即可求出m 的取值范围.本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键. 13.【答案】30°【解析】解:∵OB =OC ,∠B =55°, ∴∠BOC =180°−2∠B =70°, ∵∠AOB =50°,∴∠AOC =∠AOB +∠BOC =70°+50°=120°, ∵OA =OC , ∴∠A =∠OCA =180°−120°2=30°,故答案为:30°.首先根据∠B 的度数求得∠BOC 的度数,然后求得∠AOC 的度数,从而求得等腰三角形的底角即可.考查了圆周角定理及等腰三角形的性质,解题的关键是求得∠AOC 的度数,难度不大.14.【答案】{5x +2y =102x +5y =8【解析】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.根据“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两”,得到2个等量关系,即可列出方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.【答案】49【解析】解:∵a =7−3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b)2 =72 =49,故答案为:49.先根据完全平方公式变形,再代入,即可求出答案. 本题考查了完全平方公式,能熟记完全平方公式是解此题的关键,注意:(a +b)2=a 2+2ab +b 2.16.【答案】m ≤72【解析】解:∵关于x 的一元二次方程2x 2−4x +m −32=0有实数根, ∴△=(−4)2−4×2×(m −32)=16−8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.根据根的判别式得出不等式,求出不等式的解集即可. 本题考查了根的判别式和解一元一次不等式,能熟记根的判别式得出关于m 的不等式是解此题的关键,注意:一元二次方程ax 2−bx +c =0(a 、b 、c 为常数,a ≠0),当△=b 2−4ac >0时,方程有两个不相等的实数根,当△=b 2−4ac =0时,方程有两个相等的实数根,当△=b 2−4ac <0时,方程没有实数根. 17.【答案】7π【解析】解:FA ⏜1的长=60⋅π⋅1180=π3,A 1B 1⏜的长=60⋅π⋅2180=2π3,B 1C 1⏜的长=60⋅π⋅3180=3π3, C 1D 1⏜的长=60⋅π⋅4180=4π3,D 1E 1⏜的长=60⋅π⋅5180=5π3, E 1F 1⏜的长=60⋅π⋅6180=6π3,∴曲线FA 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π,故答案为7π.利用弧长公式计算即可解决问题.本题考查正多边形与圆,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.【答案】(√2,2√2)或(2√2,√2)【解析】解:联立y =mx(m >0)与y =4x 并解得:{x =√m y =±2√m,故点A 的坐标为(√m 2√m), 联立y =nx(n <0)与y =−1x 同理可得:点D(√−1n,−√−n),则AD2=(√m −√m)2+(2√m+√m)2=5m+5m,同理可得:AB2=5m+5m=AD2,则AB=14×10√2,即AB2=252=5m+5m,解得:m=2或12,故点A的坐标为(√2,2√2)或(2√2,√2),故答案为:(√2,2√2)或(2√2,√2).求出点A、D、B的坐标,则AD2=AB2=252=5m+5m,进而求解.本题考查的是反比例函数与一次函数的交点问题,解题的关键是求出A、B、D的坐标,确定AB=AD,进而求解.19.【答案】3√2√13−√2【解析】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ//PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF//ON//BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD−OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,故答案为3√2,√13−√2.连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于本题考查矩形的性质,解直角三角形,梯形的中位线的性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.20.【答案】解:过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形, ∴DE =BC ,BE =DC =61, 在Rt △ADE 中, ∵∠ADE =45°, ∴AE =DE ,∴AE =DE =BC ,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22∘≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.【解析】过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形,DE =BC ,BE =DC =61,再根据锐角三角函数可得DE 的长,进而可得AB 的值.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义.21.【答案】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;(2){4(x −1)≥x +2, ①2x+13>x −1. ②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.【解析】(1)根据特殊角的三角形函数,负整数指数幂,绝对值的意义和二次根式的性质进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大22.【答案】解:原式=x+3−1x+3⋅(x−3)(x+3)x+2=x−3,当x=3+√2时,原式=√2.【解析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.23.【答案】180 126°【解析】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1−20%−15%−30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;2种,∴P(选中甲、乙)=212=16.(1)根据跳水的人数和跳水所占的百分比即可求出这次被调查的学生数;(2)用360°乘以篮球的学生所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)∵反比例函数y=mx(x>0)的图象经过点A(3,4),∴k=3×4=12,∴反比例函数的表达式为y=12x;(2)∵直线y=kx+b过点A,∴3k+b=4,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(−bk,0),C(0,b),∴12×4×|−bk|=2×12×|−bk|×|b|,∴b=±2,当b=2时,k=23,当b=−2时,k=2,∴直线的函数表达式为:y=23x+2,y=2x−2.【解析】(1)把A(3,4)代入y=mx(x>0)即可得到结论;(2)根据题意得到B(−bk,0),C(0,b),根据三角形的面积公式列方程即可得到结论.本题考查了待定系数法求反比例函数和一次函数的解析式,三角形的面积公式,正确的理解题意是解题的关键.25.【答案】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tanB=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6−OC)2=OC2+4,∴OC=83,故⊙O的半径为8;由(1)可知:△ACO≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE≌△DOE(SAS), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°−∠OEC −∠OED =180°−2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .【解析】(1)连接OD ,由切线的性质可得∠ADO =90°,由“SSS ”可证△ACO≌△ADO ,可得∠ADO =∠ACO =90°,可得结论;(2)由锐角三角函数可设AC =4x ,BC =3x ,由勾股定理可求BC =6,再由勾股定理可求解;(3)连接OD ,DE ,由“SAS ”可知△COE≌△DOE ,可得∠OCE =∠OED ,由三角形内角和定理可得∠DEF =180°−∠OEC −∠OED =180°−2∠OCE ,∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE ,可得∠DEF =∠DFE ,可证DE =DF =CE ,可得结论. 本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键. 26.【答案】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =−100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x −2−10)+y(x −10)=400x −4800+(−100x +2400)(x −10)=−100(x −19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.【解析】(1)由待定系数法求出y 与x 的函数关系式即可;出答案.本题考查了二次函数的性质、待定系数法求一次函数的解析式等知识;熟练掌握二次函数的性质是解题的关键.27.【答案】解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF,∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=12BC,∵BC=BF,∴NF=12BF,∴NGAB =FGFA=NFBF=12,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43x.∴BF=BG+GF=2x+43x=103x.∴ABBC =ABBF=2x103x=35.【解析】(1)由折叠的性质得出BC=BF,∠FBE=∠EBC,根据直角三角形的性质得出∠AFB=30°,可求出答案;(2)证明△FAB∽△EDF,由相似三角形的性质得出AFDE =ABDF,可求出DE=2,求出EF=3,由勾股定理求出DF=√5,则可求出AF,即可求出BC的长;(3)过点N作NG⊥BF于点G,证明△NFG∽△BFA,NGAB =FGFA=NFBF=12,设AN=x,设FG=y,则AF=2y,由勾股定理得出(2x)2+(2y)2=(2x+y)2,解出y=43x,则可求出答案.本题是四边形综合题,考查了矩形的性质,直角三角形的性质,折叠的性质,角平分线的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握折叠的性质及矩形的性质是解题的关键.28.【答案】解:(1)设抛物线的解析式为y=a(x+1)(x−4).∵将C(0,−2)代入得:4a=2,解得a=12,∴抛物线的解析式为y=12(x+1)(x−4),即y=12x2−32x−2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK//DG,∴DFAK =DEAE,∴S1S2=S△BDES△ABE=DEAE=DFAK,设直线BC的解析式为y=kx+b,∴{4k+b=0b=−2,解得{k=12b=−2,∴直线BC的解析式为y=12x−2,∵A(−1,0),∴y=−12−2=−52,∴AK=52,设D(m,12m2−32m−2),则F(m,12m−2),∴DF=12m−2−12m2+32m+2=−12m2+2m.∴S1S2=−12m2+2m52=−15m2+45m=−15(m−2)2+45.∴当m=2时,S1S2有最大值,最大值是45.(3)符合条件的点P的坐标为(689,349)或(6+2√415,3+√415).∵l//BC,∴直线l的解析式为y=12x,设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(−1,0),C(0,−2),B(4,0),∴AC=√5,AB=5,BC=2√5,∵AC2+BC2=AB2,∴∠ACB=90°,∴PQPB =ACBC=12,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,∴∠MQP=∠PBN,∴△QPM∽△PBN,∴QMPN =PMBN=PQPB=12,∴QM=a4,PM=12(a−4)=12a−2,∴MN=a−2,BN−QM=a−4−a4=34a−4,∴Q(34a,a−2),将点Q的坐标代入抛物线的解析式得12×(34a)2−32×34a−2=a−2,解得a=0(舍去)或a=689.∴P(689,349).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2).此时点P的坐标为(6+2√415,3+√415).【解析】(1)设抛物线的解析式为为y=a(x−1)(x−4),将点C的坐标代可求得a的值,从而得到抛物线的解析式;(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,证明△AKE∽△DFE,得出DFAK =DEAE,则S1S2=S△BDES△ABE=DEAE=DFAK,求出直线BC的解析式为y=12x−2,设D(m,12m2−32m−2),则F(m,12m−2),可得出S1S2的关系式,由二次函数的性质可得出结论;(3)设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,得出Q(34a,a−2),将点Q的坐标代入抛物线的解析式求得a的值即可,②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2),代入抛物线的解析可得出答案.本题是二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式,相似三角形的性质和判定,勾股定理的应用,二次函数的性质,三角形的面积等知识,熟练掌握相似三角形的判定与性质是解题的关键.。
四川省乐山市2021年中考数学试卷(含解析)
2021年四川省乐山市中考数学试卷一、选择题1.的倒数是()A.﹣B.C.﹣2D.22.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1103.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB =()A.10°B.20°C.30°D.40°4.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣105.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.86.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣47.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.9.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A 按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A.B.C.D.π10.如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣B.﹣C.﹣2D.﹣二、填空题:本大题共6个小题,每小题3分,共18分.11.用“>”或“<”符号填空:﹣7﹣9.12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.13.如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)14.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.15.把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则=.16.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是.三、本大题共3个小题,每小题9分,共27分.17.计算:|﹣2|﹣2cos60°+(π﹣2021)0.18.解二元一次方程组:19.如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.四、本大题共3个小题,每小题10分,共30分.20.已知y=,且x≠y,求()÷的值.21.如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.22.自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.五、本大题共2个小题,每小题10分,共20分.23.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?24.如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC 于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.26.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求PC+PB的最小值.参考答案一、选择题:本大题共10个小题,每小题3分,共30分.1.的倒数是()A.﹣B.C.﹣2D.2【分析】根据“倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数”解答即可.解:根据倒数的定义,可知的倒数是2.故选:D.2.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.110【分析】样本中,“优”和“良”占调查人数的,因此估计总体2000人的是“优”和“良”的人数.解:2000×=1100(人),故选:A.3.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB =()A.10°B.20°C.30°D.40°【分析】根据平角的定义得到∠CEF=180°﹣∠FEA=180°﹣40°=140°,由角平分线的定义可得,由GE⊥EF可得∠GEF=90°,可得∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,由∠GEB=∠CEB﹣∠CEG可得结果.解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.4.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B表示的数是多少即可.解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.5.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.8【分析】先利用菱形的性质得AD=AB=4,AB∥CD,∠ADB=∠CDB=30°,AO⊥BD,利用含30度的直角三角形三边的关系得到AO=2,OD=2,然后计算出OE、DE的长,最后计算四边形AOED的周长.解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=AD=2,OD=OA=2,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=OD=,DE=OE=3,∴四边形AOED的周长=4+2++3=9+.故选:B.6.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4【分析】根据待定系数法求得直线的解析式,然后求得函数y=2时的自变量的值,根据图象即可求得.解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.【分析】先根据拼剪前后的面积不变,求出拼成正方形的边长,再依此裁剪可得.解:由题意,选项A阴影部分分面积为6,B,C,D的阴影部分的面积为5,如果能拼成正方形,选项A的正方形的边长为,选项B,C,D的正方形的边长为,观察图象可知,选项B,C,D阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,故选:D.8.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.【分析】根据幂的乘方以及同底数幂的除法法则计算即可求出n的值,再根据算术平方根的定义即可求出x的值.解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.故选:C.9.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A 按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A.B.C.D.π【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴﹣﹣(﹣)=,故选:B.10.如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣B.﹣C.﹣2D.﹣【分析】确定OQ是△ABP的中位线,OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,则(m﹣2)2+(﹣m﹣2)2=32,即可求解.解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=,∴k=m(﹣m)=﹣,故选:A.二、填空题:本大题共6个小题,每小题3分,共18分.11.用“>”或“<”符号填空:﹣7>﹣9.【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可解答.解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是39.【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.13.如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)【分析】根据等腰三角形的性质个三角形的外角的性质得到BC=AC=4,根据三角函数的定义即可得到结论.解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD﹣∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=,∴sin60°==,∴BD=2(m),答:自动扶梯的垂直高度BD=2m,故答案为:2.14.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是4或﹣1.【分析】将已知等式的左边利用十字相乘法分解因式,可得x与y的关系,从而可得结论.解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴或,即则的值是4或﹣1;故答案为:4或﹣1.15.把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则=.【分析】连接CE,解直角三角形,用AD表示AB,根据直角三角形的性质,用AD表示CE,再证明CE∥AB得△ABF∽△CEF,由相似三角形的性质得,进而得便可.解:连接CE,∵∠CAD=30°,∠ACD=90°,E是AD的中点,∴AC=AD,CE=AD=AE,∴∠ACE=∠CAE=30°∵∠BAC=30°,∠ABC=90°,∴AB=AC=AD,∠BAC=∠ACE,∴AB∥CE,∴△ABF∽△CEF,∴,∴,故答案为.16.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是0≤x≤2;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是.【分析】(1)根据[x]表示不大于x的最大整数,解决问题即可.(2)由题意,构建不等式即可解决问题.解:(1)由题意∵﹣1<[x]≤2,∴0≤x≤2,故答案为0≤x≤2.(2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,或x=2时,4﹣2a+3≤1+3,解得a≥,故答案为a<﹣1或a≥.三、本大题共3个小题,每小题9分,共27分.17.计算:|﹣2|﹣2cos60°+(π﹣2021)0.【分析】直接利用绝对值的性质和零指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式==2.18.解二元一次方程组:【分析】方程组利用加减消元法与代入消元法求出解即可.解:,法1:②﹣①×3,得2x=3,解得:x=,把x=代入①,得y=﹣1,∴原方程组的解为;法2:由②得:2x+3(2x+y)=9,把①代入上式,解得:x=,把x=代入①,得y=﹣1,∴原方程组的解为.19.如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.【分析】由矩形的性质可得出DC的长及∠ADC=∠C=90°,利用勾股定理可求出DE 的长,由垂直的定义可得出∠AFD=∠C,利用同角的余角相等可得出∠EDC=∠DAF,进而可得出△EDC∽△DAF,再利用相似三角形的性质可求出DF的长度.解:∵四边形ABCD是矩形,∴DC=AB=3,∠ADC=∠C=90°.∵CE=1,∴DE==.∵AF⊥DE,∴∠AFD=90°=∠C,∠∠ADF+∠DAF=90°.又∵∠ADF+∠EDC=90°,∴∠EDC=∠DAF,∴△EDC∽△DAF,∴=,即=,∴FD=,即DF的长度为.四、本大题共3个小题,每小题10分,共30分.20.已知y=,且x≠y,求()÷的值.【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.解:原式===,∵,∴原式=解法2:同解法1,得原式=,∵,∴xy=2,∴原式==1.21.如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.【分析】(1)用待定系数法即可求解;(2)利用面积法:,即可求解.解:(1)将点A(﹣2,﹣2)代入,得k=4,即,将B(1,a)代入,得a=4,即B(1,4),设直线AB的解析式为y=mx+n,将A(﹣2,﹣2)、B(1,4)代入y=kx+b,得,解得,∴直线AB的解析式为y=2x+2;(2)∵A(﹣2,﹣2)、B(1,4),∴,∵,∴.22.自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为20万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为72°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.【分析】(1)由60﹣79岁的人数及其所占百分比可得总人数,再用360°乘以40﹣59岁感染人数所占比例即可得;(2)先求出20﹣39岁人数,再补全折线图;(3)利用频率估计概率即可得;(4)利用加权平均数的定义求解可得.解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,故答案为:20、72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图2所示;(3)该患者年龄为60岁及以上的概率为:=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:.五、本大题共2个小题,每小题10分,共20分.23.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?【分析】(1)设租用一辆轿车的租金为x元,根据“单程租赁2辆商务车和3辆轿车共需付租金1320元”列方程解答即可;(2)分三种情况讨论:①只租用商务车;②只租用轿车;③混和租用两种车.分别求出每种情况所需租金,再比较大小即可解答.解:(1)设租用一辆轿车的租金为x元,由题意得:300×2+3x=1320,解得x=240,答:租用一辆轿车的租金为240元;(2)①若只租用商务车,∵,∴只租用商务车应租6辆,所付租金为300×6=1800(元);②若只租用轿车,∵,∴只租用轿车应租9辆,所付租金为240×9=2160(元);③若混和租用两种车,设租用商务车m辆,租用轿车n辆,租金为W元.由题意,得,由6m+4n=34,得4n=﹣6m+34,∴W=300m+60(﹣6m+34)=﹣60m+2040,∵﹣6m+34=4n≥0,∴,∴1≤m≤5,且m为整数,∵W随m的增大而减小,∴当m=5时,W有最小值1740,此时n=1.综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.24.如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC 于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.【分析】(1)如图1,连接AD、BC,根据圆周角定理得到∠ADB=90°,根据直角三角形的性质得到DF=AF,于是得到∠ABD=∠DBC,得到=,于是得到结论;(2)如图2所示,连接OD、AD,根据直角三角形的性质得到,推出△OAD是等边三角形,得到AD=AO=AH,根据切线的判定定理即可得到结论.【解答】证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是OE=OF;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.【分析】(1)由“AAS”可证△AEO≌△CFO,可得OE=OF;(2)由题意补全图形,由“AAS”可证△AOE≌△COG,可得OE=OG,由直角三角形的性质可得OG=OE=OF;(3)延长EO交FC的延长线于点H,由全等三角形的性质可得AE=CH,OE=OH,由直角三角形的性质可得HF=EH=OE,可得结论.解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO,∠AOE=∠COF=90°,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE=∠COG,∴△AOE≌△COG(AAS),∴OE=OG,∵∠GFE=90°,∴OE=OF;(4)点P在线段OA的延长线上运动时,线段CF、AE、OE之间的关系为OE=CF+AE,证明如下:如图,延长EO交FC的延长线于点H,由(2)可知△AOE≌△COH,∴AE=CH,OE=OH,又∵∠OEF=30°,∠HFE=90°,∴HF=EH=OE,∴OE=CF+CH=CF+AE.26.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求PC+PB的最小值.【分析】(1)设抛物线的解析式为:y=a(x+1)(x﹣5),可得对称轴为直线x=2,由锐角三角函数可求点C坐标,代入解析式可求解析式;(2)①先求出直线BC解析式,设P(2,t),可得点E(5﹣t,t),点,可求EF的长,由三角形面积公式和二次函数性质可求解;②根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,过点P作PG⊥AC于G,可得PG=PC,可得,过点B作BH⊥AC于点H,则PG+PH≥BH,即BH 是PC+PB的最小值,由三角形面积公式可求解.解:(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),∵抛物线的对称轴为直线x=2,∴D(2,0),又∵=,∴CD=BD•tan∠CBD=4,即C(2,4),代入抛物线的解析式,得4=a(2+1)(2﹣5),解得,∴二次函数的解析式为=﹣x2++;(2)①设P(2,t),其中0<t<4,设直线BC的解析式为y=kx+b,∴,解得即直线BC的解析式为,令y=t,得:,∴点E(5﹣t,t),把代入,得,即,∴,∴△BCF的面积=×EF×BD=(t﹣)=,∴当t=2时,△BCF的面积最大,且最大值为;②如图,连接AC,根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,∴,过点P作PG⊥AC于G,则在Rt△PCG中,,∴,过点B作BH⊥AC于点H,则PG+PH≥BH,∴线段BH的长就是的最小值,∵,又∵,∴,即,∴的最小值为.。
2021年四川省绵阳市数学中考真题含答案解析(含答案)
.D﹣(3分)(2014•绵阳)下列四个图案中,属于中心对称图形的是( ).B.C.D.绵阳)若代数式有意义<≤>≥≥..B.C.D.,故其概率为..B.C.D.40海里40海里40海里CP=AP=40PB==40(海里)点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关≤≤≤≤.11.(3分)(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为( ).B.C.D.或,解得或,×<(此时不能构成三角形取,其中=××=n=n=n=取最小..=B.=C.=D.=得到,也就有,可得可得,所以得,即,由得,故易得=,=2,得到,故)由及可得,由得,故∴.∴.∴.∴.∴.∴.OQ=AC OR=AB ∴=,=2∴≠.∴.∵,∴.∴.点评:本题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、 .根据负整数指数幂的运算法则直接进行计算即可.==.故答案为:.影部分面积为 ,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC==.故答案为:.点评:此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S是解,﹣ .=++++=1﹣,﹣.本题考查了图形的变化类问题﹣)﹣|﹣。
﹣)(﹣=1+2﹣2,然后合并即可。
=1+2﹣2=÷=•=.y=(y=的图象有两个不同的公共点y=的图象有两个不同的公共则方程=nx+2=×y=,则=nx+2>﹣且满足=,过点DE。
(2)若tan∠CBA=,AE=3,OC=OA,=,易证得∵=,是直角三角形CBA=,CBA=60°,AEC为直角三角形AC=2,AF=OA=AB,,AC=2,tan CBA=,∴AF=2.点评:此题考查了切线的性质、直角三角形的性质、等边三角形的判定与性质以及圆周角定所以,从而求得得出= ,求得∴△DEC≌△x=,DF=.∴CE=3,AC==5则,即PQ=∴=EG=∴=,即PN=(﹣x﹣+3 x=,即PE=时2014•绵阳)如图2,)1,)1,)+,再2,)代入得=a+,解方程求出﹣x﹣x+与BC==2.设交直线由轴对称的性质可知此时)3,2)y=x+,直线﹣x+,然后解方程组,1,)+, 2,)代入得=a+,﹣,﹣x﹣x+。
四川省南充市2020年中考数学试题(含答案与解析)
故选:B.
【点睛】本题考查整式的加法和乘法,熟练掌握同类项、同底数幂乘法、完全平方公式的运算法则是解题的关键.
5.八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是()
A. 该组成绩的众数是6环B. 该组成绩的中位数数是6环
故选:B.
【点睛】本题考查了菱形的性质及面积的求法、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
8.如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()
A. B. C. D.
【答案】B
【解析】
【分析】
作BD⊥AC于D,根据勾股定理求出AB、AC,利用三角形的面积求出BD,最后在直角△ABD中根据三角函数的意义求解.
(2)求四边形OCDB的面积.
22.如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC得延长线于点E,延长线ED交AB得延长线于点F.
(1)判断直线EF与⊙O 位置关系,并证明.
(2)若DF= ,求tan∠EAD的值.
23.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).
1.若 ,则x 值是()
A.4B. C. D.﹣4
【答案】C
【解析】
【分析】
根据解分式方程即可求得x的值.
【详解】解: ,去分母得 ,
∴ ,
2021年四川省南充市中考数学试卷( 答案+解析)
2021年四川省南充市中考数学试卷(答案+解析)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.(3分)下列实数中,最小的数是( )A. B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.扇形 B.正五边形C.菱形 D.平行四边形3.(3分)下列说法正确的是( )A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件 C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.(3分)下列计算正确的是( ) A.��a4b÷a2b=��a2b B.(a��b)2=a2��b2 C.a2?a3=a6D.��3a2+2a2=��a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )2021年四川省南充市中考数学试卷A.58° B.60° C.64° D.68°6.(3分)不等式x+1≥2x��1的解集在数轴上表示为( ) A.A.y=2(x+2)B.y=2(x��2)B.C.y=2x��2D.y=2x+2C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是( )8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD 的中点,若BC=2,则EF的长度为( )A. B.1 C. D.9.(3分)已知 =3,则代数式A.B.的值是( )C. D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是( )第1页(共18页)A.CE= B.EF= C.cos∠CEP=D.HF2=EF?CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。
四川省南充市2021年中考数学真题试题(含答案)(1)
2021年四川省南充市中考数学试卷(总分值120分,时刻120分钟)一、选择题(本大题共10个小题,每题3分,共30分)1.(2021四川南充,1,3分)31-的值是( ) A .3 B .-3 C .13D .-13【答案】C2.(2021四川南充,2,3分)以下运算正确的选项是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2【答案】A3.(2021四川南充,3,3分)以下几何体的主视图既是中心对称图形又是轴对称图形的是( )A B C D【答案】D4.(2021四川南充,4,3分)如图,已知AB ∥CD ,65C ∠=︒,30E ∠=︒,那么A ∠的度数为( )(第2题图)A .30°B .32.5°C .35°D .37.5°【答案】C5.(2021四川南充,5,3分)如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,C 的坐标为( )(第5题图)A,1) B .(-1) C1) D1)【答案】A6.(2021四川南充,6,3分)不等式组1(1)22331x x x ⎧+⎪⎨⎪-<+⎩的解集在数轴上表示正确的选项是( )【答案】D7.(2021四川南充,7,3分)为踊跃响应南充市创建“全国卫生城市”的号召,某校1 500名学生参加了卫生知识竞赛,成绩记为A 、B 、C 、D 四等。
从中随机抽取了部份学生成绩进行统计,绘制成如下两幅不完整的统计图表,依照图表信息,以下说法不正确...的是( ) A .样本容量是200 B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估量全校学生成绩为A 等大约有900人 【答案】B8.(2021四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,那么∠B 的度数为( )A .30°B .36°C .40°D .45° (第8题图) 【答案】B9.(2021四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如下图的方式在直线l 上进行两次旋转,那么点B 在两次旋转进程中通过的途径的长是( ) (第9题图)A .25π2B .13πC .25π D.【答案】B10.(2021四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如下图,以下结论:①abc >0;②2a b+=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,那么12x x +=2.其中正确的有( )ABCDA .①②③B .②④C .②⑤D .②③⑤(第10题图) 【答案】D二、填空题(本大题共6个小题,每题3分,共18分)11.(2021四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2021四川南充,12,3分)因式分解3269x x x -+=__________.【答案】2-x x 3()13.(2021四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,假设这组数据的中位数为3,那么这组数据的方差是__________. 【答案】5314.(2014四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB =8,那么图中阴影部份的面积是__________.(结果保留π)【答案】16π15. (2021四川南充,15,3分)一列数123,,,a a a ……na ,其中1231211111,,,,111n n a a a a a a a -=-===---,那么1232014a a a a ++++=__________.【答案】2011216.(2021四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使极点A 落在BC 边的A ′处,折痕所在直线同时通过边AB 、AD (包括端点),设BA ′=x,那么x 的取值范围是 .(第14题图)【答案】28x≤≤三、解答题(本大题共9个小题,共72分)17.(2021四川南充,17,6分)计算:13130tan3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:13130tan3)23()12014(-⎪⎭⎫⎝⎛++---2+33⨯+1132+3=618.(2021四川南充,18,8分)如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.【答案】证明:∵∠OBD=∠ODB.∴OB=OD在△AOB与△COD中,∴△AOB≌△COD(SAS)∴AB=CD.19.(2021四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张教师设计了一个数学活动. 有A、B两组卡片,每组各3张,A组卡片上别离写有0,2,3;B组卡片上别离写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)假设甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax-y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树形图或列表法求解)【答案】解:20. (2021四川南充,20,8分)(8分)已知关于x的一元二次方程x2-22x+m=0,有两个不相等的实数根.⑴求实数m的最大整数值;⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.ABOCD(18题图)【答案】解:⑴由题意,得:△>0,即:(24m -- >0,m <2,∴m 的最大整数值为m=1(2)把m=1代入关于x 的一元二次方程x 2-22x +m =0得x 2-22x +1=0,依照根与系数的关系:x 1+x 2 =22,x 1x 2=1,∴x 12+x 22-x 1x 2= (x 1+x 2)2-3x 1x 2=(22)2-3×1=521.(2021四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7).(1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .(第21题图)【答案】解:∵反比例函数y 2=m x的图象过点A (2,5)∴5=2m,m=10 即反比例函数的解析式为y =10x。
2021年四川省乐山市中考数学试卷及答案解析
2021年四川省乐山市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1.如果规定收入为正,那么支出为负,收入2元记作+2,支出5元记作( ) A .5元B .﹣5元C .﹣3元D .7元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 【解答】解:如果规定收入为正,那么支出为负,收入2元记作+2,支出5元记作﹣5元. 故选:B .【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是( ) 类型 健康 亚健康 不健康 数据(人) 327 1A .32B .7C .710D .45【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数,进而得出答案.【解答】解:∵抽取了40名学生进行了心理健康测试,测试结果为“健康”的有32人, ∴测试结果为“健康”的频率是:3240=45.故选:D .【点评】此题主要考查了频数与频率,正确掌握频率的求法是解题关键. 3.某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m(元) B .n8m(元) C .8m n(元) D .m8n(元)【分析】先求出1千克商品的价格,再乘以8,即可解答. 【解答】解:根据题意,得:nm×8=8nm (元),故选:A .【点评】本题考查了列代数式,解决本题的关键是先求出1千克商品的价格.4.如图,已知直线l1、l2、l3两两相交,且l1⊥l3,若α=50°,则β的度数为()A.120°B.130°C.140°D.150°【分析】先求出α的对顶角等于50°,再根据三角形的外角性质求出β的度数.【解答】解:如图,根据对顶角相等得:∠1=∠α=50°,∵l1⊥l3,∴∠2=90°.∵∠β是三角形的外角,∴∠β=∠1+∠2=50°+90°=140°,故选:C.【点评】本题考查了对顶角和三角形外角的性质,比较简单,属于基础题.5.如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将△AOB 的面积平分的直线l2的解析式为()A.y=12x B.y=x C.y=32x D.y=2x【分析】根据坐标轴上点的坐标特征求出A(2,0),B(0,4),则AB的中点为(1,2),所以l2经过AB的中点,直线l2把△AOB平分,然后利用待定系数法求l2的解析式;【解答】解:如图,当y=0,﹣2x+4=0,解得x=2,则A(2,0);当x=0,y=﹣2x+4=4,则B(0,4),∴AB的中点坐标为(1,2),∵直线l2把△AOB面积平分∴以l2经过AB的中点;∴直线l2过AB的中点,设直线l2的解析式为y=kx,把(1,2)代入得2=k,解得k=2,∴l2的解析式为y=2x,故选:D.【点评】本题考查了待定系数法求一次函数的解析式,明确直线l2过AB的中点是解题的关键.6.如图是由4个相同的小正方体堆成的物体,将它在水平面内顺时针旋转90°后,其主视图是()A.B.C.D.【分析】顺时针旋转90°后,找到从正面看到的图形即可.【解答】解:顺时针旋转90°后,从正面看第一列有一层,第二列有两层,故选:C.【点评】本题考查了三视图以及旋转的知识,考查了学生对立体图形的空间想象能力.7.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为()A .3B .72C .2D .52【分析】分别求出阴影部分平行四边形,三角形的面积可得结论. 【解答】解:由题意,阴影部分的平行四边形的面积=2×1=2, 阴影部分的三角形的面积=12×2×1=1, ∴阴影部分的面积=2+1=3, 故选:A .【点评】本题考查七巧板,正方形的性质,平行四边形的性质,等腰直角三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若∠ABC =120°,AB =2,则PE ﹣PF 的值为( )A .32B .√3C .2D .52【分析】设AC 交BD 于O ,根据已知可得AC =2√3,而PE ﹣PF =12AP −12CP =12(AP ﹣CP )=12AC ,即可得到答案. 【解答】解:设AC 交BD 于O ,如图:∵菱形ABCD ,∠ABC =120°,AB =2,∴∠BAD=∠BCD=60°,∠DAC=∠DCA=30°,AD=AB=2,BD⊥AC,Rt△AOD中,OD=12AD=1,OA=√AD2−OA2=√3,∴AC=2OA=2√3,Rt△APE中,∠DAC=30°,PE=12AP,Rt△CPF中,∠PCF=∠DCA=30°,PF=12CP,∴PE﹣PF=12AP−12CP=12(AP﹣CP)=12AC,∴PE﹣PF=√3,故选:B.【点评】本题考查菱形的性质及应用,解题的关键是求出AC,把PE﹣PF转化为12 AC.9.如图,已知OA=6,OB=8,BC=2,⊙P与OB、AB均相切,点P是线段AC与抛物线y=ax2的交点,则a的值为()A.4B.92C.112D.5【分析】设点P的坐标为(x,﹣x+6),由点P、A的坐标得,P A=√2(6﹣x),则AN=√AP2−PN2=√2(6−x)2−x2,由AB=10=BN+AN,得到10=√2(6−x)2−x2+2+x,进而求解.【解答】解:设⊙P与OB、AB分别相切于点M、N,连接PM、PN,设圆的半径为x,则PN=PM=x,由题意知,OC =AO =6,则直线BA 与y 轴的夹角为45°,则CM =MP =x , 由点A 、C 的坐标得,直线AC 的表达式为y =﹣x +6, 则点P 的坐标为(x ,﹣x +6), 由点P 、A 的坐标得,P A =√2(6﹣x ), 则AN =√AP 2−PN 2=√2(6−x)2−x 2,∵⊙P 与OB 、AB 分别相切于点M 、N ,故BN =BM =BC +CM =2+x , 在Rt △ABO 中,OA =6,OB =8,则AB =10=BN +AN , 即10=√2(6−x)2−x 2+2+x ,解得x =1, 故点P 的坐标为(1,5), 将点P 的坐标代入y =ax 2得5=a , 故选:D .【点评】本题为几何和函数综合题,涉及一次函数的性质、圆的切线的性质、勾股定理的运用等,综合性强,难度适中.10.如图,直线l 1与反比例函数y =3x(x >0)的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线l 2过原点O 和点C .若直线l 2上存在点P (m ,n ),满足∠APB =∠ADB ,则m +n 的值为( )A .3−√5B .3或32C .3+√5或3−√5D .3【分析】如图,作△ABD 的外接圆⊙J ,交直线l 2于P ,连接AP ,PB ,则∠APB =∠ADB 满足条件。
2020学年四川省成都市中考试题数学及答案解析
2020年四川省成都市中考试题数学一、选择题(共10小题,每小题3分,共30分)1.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是( )A.aB.bC.cD.d解析:根据实数的大小比较解答即可.由数轴可得:a<b<c<d.答案:D2. 2020年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A.4×104B.4×105C.4×106D.0.4×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104. 40万=400000=4×105.答案:B3.如图所示的正六棱柱的主视图是( )A.B.C.D.解析:根据主视图是从正面看到的图象判定则可.从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.答案:A4.在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是( )A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)解析:根据关于原点对称的点的坐标特点解答.点P(-3,-5)关于原点对称的点的坐标是(3,5).答案:C5.下列计算正确的是( )A.x2+x2=x4B.(x-y)2=x2-y2C.(x2y)3=x6yD.(-x)2·x3=x5解析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.A、x2+x2=2x2,A错误;B、(x-y)2=x2-2xy+y2,B错误;C、(x2y)3=x6y3,C错误;D、(-x)2·x3=x5,D正确.答案:D6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC解析:全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误.答案:C7.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃解析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题. 由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误.答案:B8.分式方程1112++=-xx x的解是( )A.x=1B.x=-1C.x=3D.x=-3解析:1112++=-xx x,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解.答案:A9.如图,在ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是( )A.πB.2πC.3πD.6π解析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.∵在ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:212033360ππ⨯⨯=.答案:C10.关于二次函数y=2x2+4x-1,下列说法正确的是( )A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-3解析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. ∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确.答案:D二、填空题(共4小题,每小题4分,共16分)11.等腰三角形的一个底角为50°,则它的顶角的度数为 .解析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小. ∵等腰三角形底角相等, ∴180°-50°×2=80°, ∴顶角为80°. 答案:80°12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .解析:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,∴该盒子中装有黄色乒乓球的个数是:16×38=6.答案:613.已知654==a b c ,且a+b-2c=6,则a 的值为 .解析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.∵654==a b c , ∴设a=6x ,b=5x ,c=4x , ∵a+b-2c=6, ∴6x+5x-8x=6, 解得:x=2, 故a=12. 答案:1214.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E.若DE=2,CE=3,则矩形的对角线AC 的长为 .解析:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,22325-AD在Rt△ADC中,()225530 =+=AC30三、解答题(本大题共6个小题,共54分)15.计算.(1)23282sin603 +︒+-.解析:(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.答案:(1)原式4226233=+-⨯+=(2)化简:21111⎛⎫-÷⎪+-⎝⎭xx x.解析:(2)根据分式的运算法则即可求出答案.答案:(2)原式()()()()111111111+-+-+-===-++x x x xx xxx x x x16.若关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围. 解析:根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.答案:∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴△=[-(2a+1)]2-4a2=4a+1>0,解得:a>14-.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值 .解析:(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.答案:(1)12÷10%=120,故m=120,n=120×40%=48,m=54120=45%.故答案为120;45%.(2)请补全条形统计图.解析:(2)根据n的值即可补全条形统计图.答案:(2)n=120×40%=48,画出条形图:(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.解析:(3)根据用样本估计总体,3600×1254120+×100%,即可答.答案:(3)3600×1254120+×100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.18.由我国完全自主设计、自主建造的首艘国产航母于2020年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)解析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.答案:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC·cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD·tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.19.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数=kyx(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式.解析:(1)根据一次函数y=x+b 的图象经过点A(-2,0),可以求得b 的值,从而可以解答本题.答案:(1)∵一次函数y=x+b 的图象经过点A(-2,0), ∴0=-2+b ,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数=ky x (x >0)的图象交于B(a ,4),∴4=a+2,得a=2,∴4=2k,得k=8,即反比例函数解析式为:8=y x (x >0).(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数=ky x (x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.解析:(2)根据平行四边形的性质和题意,可以求得点M 的坐标,注意点M 的横坐标大于0. 答案:(2)∵点A(-2,0), ∴OA=2,设点M(m-2,m),点N(8m ,m),当MN ∥AO 且MN=AO 时,四边形AOMN 是平行四边形,|8m -(m-2)|=2,解得,2或3+2,∴点M 的坐标为2-2,2)或3,320.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线.解析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证.答案:(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线.(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长.解析:(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD.答案:(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB ADAD AF,即AD2=AB·AF=xy,则(3)若BE=8,sinB=513,求DG的长.解析:(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.答案:(3)连接EF,在Rt△BOD中,5 sin13==ODBOB,设圆的半径为r,可得5813=+rr,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴5 sin13∠==AFAEFAE,∴550sin101313 =∠=⨯=AF AE AEF,∵AF∥OD,∴501013513===AG AFDG OD,即DG=1323AD,∴18===AD,则1323==DG.一、填空题(共5小题,每小题4分,共20分)21.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为 . 解析:原式分解因式后,将已知等式代入计算即可求出值.∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36. 答案:0.3622.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .解析:针尖落在阴影区域的概率就是四个直角三角形的面积之和与大正方形面积的比. 设两直角边分别是2x ,3x 13,小正方形边长为x , 所以S 大正方形=13x 2,S 小正方形=x 2,S 阴影=12x 2,则针尖落在阴影区域的概率为2212121313=x x . 答案:121323.已知a >0,11=S a ,S 2=-S 1-1,321=S S ,S 4=-S 3-1,541=S S ,…(即当n 为大于1的奇数时,11-=n n S S ;当n 为大于1的偶数时,S n =-S n-1-1),按此规律,S 2018= .解析:根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.11=S a ,211111+=--=--=-a a S S a ,3211==-+aS S a ,4311111=--=-=-++a S S a a ,()5411==-+Sa S , S 6=-S 5-1=(a+1)-1=a ,7611==S S a ,…,∴S n 的值每6个一循环. ∵2018=336×6+2,∴S 2018=S 2=1+-a a . 答案:1+-a a24.如图,在菱形ABCD 中,tanA=43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BNCN 的值为 .解析:延长NF 与DC 交于点H ,∵∠ADF=90°, ∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN , ∴∠A=∠DFH ,∴∠FDH+∠DFH=90°, ∴NH ⊥DC ,设DM=4k ,DE=3k ,EM=5k ,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=4 3,则sin∠DFH=4 5,∴42455==DH DF k,∴2421955=-=CH k k k,∵3 cos cos5===CHC ANC,∴CN=35CH=7k,∴BN=2k,∴27=BN CN.答案:2 725.设双曲线=kyx(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线=kyx(k>0)的眸径为6时,k的值为 .解析:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=-x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,=⎧⎪⎨=⎪⎩y xkyx,解得:11⎧=⎪⎨=-⎪⎩x ky k22⎧=⎪⎨=⎪⎩x ky k∴点A的坐标为(k-k,点B的坐标为k k ∵PQ=6,∴OP=3,点P的坐标为(322-,322).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(3222-+k3222+k又∵点P′在双曲线=kyx上,∴32322222⎛⎫⎛⎫+-=+⎪ ⎪⎪ ⎪⎝⎝k k k,解得:k=32.答案:32二、解答题(本大题共3小题,每小题10分,共30分)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式.解析:(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.答案:(1)()()13003008015000300≤≤⎧⎪=⎨+⎪⎩>x xyx x.(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?解析:(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000-a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.答案:(2)设甲种花卉种植为am2,则乙种花卉种植(12000-a)m2.∴()20021200≥⎧⎪⎨≤-⎪⎩aa a,∴200≤a≤800,当200≤a<300时,W1=130a+100(1200-a)=30a+12000;当a=200时,W min=126000元;当300≤a≤800时,W2=80a+15000+100(1200-a)=135000-20a;当a=800时,W min=119000元.∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200-800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.27.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A′,B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数.解析:(1)由旋转可得:AC=A′C=2,进而得到BC=3,依据∠A′BC=90°,可得cos3∠'=='BCA CBA C,即可得到∠A′CB=30°,∠ACA′=60°.答案:(1)由旋转可得:AC=A′C=2,∵∠ACB=90°,7,AC=2,∴3∵∠ACB=90°,m∥AC,∴∠A′BC=90°,∴cos3∠'=='BCA CBA C,∴∠A′CB=30°,∴∠ACA′=60°.(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长.解析:(2)根据M为A′B′的中点,即可得出∠A=∠A′CM,进而得到3322==PB BC,依据tan∠Q=tan∠A=3,即可得到BQ=BC×3=2,进而得出PQ=PB+BQ=72.答案:(2)∵M为A′B′的中点,∴∠A ′CM=∠MA′C,由旋转可得,∠MA′C=∠A,∴∠A=∠A′CM,∴tan∠PCB=tan∠A=32,∴332==PB BC,∵tan∠Q=tan∠A=3,∴BQ=BC×3=2,∴PQ=PB+BQ=72.(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由. 解析:(3)依据3''''=-=-四边形B Q PCQ A CB PCQPAS S S S,即可得到S四边形PA′B′Q最小,即S △PCQ最小,而1322=⨯=PCQS PQ BC PQ,利用几何法或代数法即可得到S△PCQ的最小值=3,S四边形PA′B′Q=3-3.答案:(3)如图所示:∵3''''=-=-四边形B Q PCQ A CB PCQPAS S S S,∴S四边形PA′B′Q最小,即S△PCQ最小,∴1322=⨯=PCQS PQ BC PQ.法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=12PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=3,PQ min=23,∴S△PCQ的最小值=3,S四边形PA′B′Q=3-3;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=3时,“=”成立,∴3323=+=PQ,∴S△PCQ的最小值=3,S四边形PA′B′Q=3-3.28.如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式.解析:(1)根据已知列出方程组求解即可.答案:(1)由题意可得,52251⎧-=⎪⎪=⎨⎪++=⎪⎩baca b c,解得,a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5.(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若34=AFFB,且△BCG与△BCD面积相等,求点G的坐标.解析:(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,在分两种情况分别分析出G点坐标即可.答案:(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则34==AF MQFB QN,∵MQ=32,∴NQ=2,B(92,114);∴19421+=⎧⎪⎨+=⎪⎩k mk m,解得,1212⎧=⎪⎪⎨⎪=⎪⎩km,∴1122=+ly x,D(0,12),同理可求,125=-+BCy x,∵S△BCD=S△BCG,∴①DG ∥BC(G 在BC 下方),1122=-+DG y x , ∴2512512-+=-+x x x ,解得,x 1=32,x 2=3,∵x >52,∴x=3,∴G(3,-1).②G 在BC 上方时,直线G 2G 3与DG 1关于BC 对称, ∴2312192=-+G G y x , ∴21255192-+=-+x x x ,解得,x 1=94+,x 2=94-,∵x >52,∴x=94+,∴G(,),综上所述点G 的坐标为G(3,-1),G(,).(3)若在x 轴上有且仅有一点P ,使∠APB=90°,求k 的值.解析:(3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.答案:(3)由题意可知:k+m=1,∴m=1-k ,∴y l =kx+1-k ,∴kx+1-k=x 2-5x+5,解得,x 1=1,x 2=k+4,∴B(k+4,k 2+3k+1),设AB 中点为O ′,∵P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点, ∴O ′P ⊥x 轴,∴P 为MN 的中点,∴P(52+k ,0),∵△AMP ∽△PNB , ∴=AM PN PMBN , ∴AM ·BN=PN ·PM ,∴()2551314122++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭k k k k k , ∵k >0,∴6163-+==-+k .。
2021年四川省成都市中考数学试卷(含答案解析版)
2021年四川省成都市中考数学试卷(含答案解析版) 2021年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃ 2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A. B. C. D.3.(3分)总投资647亿元的西成高铁预计2021年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108 B.6.47×109 C.6.47×1010 D.6.47×1011 4.(3分)二次根式中,x的取值范围是() A.x≥1 B.x>1 C.x≤1 D.x<1 5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.(3分)下列计算正确的是()A.a5+a5=a10 B.a7÷a=a6 C.a3?a2=a6 D.(﹣a3)2=﹣a6 7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3 则得分的众数和中位数分别为() A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分 8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图OA′=2:3,形,若OA:则四边形ABCD与四边形A′B′C′D′的面积比为()第1页(共22页)A.4:9 B.2:5 C.2:3 D.﹣:9.(3分)已知x=3是分式方程=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2 10.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c 的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc >0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)(﹣1)0= . 12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为. 13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共14小题,共104分) 15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;第2页(共22页)(2)解不等式组:16.(6分)化简求值:.÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率. 18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.第3页(共22页)20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= . 23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则= .24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),第4页(共22页)我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,B′均在反比例函数y=的图象上.它们的倒影点A′,若AB=2,则k= .25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A 落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D E x(千米) 8 9 10 11.5 13 y1(分钟) 18 20 22 25 28 (1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.第5页(共22页)28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x 轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.第6页(共22页)2021年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B. 2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A. B. C. D.【解答】解:从上边看一层三个小正方形,故选:C. 3.(3分)总投资647亿元的西成高铁预计2021年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108 B.6.47×109 C.6.47×1010 D.6.47×1011 【解答】解:647亿=647 0000 0000=6.47×1010,故选:C. 4.(3分)二次根式中,x的取值范围是() A.x≥1 B.x>1 C.x≤1 D.x<1 【解答】解:由题意可知:x ﹣1≥0,∴x≥1,故选(A) 5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.第7页(共22页)【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误; B、不是轴对称图形,是中心对称图形,故本选项错误; C、是轴对称图形,不是中心对称图形,故本选项错误; D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D. 6.(3分)下列计算正确的是()A.a5+a5=a10 B.a7÷a=a6 C.a3?a2=a6 D.(﹣a3)2=﹣a6 【解答】解:A.a5+a5=2a5,所以此选项错误; B.a7÷a=a6,所以此选项正确; C.a3?a2=a5,所以此选项错误; D.(﹣a3)2=a6,所以此选项错误;故选B. 7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3 则得分的众数和中位数分别为() A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C. 8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图OA′=2:3,形,若OA:则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.(3分)已知x=3是分式方程A.﹣1 B.0C.1D.2﹣=2,第8页(共22页)﹣=2的解,那么实数k的值为()【解答】解:将x=3代入∴(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c 解得:k=2,故选(D) 10.的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc >0,b2﹣4ac<0 【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)(﹣1)0= 1 .【解答】解:(﹣1)0=1.故答案为:1. 12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为 40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°. 13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 < y2.(填“>”或“<”).第9页(共22页)【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<. 14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N 为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为 15 .【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分) 15.(12分)(1)计算:|(2)解不等式组:﹣1|﹣+2sin45°+()﹣2;.第10页(共22页)【解答】解:(1)原式==﹣1﹣2=3;(2)++4﹣1﹣2+2×+4,①可化简为2x﹣7<3x﹣3,﹣x<4, x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:【解答】解:∵x=﹣1,=.÷(1﹣÷(1﹣)=),其中x=?=﹣1.,∴原式=17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有 50 人,估计该校1200名学生中“不了解”的人数是 360 人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,第11页(共22页)∴P(恰好抽到一男一女的)==.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB?cos∠BAD=4cos60°=4×=2(千米), BD=AB?sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.第12页(共22页)【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2∴P(2,或2,)或(2,4).20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;第13页(共22页)(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴∴=, =,,第14页(共22页)∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF 是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴∴=,,,r2=(舍),.解得:r1=综上所述,⊙O的半径为第15页(共22页)21.(4分)如图,数轴上点A表示的实数是【解答】解:由图形可得:﹣1到A的距离为﹣1 .=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1. 22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= .【解答】解:由两根关系,得根x1+x2=5,x1?x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1?x2=25﹣4a=4,∴a=,.故答案为:23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA 为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【解答】解:设⊙O的半径为1,则AD=故S圆O=π,阴影部分面积为:π则P1=故=,P2=..,×2+×,﹣π=2,故答案为:第16页(共22页)24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,B′均在反比例函数y=的图象上.它们的倒影点A′,若AB=2,则k= ﹣.),【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,B′(,∵AB=∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴解得:k=﹣.故答案为:﹣.,),==(b﹣a)=2,25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,第17页(共22页)∴=,∴C′K=1cm,在Rt△AC′K中,AK=∴FG=AK=故答案为cm,.=cm,26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D E x(千米) 8 9 10 11.5 13 y1(分钟) 18 20 22 25 28 (1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则 y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,ymin==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.第18页(共22页)27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD ⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.第19页(共22页)∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,=3.∴BF=第20页(共22页)28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点C(0,4),A(﹣2解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,,0),设抛物线的∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.第21页(共22页)由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.第22页(共22页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学试卷一.选择题(共8小题)1.(2018宜宾)﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点:倒数。
解答:解:根据倒数的定义得:﹣3×(﹣)=1,因此倒数是﹣.故选:D.2.(2018宜宾)下面四个几何体中,其左视图为圆的是()A.B. C.D.考点:简单几何体的三视图。
解答:解:A.圆柱的左视图是矩形,不符合题意;B.三棱锥的左视图是三角形,不符合题意;C.球的左视图是圆,符合题意;D.长方体的左视图是矩形,不符合题意.故选C.3.(2018宜宾)下面运算正确的是()A.7a2b﹣5a2b=2 B.x8÷x4=x2 C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答:解:A.7a2b﹣5a2b=2a2b,故本选项错误;B.x8÷x4=x4,故本选项错误;C.(a﹣b)2=a2﹣2ab+b2,故本选项错误;D.(2x2)3=8x6,故本选项正确.故选D.区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃)32 32 30 32 30 31 29 33 30 32A.32,31.5 B.32,30 C.30,32 D.32,31考点:众数;中位数。
解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.5.(2018宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4 考点:配方法的应用。
解答:解:x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7.故选B.6.(2018宜宾)分式方程的解为()A. 3 B.﹣3 C.无解 D.3或﹣3考点:解分式方程。
解答:解:方程的两边同乘(x+3)(x﹣3),得12﹣2(x+3)=x﹣3,解得:x=3.检验:把x=3代入(x+3)(x﹣3)=0,即x=3不是原分式方程的解.故原方程无解.故选C.7.(2018宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理。
解答:解:过D作DM⊥AB于M,过F作FN⊥AB于N,即FN∥DM,∵F为AD中点,∴N是AM中点,∴FN=DM,∵DM⊥AB,CB⊥AB,∴DM∥BC,∵DC∥AB,∴四边形DCBM是平行四边形,∴DC=BM,BC=DM,∵AB=AD,CD=AB,点E、F分别为AB.AD的中点,∴设DC=a,AE=BE=b,则AD=AB=2a,BC=DM=2a,∵FN=DM,∴FN=a,∴△AEF的面积是:×AE×FN=ab,多边形BCDFE的面积是S梯形ABCD﹣S△AEF=×(DC+AB)×BC﹣ab=(a+2a)×2b﹣ab=ab,∴△AEF与多边形BCDFE的面积之比为=.故选C.8.(2018宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列①直线y=0是抛物线y=x2的切线②直线x=﹣2与抛物线y=x2相切于点(﹣2,1)③直线y=x+b与抛物线y=x2相切,则相切于点(2,1)④若直线y=kx﹣2与抛物线y=x2相切,则实数k=其中正确A.①②④B.①③C.②③D.①③④考点:二次函数的性质;根的判别式。
解答:解:①∵直线y=0是x轴,抛物线y=x2的顶点在x轴上,∴直线y=0是抛物线y=x2的切线,故本小题正确;②∵抛物线y=x2的顶点在x轴上,开口向上,直线x=2与y轴平行,∴直线x=﹣2与抛物线y=x2相交,故本小题错误;③∵直线y=x+b与抛物线y=x2相切,∴x2﹣4x﹣b=0,∴△=16+4b=0,解得b=﹣4,把b=﹣4代入x2﹣4x﹣b=0得x=2,把x=2代入抛物线解析式可知y=1,∴直线y=x+b与抛物线y=x2相切,则相切于点(2,1),故本小题正确;④∵直线y=kx﹣2与抛物线y=x2相切,∴x2=kx﹣2,即x2﹣kx+2=0,△=k2﹣2=0,解得k=±,故本小题错误.故选B.二.填空题(共8小题)9.(2018宜宾)分解因式:3m2﹣6mn+3n2= .考点:提公因式法与公式法的综合运用。
解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.10.(2018宜宾)一元一次不等式组的解是.考点:解一元一次不等式组。
解答:解:,由①得,x≥﹣3,由②得,x<﹣1,∴不等式组的解集为﹣3≤x<﹣1.故答案为﹣3≤x<﹣1.11.(2018宜宾)如图,已知∠1=∠2=∠3=59°,则∠4=.考点:平行线的判定与性质。
解答:解:∵∠1=∠3,∴AB∥CD,∴∠5+∠4=180°,又∠5=∠2=59°,∴∠4=180°﹣59°=121°.故答案为:121°12.(2018宜宾)如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为.考点:坐标与图形变化-旋转。
解答:解:连接AD,∵将△ABC绕点P旋转180°得到△DEF,∴点A旋转后与点D重合,∵由题意可知A(0,1),D(﹣2,﹣3)∴对应点到旋转中心的距离相等,∴线段AD的中点坐标即为点P的坐标,∴点P的坐标为(,),即P(﹣1,﹣1).故答案为:(﹣1,﹣1).13.(2018宜宾)已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P ﹣2Q=7恒成立,则y的值为.考点:因式分解的应用。
解答:解:∵P=3xy﹣8x+1,Q=x﹣2xy﹣2,∴3P﹣2Q=3(3xy﹣8x+1)﹣2(x﹣2xy﹣2)=7恒成立,∴9xy﹣24x+3﹣2x+4xy+4=7,13xy﹣26x=0,13x(y﹣2)=0,∵x≠0,∴y﹣2=0,∴y=2;故答案为:2.14.(2018宜宾)如图,已知正方形ABCD的边长为1,连接AC.BD,CE平分∠ACD交BD于点E,则DE= .考点:正方形的性质;角平分线的性质。
解答:解:过E作E F⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴DF=DC﹣CF=1﹣,∴DE==﹣1,故答案为:﹣1.15.(2018宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是.考点:反比例函数与一次函数的交点问题。
解答:解:根据图形,当x<0或1<x<4时,一次函数图象在反比例函数图象上方,y1>y2.故答案为:x<0或1<x<4.16.(2018宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质。
解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④三.解答题(共8小题)17.(2018宜宾)(1)计算:(2)先化简,再求值:,其中x=2tan45°.考点:分式的化简求值;零指数幂;负整数指数幂;二次根式的混合运算。
解答:解:(1)原式=﹣2﹣1+1=﹣;(2)原式=•﹣=﹣=当x=2tan45°时,原式=2.18.(2018宜宾)如图,点A.B.D.E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.考点:全等三角形的判定与性质。
解答:证明:∵AD=EB∴AD﹣BD=EB﹣BD,即AB=ED …(1分)又∵BC∥DF,∴∠CBD=∠FDB …(2分)∴∠ABC=∠EDF …(3分)又∵∠C=∠F,∴△ABC≌△EDF …(5分)∴AC=EF …(6分)19.(2018宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.考点:条形统计图;扇形统计图;列表法与树状图法。
解答:解:(1)根据喜欢声乐的人数为8人,得出总人数=8÷16%=50,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为:×100%=24%,喜欢“戏曲”活动项目的人数是:50﹣12﹣16﹣8﹣10=4,故答案为:50,24%,4;(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,故恰好选中“舞蹈、声乐”两项活动的概率是;(用列表法)舞蹈乐器乐声戏曲舞蹈舞蹈、乐器舞蹈、乐声舞蹈、戏曲乐器乐器、舞蹈乐器、乐声乐器、戏曲乐声乐声、舞蹈乐声、乐器乐声、戏曲戏曲戏曲、舞蹈戏曲、乐器戏曲、乐声20.(2018宜宾)如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题。