初二动点问题及中学考试压轴题
人教版八年级下册数学期末复习:动点问题压轴题
人教版八年级下册数学期末复习:动点问题压轴题1.如图,已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA为边作矩形OBCA,点E,H分别在边BC和边OA上,将△BOE沿着OE 对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G 点处.(1)求证:四边形OECH是平行四边形;(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由;(3)当点B运动到使得点F,G将对角线OC三等分时,直接..写出点B的坐标.2.如图1,正方形ABCD边长为4,点P是直线BC上的一动点,连接DP,以DP为边在直线DP右侧作等边三角形DPE.(1)请直接写出正方形ABCD的面积;(2)当BP为何值时,点C落在DPE的边上;(3)如图2,若点P在线段BC上从B向C运动,当BP为何值时,线段CE的长度最小?请求出CE的最小值,并直接写出点E所经过的路径的长度.3.如图,已知ABC 为等腰直角三角形,且面积为4.点D 是BC 的中点,点F 是直线AB 上一动点,连结DF .(1)求线段BC 的长;(2)当点E 在射线BC 上,且2CE BC =时,连结FE ,若3AF AB =,试判断DEF 是否为等腰三角形,并说明理由;(3)直线AB 上是否存在点F (F 不与AB 重合),使ACF 的其中两边之比为存在,求出BF 的长;若不存在,请说明理由.4.如图1,在平面直角坐标系中,点A 的坐标为(5,0),点B 在第一象限内,且AB =4,OB =3.(1)试判断△AOB 的形状,并说明理由.(2)点P 是线段OA 上一点,且PB -P A =1,求点P 的坐标;(3)如图2,点C 、点D 分别为线段OB 、BA 上的动点,且OC =BD ,求AC +OD 的最小值.5.如图,在平面直角坐标系中,直线AB为y=﹣34x+b交y轴于点A(0,3),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求点B的坐标及点O到直线AB的距离;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=72时,在第一象限找点C,使△PBC为等腰直角三角形,直接写出点C的坐标.6.如图,直线y kx b=+经过点75,04A⎛⎫⎪⎝⎭,点()0,25B,与直线34y x=交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求点C的坐标;(2)当23DE OA=时,求△CDE的面积;(3)当OAD△沿着OD折叠,当点A落在直线OC上时,直接写出点D的坐标.7.点P为等边ABC的边AB延长线上的动点,点B关于直线PC的对称点为D,连接AD.(1)如图1,若2BP AB ==,依题意补全图形,并直接写出线段AD 的长度; (2)如图2,线段AD 交PC 于点E , △设BCP α∠=,求AEC ∠的度数; △求证:AE CE DE =+.8.如图,在平面直角坐标系中,直线l 1:y =﹣x +5与y 轴交于点A ,直线l 2与x 轴、y 轴分别交于点B (﹣4,0)和点C ,且与直线l 1交于点D (2,m ).(1)求直线l 2的解析式;(2)若点E 为线段BC 上一个动点,过点E 作EF △x 轴,垂足为F ,且与直线l 1交于点G ,当EG =6时,求点G 的坐标;(3)若在平面上存在点H ,使得以点A ,C ,D ,H 为顶点的四边形是平行四边形,请直接写出点H 的坐标.9.如图1,直线AB :y x b =-+分别与x ,y 轴交于()6,0A ,B 两点,过点B 的直线交x 轴负半轴于C ,且:3:1OB OC =.()1求直线BC的函数表达式;()2在x轴是否存在一点M,使得BCM是一个等腰三角形,若存在请求出点M的坐标,若不存在请说明理由;()3如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为一腰在第一象限内作等腰直角三角形BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.10.如图,直线1与直线m交于点Q89,55⎛⎫⎪⎝⎭,直线m与坐标轴分别交于A、B两点,直线l与y轴交与点C,已知B、C两点关于x轴对称且BC=6.(1)求直线l和直线m的解析式;(2)若P为直线l上一动点,S△P AB=32S△OAB,求点P的坐标;(3)M为直线l上一动点,N为平面内一点,直接写出所有使得以A、B、M、N为顶点的四边形为菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.11.如图,在四边形ABCD 中,AD △BC ,△B =90°,△C =60°,AD =24cm ,CD =8cm .点P 从点D 出发,以1cm /s 的速度向点A 运动;点Q 从点B 同时出发,以3cm /s 的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点Q 的运动时间为x (s ). (1)BC = cm ,AB = cm ; (2)当PQ =CD 时,x = ;(3)当四边形ABQP 为矩形时,求x 的值.12.如图,正比例函数34y x =与一次函数7y ax =+的图像相交于点()4,P n ,过点(),0A t 作x 轴的垂线l ,且04t <<,交一次函数的图像于点B ,交正比例函数的图像于点C ,连接OB . (1)求a 值;(2)设OBP 的面积为s ,求s 与t 之间的函数关系式;(3)当2t =时,在正比例函数34y x =与一次函数7y ax =+的图像上分别有一动点M 、N ,是否存在点M 、N ,使CMN △是等腰直角三角形,且90CNM ∠=︒,若存在,请直接写出点M 、N 的坐标;若不存在,请说明理由.13.如图1,在Rt△ABC中,△ACB=90°,AC=BC,将点C绕点B顺时针旋转105°得到点D,连接BD,过点D作DE△BC交CB延长线于点E,点F为线段DE上的一点,且△DBF=45°,作△BFD的角平分线FG交AB于点G.(1)求△BFD的度数;(2)求BF,DF,GF三条线段之间的等量关系式;(3)如图2,设H是直线DE上的一个动点,连接HG,HC,若AB,求线段HG+HC的最小值(结果保留根号).14.如图所示,点A是平面直角坐标系内一点坐标为(1,AB是过点A的一条直线,B是直线与x轴的交点,以OA、OB为邻边作平行四边形AOBC.若OD是△AOB的平分线,且D是AC的中点.(1)求B、D两点的坐标;(2)求直线AB的解析式;S平行四边形AOBC,请直接写出满足条件(3)若P是直线AB上一动点,且S△POD 12的点P的坐标.15.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数y=23x b-+的图象与边OC,AB分别交于点D,E,并且满足OD=BE,点M是线段DE上的一个动点.(1)求b的值;(2)当DM:ME=1:2时,求点M的坐标;(3)设点N是x轴上方的平面内的一点,当以点O,M,D,N为顶点的四边形是菱形时,直接写出点N的坐标.16.在矩形ABCD中,BC,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;(2)如图2,当点P在线段CB的延长线上时,交AB于点M,求证:点M在线段EF 的垂直平分线上;(3)当AB=5时,在点E由点A移动到AD中点的过程中,直接写出点G运动路线长.交△BCA的平分线于点E,交△BCA的外角平分线于点F.(1)探究OE与OF的数量关系并加以证明;(2)四边形BCFE会是菱形吗?若是,请加以证明;若不是,则说明理由;(3)当点O运动到什么位置时,四边形AECF是矩形?请说明理由;(4)在(3)问的基础上,△ABC满足什么条件时,四边形AECF是正方形?为什么?18.如图,在平面直角坐标系中,直线123y x=-+与x轴交于点C,与y轴交于点A.(1)求AOC△的面积;(2)点P是直线AC上的动点,过P作x轴,y轴的垂线,垂足分别为点F,E,若2PF PE=,请求出点P的坐标;(3)点117,39B⎛⎫⎪⎝⎭在直线AC上,坐标轴上存在动点M,使ABM是以AB为直角边的直角三角形,请直接写出点M的坐标.把△COB沿BC翻折,点O恰好落在AB边的点D处,BC为折痕.(1)求线段AB的长;(2)求直线BC的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P 为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.20.如图,在平面直角坐标系中,直线y=12x+2与y轴、x轴分别交于点A,B,点M在线段AB上运动(不与点A,B重合),连接OM.(1)求线段OB的长;(2)设点M的横坐标为m,△BOM的面积为S,求S关于m的函数关系式(不必写出自变量m的取值范围);(3)若点M为线段AB的中点,点P为射线BO上的动点,将△APM沿直线PM折叠得到△A1PM,若以点A1、B、P、M为顶点的四边形是平行四边形,直接写出点A1的横坐标.参考答案:1. (2)B (0);四边形OECH 是菱形(3)点B 的坐标是(00, 2.(1)16(2)4或4343或4(3)4-;2;E 所经过的路线的长度是43.(1)线段BC 的长为4;(2)△DEF 是等腰三角形(3)存在,BF 的长为或或-2.4.(1)△AOB 是直角三角形,(2)P (4514,0)5.(1)B (4,0),125(2)922n -(3)(5,7)或(8,3)或(92,72) 6.(1)点C 的坐标为(12,9);(2)△CDE 的面积为752;(3)点D 的坐标为(15,5)或(-15,45). 7.(1)AD =(2)△60AEC ∠=︒;△证明见解析.8.(1)122y x =+;(2)(﹣2,7);(3)(2,0)或(2,6)或(﹣2,4).9.()136y x =+; ()2 存在,M 的坐标为()12M --,()22M -+,()38,0M ,()42,0M ; ()3不变化,()0,6K -.10.(1)直线l 的解析式为33y x =-,直线m 的解析式为334y x =-+;(2)P (25,95-)或P (145,275);(3)N 1(2910,2710)或N 2(295+,35-N 3(295-,35-)或N 4(4-,0)或N 5(75-,395) 11.(1)28,(2)5或7;(3)6.12.(1)1a =-;(2)7142s t =-+;(3)存在,1133,28M ⎛⎫ ⎪⎝⎭,3973,1616N ⎛⎫ ⎪⎝⎭或2053M ⎛⎫ ⎪⎝⎭,,7311,1212N ⎛⎫ ⎪⎝⎭.13.(1)120°;(2)BF +DF =GF ;(314.(1)B 点的坐标是(4,0),D 点的坐标是(3.(2)y (3)(4,0)或(0. 15.(1)3;(2)M (1,73);(3)N (3613,5413)或N (﹣94,32). 16.(1)见解析;(2)见解析;(3)103π 17.(1)OE =OF ,证明见解析;(2)不是;(3)点O 运动到AC 的中点;(4)△ACB 为直角18.(1)6;(2)612,77P ⎛⎫ ⎪⎝⎭或612,55P ⎛⎫- ⎪⎝⎭;(3)点M 的坐标为2,03⎛⎫- ⎪⎝⎭或92,027⎛⎫ ⎪⎝⎭或920,9⎛⎫- ⎪⎝⎭ 19.(1)AB =10;(2)y =2x +6;(3)存在,满足条件的P 点的坐标为(3,2)或(-4,8).20.(1)4;(2)S =m +4;(3)-1或-3。
2022-2023学年人教版八年级上数学期末压轴题动点问题含答案
人教版八年级上册数学期末动点问题压轴题1.在等腰ABC 中,AB AC =,点D 是AC 上一动点,点E 在BD 的延长线上且AB AE =,AF 平分CAE ∠交DE 于点F ,连接FC .(1)如图1,求证:ABE ACF ∠=∠;(2)如图2,当60ABC ∠=︒时,求证:AF EF FB +=;(3)如图3,当=45ABC ∠︒,且AE BC ∥时,请直接写出BD 和EF 之间的数量关系:(不用写证明过程).2.如图,在ABC 中,90B ,16AB =cm ,12BC =cm ,20AC =cm ,P 、Q 是ABC 边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 开始从点B 沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)BP =__________;BQ =__________(用t 的代数式表示); (2)当点Q 在边BC 上运动时,出发几秒后,PQB △是等腰三角形?(3)点Q 在边CA 上运动,连接BQ ,出发几秒后,能使BCQ △形成以CQ 为腰的等腰三角形?3.如图,点P Q 、分别是等边ABC 边AB BC 、上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ CP 、交于点M .(1)ABQ 与CAP 全等吗?请说明理由;(2)当点P Q 、分别在AB BC 、边上运动时,QMC ∠变化吗?若变化,请说明理由;若不变, 求出它的度数.4.在ABC 中,AB AC =,点D 是射线CB 上的一动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作ADE ,使,AD AE DAE BAC =∠=∠,连接CE ,设,BAC m DCE n ∠=∠=(1)如图1,当点D 在线段CB 上,且60m =时,那么n =_________度; (2)当60m ≠①如图2,当点D 在线段CB 上时,求m 与n 间的数量关系;①如图3,当点D 在线段CB 的延长线上时,请将图3补充完整,并求出m 与n 之间的数量关系5.如图,ABC 是等边三角形,6AB =,动点P 沿折线AB ﹣BC 以每秒1个单位长度的速度向终点C 运动;同时,动点Q 沿折线CA AB BC --以每秒2个单位长度的速度向终点C 运动,连接PQ ,设点P 的运动时间为t (s )(012t <<).(1)用含t 的式子表示BP 的长;(2)当APQ 是等边三角形时,求t 的值;(3)当线段PQ 在ABC 的某条边上时,求t 的取值范围;(4)在(3)的条件下,当以点P 、Q 、A 、C 中的任意三个点为顶点构成的三角形是以PQ 为底的等腰三角形时,直接写出t 的值.6.如图,在平面直角坐标系中,点()3,0C ,点A 在y 轴正半轴上,点B 在x 轴负半轴上,AB AC =,点D 是x 轴上的一动点(点D 不与B 、C 重合),90CAB EAD ∠=∠=︒,AD AE =,连接CE .(1)如图1,直接写出点A ,B 的坐标;(2)如图2,当点D 在边BC 上时,求证:①BC CE CD =+,①BC CE ⊥; (3)当5CD =时,求点E 坐标.7.在平面直角坐标系中,点(06)(80)10A B AB =,,,,,如图作DBO ABO CAy BAO ∠=∠∠=∠,,直线CD 过点O .(1)写出线段AC BD 、的关系;(2)动点P 从A 出发,沿A O B --路线运动,速度为1,到B 点处停止;动点Q 从B 出发,沿B O A --运动,速度为2,到A 点处停止.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PE CD ⊥于点E ,QF CD ⊥于点F .问两动点运动多长时间时OPE 与OQF △全等?8.如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ﹔动点E 、D 同时从A 点出发,其中动点E 以2cm/s 的速度沿射线AN 方向运动,动点D 以1cm/s 的速度运动;已知6cm AC =,设动点D ,E 的运动时间为t .(1)当点D 沿射线AM 方向运动,满足:2:3ADB BEC S S =△△,试求运动时间t 的值;(2)当点D 在射线AM 或射线AM 的反向延长线上运动时,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值:若不存在,请说出理由.9.如图①,在平面直角坐标系中,O 为坐标原点,ABC 的边AB 在x 轴上,A ,B 两点的坐标分别为(,0)m ,(,0)n ,且2(4)|2|0m n ++-=,点C 的坐标为(0,,4BC =,点P 为x 轴上一动点.(1)点A 的坐标是__________,点B 的坐标是__________. (2)如图①,连接CP ,当14COP AOC S S =△△时,求AP 的长. (3)如图①,点P 从点A 出发,以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,以每秒1个单位长度的速度向点C 运动,已知60OBC ∠=︒,设运动时间为(03)t t ≤≤秒.当PQB △是直角三角形时,求t 的值.10.已知等边ABC ,点P Q ,分别是直线AB BC ,上的动点.(1)如图,若点P 从顶点A 沿AB 向B 点运动,点Q 同时以相同速度从点B 沿BC 向C 点运动,连接CP 交AQ 于M .①求证:ABQ CAP ≌△△;①点P Q 、在运动的过程中,CMQ ∠变化吗?若变化,请说明理由,若不变,则求出它的度数;(2)如图,当点P 在BA 的延长线上,Q 在BC 上,若PQ PC =,请判断AP CQ ,和AC 之间的数量关系,并说明理由.11.已知正方形ABCD ,边长为4,动点P 以每秒1个单位的速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒4个单位速度从A 点出发沿正方形的边AD DC CB --方向顺时针作折线运动,当点Q 回到A 点时停止运动,设点P 的运动时间为t .(1)当85t =时,证明:ABP BCQ ≌△△; (2)当6ADQS=时,ABP S △的面积是多少?(3)ADQ S △是否有最大值?如果有,请直接写出3个满足的t 的值;如果没有,请说明理由.12.如图,已知()2,0A -,()0,4B -,()1,1C .点P 为线段OB 上一动点(不包括点O ),CD CP ⊥,CD 交x 轴于点D ,CP 交x 轴于点K ,当P 点运动时.(1)求证:CPO CDO ∠=∠; (2)求证: C P CD =;(3)下列两个结论:①AD BP -的值不变:①AD BP +的值不变,选择正确的结论求其值.13.如图,ABC 中,AB AC =,90BAC ∠=,点D 是直线AB 上的一动点(不和A ,B 重合),BE CD ⊥于E ,交直线AC 于F .(1)点D 在边AB 上时,证明:DA FA =; (2)在(1)的条件下,证明:AB FA BD =+;(3)点D 在AB 的延长线或反向延长线上时,探索AB ,FA ,BD 这三条线段之间的数量关系,请画出图形并直接写出正确结论.14.如图1,在ABC 中,BO AC ⊥于点O ,3AO BO ==,1OC =,过点A 作AE BC ⊥于点E ,交BO 于点F .(1)求线段OF 的长度;(2)连接OE ,求证:45OEF ∠=︒;(3)如图2,若点P 为AB 的中点,点M 为线段BO 延长线上一动点,连接PM ,过点P 作PN PM ⊥交线段OA 延长线于N 点,则BPMAPNS S-的值是否发生改变,若改变,请求出BPMAPNSS-的变化范围;若不改变,请求出BPMAPNS S-的值.15.已知ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等边ADE (顶点A 、D 、E 按逆时针方向排列),连接CE .(1)如图①,当点D 在边BC 上时,求证:①BD CE =,①AC CE CD =+;(2)如图①,当点D 在边BC 的延长线上且其他条件不变时,结论AC CE CD =+是否成立?若不成立,请写出AC 、CE 、CD 之间存在的数量关系,并说明理由;(3)如图①,当点D 在边BC 的反向延长线上且其他条件不变时,补全图形,并直接写出AC 、CE 、CD 之间存在的数量关系.16.如图所示,ABC 是边长为9的等边三角形,P 是AC 边上一动点,由点A 向点C 运动(与A ,C 不重合),Q 是CB 延长线上的一点,与点P 同时以相同的速度由点B 向CB 延长线方向运动(Q 不与B 重合),过点P 作PE AB ⊥于点E ,连接PQ 交AB 于点D .(1)当30BQD ∠=︒时,求AP 的长.(2)试说明:在运动过程中,点D 是线段PQ 的中点.(3)在运动过程中,线段ED 的长是否发生变化?如果不变,求出线段ED 的长:如果变化,请说明理由.17.如图,已知:射线AF 交CD 于E ,180CEF BAF ∠+∠=︒.(1)求证:AB CD ∥.(2)如图2,Y 为射线ED 上一动点,直接写出BAF AFY CYF ∠∠∠,,之间的数量关系.(3)如图3,在(2)的条件下,连接AY ,延长FY 交射线AB 于W ,N 为线段AW 上一动点,若AY 平分BAF ∠,YN 平分30WYE NWY ∠∠=︒,时,求2AYN FEY ∠+∠的值.18.如图,60MON ∠=︒,点A 、B 分别是射线OM 、射线ON 上的动点,连接AB ,AMB ∠的角平分线与NBA ∠的角平分线交于点P .(1)当OA OB =时,求证:AP OB ∥;(2)在点A 、B 运动的过程中,P ∠的大小是否发生改变?若不改变,请求出P ∠的度数;若改变请说明理由;(3)连接OP ,C 是线段OP 上的动点,D 是线段OA 上的动点,当12AOBS =,6OB =时,求AC CD +的最小值.参考答案1. (3)2BD EF =. 2.(1)()16t -cm ,2t cm (2)当163t =时,PQB △是等腰三角形 (3)11或12秒3.(1)全等,(2)QMC ∠不变,60QMC ∠=︒4.(1)120;(2)①180m n +=,①m n =5.(1)6BP t =﹣; (2)2t =s ;(3)当312t ≤<,且6t ≠时,线段PQ 在ABC 的某条边上;(4)当4t =或8t =时,满足以点P 、Q 、A 、C 中的任意三个点为顶点构成的三角形是以PQ 为底的等腰三角形.6.(1)()0,3A ,()3,0B - (3)E 点为()3,1或()3,117.(1)10AC BD =-,AC BD ∥ (2)当运动时间为2秒或143秒或12秒时,OPE 与OQF △全等.8.(1)当127t =s 或12s 时,满足:2:3ADB BEC S S =△△ (2)存在,2s 或6s9.(1)()40-,,(2,0); (2)3AP =或5AP =; (3)32t =或125t =.10.(1)①不变化, (2)AP CQ AC +=,11. (2)72或132(3)有,23t ≤≤都可,答案不唯一12. (3)AD BP +的值不变,是813. (3)点D 在AB 的延长线上时,AB AF BD =-;点D 在AB 的反向延长线上时,AB BD AF =-14.(1)1(3)BPM APN SS ﹣的值不发生改变,等于9415. (2)结论AC CE CD =+不成立,CE AC CD =+,(3)补全图形见解析,CD AC CE =+,理由见解析16.(1)3(3)在运动过程中,线段ED 的长不发生变化,为定值4.517. (2)180AFY CYF BAF ∠+∠+∠=︒;(3)2150AYN FEY ∠+∠=︒.18. (2)P ∠的大小不变,60P ∠=︒(3)AC CD +的最小值为4。
人教版八年级上册数学期末动点问题压轴题专题训练(含答案)
人教版八年级上册数学期末动点问题压轴题专题训练1.如图,△ABC是等边三角形,点D是边BC上一个动点(点D不与点B,C重合),连接AD,点E在边AC的延长线上,且DA=DE.(1)求证:△BAD=△EDC:(2)用等式表示线段CD,CE,AB之间的数量关系,并证明.2.如图,已知△ ABC是边长为10cm的等边三角形,点F为AC的中点,动点D,E同时从A,B两点出发,分别沿AB,BC匀速运动,其中点D运动的速度是1cm/s,点E运动的速度是2cm/s,设运动时为t 秒.(1)当t为何值时,△ AFD与△ CFE全等;(2)当t为何值时,△ BDE为直角三角形.3.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:△BD=CE,△AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由.4.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,△BAP=20°,求△AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.△依题意将图2补全;△求证:P A=PM.5.如图,在三角形ABC中,D是射线BC上一动点.(1)如图1,点D在BC边上(不与点B,C重合),△ 按要求作图:分别过点D作DE BA∥交边AB于点F;∥交边AC于点E,作DF CA△ 在△的条件下,判断△EDF与△A的数量关系,并说明理由;(2)如图2,若点D在BC的延长线上,DF CA∥,△EDF=△A,试判断DE与BA的位置关系,并说明理由.6.如图1,等腰Rt△ABC中,△BAC=90°,AB=AC,D,E分别是AC和BC上的动点,BD△AE,垂足为F.(1)求证△CAE=△ABD;(2)连接DE,满足△AEB=△DEC,求证:BD=DE+AE;(3)点G在BD的延长线上,连接EG,满足△AEB=△GEC,试写出AE,EG,BG之间的数量关系,并证明.7.已知:如图,ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间为()s t,解答下列各问题:(1)ABC的面积为多少?△是等边三角形?(2)当t为何值时,PBQ△是直角三角形时,求t的值.(3)当PBQA a,将点A向右平移b个单位得到点B,其中a,b满足8.如图△所示,点A的坐标为(0,)+-=.a b50(2)如图△,坐标轴上有两个动点P ,Q ,点P 从A 点出发沿y 轴负方向以每秒1个单位长度的速度运动,点Q 从O 点出发以每秒2个单位长度的速度沿x 轴正方向运动,点P 、Q 同时出发,点P 到达O 点时整个运动结束.设运动时间为t 秒,问t 为何值时,使得12OBP BOQ S S =△△?并求出此时点P 和点Q 的坐标; (3)如图△所示,点F 为x 轴上一点,作△BOF 的平分线OG ,且OG △FB ,垂足为G ,△AOB 的平分线OE 与射线FB 交于点E ,求△E 的度数.9.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且a ,b 满足()23-20a b ++=.现同时将点A ,B 分别向左平移2个单位,再向上平移2个单位,得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)直接写出A ,B 两点的坐标为:A ___________, B ___________.(2)若点P 是线段AC 上的一个动点,Q 是线段CD 的中点,连接PQ ,PO ,当点P 在线段AC 上移动时(不与点A ,C 重合),请找出PQD ∠,OPQ ∠,POB ∠的数量关系,并证明你的结论.(3)在坐标轴上是否存在点M ,使三角形MAD 的面积与三角形ACD 的面积相等?若存在,请求出点M 的坐标;若不存在,试说明理由.10.已知:直线AD BC ∥,动点P 在直线EF 上运动,探究ADP ,DPC ∠,BCP ∠之间的关系.(1)【问题发现】若25ADP ∠=︒,35BCP ∠=︒,求DPC ∠的度数.(2)【结论猜想】当点P 在线段AB 上时,猜想ADP ,DPC ∠,BCP ∠三个角之间的数量关系,并说明理(3)【拓展延伸】若点P 在射线AE 上或者在射线BF 上时(不包括端点),试着探究ADP ,DPC ∠,BCP ∠之间的关系是否会发生变化,请挑选一种情形画出图形,写出结论,并说明理由.11.ABC 中,70C ∠=︒,点D ,E 分别是ABC 边AC ,BC 上的点,点P 是一动点,令1PDA ∠=∠,2PEB ∠=∠,DPE α∠=∠.初探:(1)如图1,若点P 在线段AB 上,且60α∠=︒,则12∠+∠=_____________; (2)如图2,若点P 在线段AB 上运动,则△1,△2,α∠之间的关系为_____________; (3)如图3,若点P 在线段AB 的延长线上运动,则△1,△2,α∠之间的关系为_____________; 再探:(4)如图4,若点P 运动到ABC 的内部,写出此时△1,△2,α∠之间的关系,并说明理由.12.如图,AB 、CD 被AC 所截,AB CD ∥,△CAB =108°,点P 为直线AB 上一动点(不与点A 重合),连CP ,作△ACP 和△DCP 的平分线分别交直线AB 于点E 、F .(1)当点P 在点A 的右侧时△若△ACP =36°,则此时CP 是否平分△ECF ,请说明理由. △求△ECF 的度数.(2)在点P 运动过程中,直接写出△APC 与△AFC 之间的数量关系.(1)求证:AB CD ∥;(2)如图2,若3ABE EBF ∠=∠,120BFD ∠=︒,试求CDFBDF∠∠的值;(3)如图3,若H 是直线CD 上一动点(不与D 重合),BI 平分HBD ∠,则EBI ∠与BHD ∠的数量关系为______.14.如图1,在△ABC 中,BO AC ⊥于点O ,3,1AO BO OC ===,过点A 作AH BC ⊥于点H ,交BO 于点P .(1)求线段OP 的长度;(2)连接OH ,求证:点O 到△AHC 的两边距离相等;(3)如图2,若点D 为AB 的中点,点M 为线段BO 延长线上一动点,连接MD ,过点D 作DN DM ⊥交线段OA 延长线于N 点,则BDM ADN S S ∆∆-的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.15.在ABC 中,BAC ABC ∠>∠,三个内角的平分线交于点O .(1)填空:如图1,若80BCA ∠=︒,则BOA ∠的大小为________度;(3)如图2,CO 的延长线交AB 于点E ,点M 是AB 边上的一动点(不与点E 重合),过点M 作MN CE ⊥于点N ,请探索AMN ∠、ABC ∠、BAC ∠三者之间的数量关系.16.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=︒(1)请判断AB 与CD 的位置关系并说明理由;(2)如图2,在(1)的结论下,当90E ∠=︒保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠是否存在确定的数量关系?(3)如图3,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?17.如图,在△ABC 中,D 为AB 的中点,AB =AC =10cm ,BC =8cm ,动点P 从点B 出发,沿BC 方向以每秒3cm 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以每秒3cm 的速度向点A 运动,运动时间是t 秒.(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,是否存在某一时刻t ,使△BPD 和△CQP 全等,若存在,求出t 的值.若不存在,请说明理由.18.如图,△ABC是边长是12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.(3)则当t为何值时,△BPQ是直角三角形?2,0,以线段OA为边在第四象限内作等边AOB,点C 19.如图,在平面直角坐标系中,点A的坐标为()OC>,连接BC,以线段BC为边在第四象限内作等边CBD,连接DA.为x轴正半轴上一动点()2(1)求证:OBC ABD≌;(2)是否存在点C,使得ACD△为直角三角形.若存在,请求出点C的坐标;若不存在,请说明理由;(3)是否存在点C,使得ACD△为等腰三角形.若存在,请求出AC的长;若不存在,请说明理由.B-(0,4)点4(6,)A -.(1)如图1,动点P 从点B 出发,以每秒2个单位长度的速度沿BA 方向运动,同时动点Q 从点O 出发,以每秒3个单位长度的速度沿y 轴向上运动,当点P 运动到点A 时,P 、Q 同时停止运动,设点P 运动时间为t 秒.用含t 的式子表示P ,Q 两点的坐标.(2)如图2,点D 为线段OA (端点除外)上某一点,当点D 在线段上运动时,过点D 作直线EF 交x 轴正半轴于E ,交直线AB 于F ,,EOD AFD ∠∠的平分线相交于点N ,若ODF α∠=,请用含α的式子表示ONF ∠的大小,并说明理由.答案1. (2)AB =CD +CE 2.(1)103t =(2)t =2或53.(2)AC+CD =CE ,4.(1)80°5.(1);△△EDF =△A , (2)DE BA ∥,6. (3)BG =AE +EG ,7.(1)2cm (2)3 (3)2或48.(1)(0,2)A ,(3,2)B (2)65t =,点0,54P ⎛⎫ ⎪⎝⎭,12,05Q ⎛⎫ ⎪⎝⎭ (3)△E =45°9.(1)(−3,0);(2,0)(2)△DQP +△QPO +△BOP =360°; (3)(0,163)或(0,−43)或(−8,0)或(2,0)10.(1)60°;(2)△DPC =△ADP +△PCB(3)△PCB =△DPC +△ADP ;或△ADP =△DPC +△PCB11.(1)130︒;(2)1270α∠+∠=︒+∠; (3)1270α∠-∠=︒+∠; (4)12430α∠+∠=︒-∠,12.(1)△平分,;△36°(2)当点P 在点E 的右侧时,2APC AFC ∠=∠;当点P 、点E 在点A 的左侧,点F 在点A 的右侧时,2180AFC APC ∠+∠=︒;当点P 、点E 、点F 均在点A 的左侧时, 2180AFC APC ∠-∠=︒.13. (2)4(3)△BHD =2△EBI 或△EBI =90°-12△BHD14.(1)OP =1;(3)不变,9415.(1)130(3)2360AMN ABC BAC ∠=∠-∠+︒或2AMN BAC ABC ∠=∠-∠16.(1)平行,(2)存在,1902BAE MCD ∠+∠=︒(3)BAC PQC QPC ∠=∠+∠17.(1)43t = (2)当1t =时,△BPD △△CQP18.(1)PQ 与AB 垂直,(2)能,当4s t =时,△BPQ 是等边三角形(3) 2.4s t =或6s t =,△BPQ 是直角三角形19. (2)C (4,0)(3)不存在,20.(1)P (2t ,-4),Q (0,3t ); (2)12ONF α∠=,。
人教版八年级数学上册动点问题压轴题训练
1. 如图,点C在线段BD上,AB⊥BD于点B,ED⊥BD于点D.∠ACE=90∘,且AC=6cm,CE=7cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从点E开始,在线段EC上往返运动(即沿E→C→E→C→⋯运动),当点P到达终点时,P,Q同时停止运动.过点P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为________.2. 如图,直线PQ经过Rt△ABC的直角顶点C,△ABC的边上有两个动点D,E,点D以1cm/s的速度从点A出发沿AC−CB移动到点B,点E以3cm/s的速度从点B出发,沿BC−CA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点.过点D,E分别作DM⊥PQ,EN⊥PQ,垂足分别为点M,N.若AC=6cm,BC=8cm,设运动时间为t,则当t=________s时,以点D,M,C为顶点的三角形与以点E,N,C为顶点的三角形全等.3. 在Rt△ABC中,∠ACB=90∘,AC=15,AB=25,点D为斜边AB上动点.(1)如图1,当CD⊥AB时,求CD的长度;(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三角形时,直接写出AD的长度.4. 如图,△ABC中,∠ACB=90∘,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A−C−B−A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.5. 如图所示,直线AB交x轴于点A(a,0)交y轴于点B(0,b),且a、b满足√a−b+(a−6)2=0,P为线段AB上的一点.(1)如图1,若AB=6√2,当△OAP为AP=AO的等腰三角形时,求BP的长.(2)如图2,若P为AB的中点,点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶的值是否点O同时出发,且它们的速度都为1cm/s,则在M、N运动的过程中,S四边形PNOM会发生改变?如发生改变,求出其面积的变化范围;若不改变,求该面积的值.(3)如图3,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.6. 如图1,OA=2,OB=4,以AB为腰在第三象限作等腰Rt△ABC,∠BAC=90∘.(1)求C点的坐标;(2)如图2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰作等腰Rt△APD,∠APD=90∘,过D作DE⊥x轴于E点,求OP−DE的值;(3)如图3,点F坐标为(−2,−2),点G(0,m)在y轴负半轴上,点H(n,0)在x轴正半轴上,且FH⊥FG,求m+n的值.7. 如图,△ABC是等边三角形,点D,E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD,DE.(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC;(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由;(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.8. 如图,在平面直角坐标系中,已知点A,B,C的坐标分别为(7.5,0),(3,6),(0,3),直线AB交y轴于点D,点D的坐标是(0,10),动点P从点C出发沿着y轴正方向以每秒1个单位的速度运动,同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动,设运动时间为t 秒.(1)求BD的长;(2)当△PQD与△BDC全等时,求a的值.一、 填空题 (本题共计 2 小题 ,每题 3 分 ,共计6分 ) 1.【答案】 1或135或275 【考点】全等三角形的判定 动点问题 【解析】【解答】解:当点P 在AC 上,点Q 在CE 上时,∵ 以P ,C ,M 为顶点的三角形与△QCN 全等, ∵ PC =CQ ,∵ 6−2t =7−3t ,解得t =1;当点P 在AC 上,点Q 第一次从点C 返回时,∵ 以P ,C ,M 为顶点的三角形与△QCN 全等, ∵ PC =CQ ,∵ 6−2t =3t −7,解得t =135;当点P 在CE 上,点Q 第一次从E 点返回时,∵ 以P ,C ,M 为顶点的三角形与△QCN 全等, ∵ PC =CQ ,∵ 2t −6=21−3t ,解得t =275;当点P 在CE 上,点Q 第二次从点C 返回时,若PC =CQ ,即2t −6=3t −21,解得t =15(不符合题意,舍去). 综上所述,符合题意的t 的值为1或135或275.故答案为:1或135或275. 2. 【答案】 1或72或12 【考点】全等三角形的性质与判定【解析】分当E在BC线段上时,此时D在AC线段上;当E在AC线段上时,且D在AC线段上;当E到达A时,且D在BC线段上,三种情况进行讨论,相应列出方程求解即可.【解答】解:①当E在BC线段上时,此时D在AC线段上,0<t<83,故CE=8−3t,CD=6−t.当DC=CE时,△DCM≅△CEN,故8−3t=6−t,解得:t=1;②当E在AC线段上时,且D在AC线段上,83<t<143,故CE=3t−8,CD=6−t,当DC=EC时,△DCM≅△ECN,故3t−8=6−t,解得:t=72;③当E到达A时,且D在BC线段上,143<t<14,故CE=6,CD=t−6,当DC=CE时,△DCM≅△CEN,故6=t−6,解得:t=12.综上所述:t=1或72或12时,以点D,M,C为顶点的三角形与以点E,N,C为顶点的三角形全等.故答案为:1或72或12.二、解答题(本题共计6 小题,每题10 分,共计60分)3.【答案】解:(1)如图,在Rt△ABC中,∠ACB=90∘,AC=15,AB=25,BC2=AB2−AC2=400,∵ BC=20,∵ S△ABC=12AB⋅CD=12BC⋅AC,∵ 12×25⋅CD =12×20×15,解得:CD =12; (2)如图,连接AE ,∵ DE ⊥AB ,∵ ∠ADE =∠C =90∘, 在Rt △ADE 和Rt △ACE 中,{AD =AC ,AE =AE ,Rt △ADE ≅Rt △ACE(HL), ∵ DE =CE .设DE =CE =x ,则BE =20−x , 又BD =25−15=10,在Rt △BDE 中,由勾股定理,得 102+x 2=(20−x )2, 解得:x =152,∵ CE =152;(3)在Rt △ABC 中,有AB =25,AC =15,BC =20,点C 到AB 的距离为12; 当△ACD 为等腰三角形时,可分为三种情况: ①当AD =AC 时,AD =15;②当AC =CD 时,如图,作CE ⊥AB 于点E ,则AD =2AE ,∵ CE =12,由勾股定理,得 AE =9,∵ AD =2AE =18; ③当AD =CD 时,如图,在Rt△ABC中,∠ACB=90∘,当点D是AB中点时,有AD=BD=CD,∵ AD=12AB=12×25=252.综合上述,当△ACD为等腰三角形时,AD的长度为:15或18或252.【考点】三角形的面积勾股定理等腰三角形的判定与性质直角三角形全等的判定全等三角形的性质【解析】此题暂无解析【解答】解:(1)如图,在Rt△ABC中,∠ACB=90∘,AC=15,AB=25,BC2=AB2−AC2=400,∵ BC=20,∵ S△ABC=12AB⋅CD=12BC⋅AC,∵ 12×25⋅CD=12×20×15,解得:CD=12;(2)如图,连接AE,∵ DE ⊥AB ,∵ ∠ADE =∠C =90∘, 在Rt △ADE 和Rt △ACE 中,{AD =AC ,AE =AE ,Rt △ADE ≅Rt △ACE(HL), ∵ DE =CE .设DE =CE =x ,则BE =20−x , 又BD =25−15=10, 在Rt △BDE 中,由勾股定理,得 102+x 2=(20−x )2, 解得:x =152,∵ CE =152;(3)在Rt △ABC 中,有AB =25,AC =15,BC =20,点C 到AB 的距离为12; 当△ACD 为等腰三角形时,可分为三种情况: ①当AD =AC 时,AD =15;②当AC =CD 时,如图,作CE ⊥AB 于点E ,则AD =2AE ,∵ CE =12,由勾股定理,得 AE =9,∵ AD =2AE =18; ③当AD =CD 时,如图,在Rt△ABC中,∠ACB=90∘,当点D是AB中点时,有AD=BD=CD,∵ AD=12AB=12×25=252.综合上述,当△ACD为等腰三角形时,AD的长度为:15或18或252. 4.【答案】解:(1)∵ △ABC中,∠ACB=90∘,AB=10,BC=6,∵ 由勾股定理,得AC=√102−62=8.如图,连接BP,当PA=PB时,PA=PB=2t,PC=8−2t,在Rt△PCB中,PC2+CB2=PB2,即(8−2t)2+62=(2t)2,解得t=258,故当t=258s时,PA=PB.(2)如图1,过P作PE⊥AB,∵ 点P恰好在∠BAC的角平分线上,且∠C=90∘,AB=10,BC=6,∵ CP=EP,∵ △ACP≅△AEP(HL),∵ AC=8=AE,BE=2.设CP=x,则BP=6−x,PE=x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6−x)2,解得x=83,∵ CP=83,∵ CA+CP=8+83=323,∵ t=323÷2=163(s).(3)①如图2,当CP=CB时,△BCP为等腰三角形,若点P在CA上,则2t=8−6,解得t=1(s);②如图3,当BP=BC=6时,△BCP为等腰三角形,则AC+CB+BP=8+6+6=20,所以t=20÷2=10(s);③如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,∵ 由等面积法,得CD=AC⋅BCAB=4.8,在Rt△BCD中,由勾股定理,得BD=3.6,∵ PB=2BD=7.2,∵ CA+CB+BP=8+6+7.2=21.2,此时t=21.2÷2=10.6(s);④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,则PD为△ABC的中位线,AB=5,∵ AP=BP=12∵ AC+CB+BP=8+6+5=19,(s);∵ t=19÷2=192s时,综上所述,t为1s或10.6s或10s或192△BCP为等腰三角形.【考点】勾股定理动点问题角平分线的性质直角三角形全等的判定等腰三角形的性质【解析】(1)答案未提供解析.(2)答案未提供解析.(3)答案未提供解析.【解答】解:(1)∵ △ABC中,∠ACB=90∘,AB=10,BC=6,∵ 由勾股定理,得AC=√102−62=8.如图,连接BP,当PA=PB时,PA=PB=2t,PC=8−2t,在Rt△PCB中,PC2+CB2=PB2,即(8−2t)2+62=(2t)2,解得t=258,故当t=258s时,PA=PB.(2)如图1,过P作PE⊥AB,∵ 点P恰好在∠BAC的角平分线上,且∠C=90∘,AB=10,BC=6,∵ CP=EP,∵ △ACP≅△AEP(HL),∵ AC=8=AE,BE=2.设CP=x,则BP=6−x,PE=x,在Rt△BEP中,BE2+PE2=BP2,即22+x2=(6−x)2,解得x=83,∵ CP=83,∵ CA+CP=8+83=323,∵ t=323÷2=163(s).(3)①如图2,当CP=CB时,△BCP为等腰三角形,若点P在CA上,则2t=8−6,解得t=1(s);②如图3,当BP=BC=6时,△BCP为等腰三角形,则AC+CB+BP=8+6+6=20,所以t=20÷2=10(s);③如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,=4.8,∵ 由等面积法,得CD=AC⋅BCAB在Rt△BCD中,由勾股定理,得BD=3.6,∵ PB=2BD=7.2,∵ CA+CB+BP=8+6+7.2=21.2,此时t=21.2÷2=10.6(s);④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,则PD为△ABC的中位线,AB=5,∵ AP=BP=12∵ AC+CB+BP=8+6+5=19,(s);∵ t=19÷2=192s时,综上所述,t为1s或10.6s或10s或192△BCP为等腰三角形.5.【答案】解:(1)∵ a、b满足√a−b+(a−6)2=0,∵ a−b=0,a−6=0,∵ a=b=6,∵ 点A(6,0),点B(0,6),∵ AO=BO=6.∵ AP=AO=6,BP=AB−AP,∵ BP=6√2−6.(2)如图:连接OP,∵ OA=OB,∠AOB=90∘,∵ △AOB是等腰直角三角形,∠BAO=45∘.∵ 点P是AB中点,∵ OP=AP=BP,∠BOP=∠AOP=45∘=∠BAO.∵ 点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1cm/s,∵ AM=ON,且OP=AP,∠BOP=∠BAO.∵ △PNO≅△PMA(SAS).∵ S△OPN=S△APM.∵ S四边形PNOM=S△POM+S△OPN=S△POM+S△APM,∵ S四边形PNOM =S△AOP=12S△AOB=12×12×6×6=9.(3)OD=AE.理由如下:如图,过点A作AM⊥OA,延长OP交AM于点M.∵ BD⊥OP,∠AOB=90∘,∵ ∠DBO+∠BOF=90∘,∠BOF+∠AOM=90∘,∵ ∠DBO=∠AOM,又AO=BO,∠BOD=∠MAO=90∘,∵ △BOD≅△OAM(ASA),∵ ∠BDO=∠AMO,OD=AM.∵ AM⊥OA,∠BAO=45∘,∵ ∠BAM=∠BAO=45∘.∵ ∠BDO=∠AEP,∠BDO=∠AMO,∵ ∠AEP=∠AMO,又∠BAM=∠BAO=45∘,AP=AP,∵ △APM≅△APE(AAS).∵ AM=AE,又AM=OD.∵ OD=AE.【考点】非负数的性质:算术平方根非负数的性质:偶次方全等三角形的性质与判定三角形的面积等腰直角三角形【解析】暂无暂无暂无【解答】解:(1)∵ a、b满足√a−b+(a−6)2=0,∵ a−b=0,a−6=0,∵ a=b=6,∵ 点A(6,0),点B(0,6),∵ AO=BO=6.∵ AP=AO=6,BP=AB−AP,∵ BP=6√2−6.(2)如图:连接OP,∵ OA=OB,∠AOB=90∘,∵ △AOB是等腰直角三角形,∠BAO=45∘.∵ 点P是AB中点,∵ OP=AP=BP,∠BOP=∠AOP=45∘=∠BAO.∵ 点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1cm/s,∵ AM=ON,且OP=AP,∠BOP=∠BAO.∵ △PNO≅△PMA(SAS).∵ S△OPN=S△APM.∵ S四边形PNOM=S△POM+S△OPN=S△POM+S△APM,∵ S四边形PNOM =S△AOP=12S△AOB=12×12×6×6=9.(3)OD=AE.理由如下:如图,过点A作AM⊥OA,延长OP交AM于点M.∵ BD⊥OP,∠AOB=90∘,∵ ∠DBO +∠BOF =90∘,∠BOF +∠AOM =90∘, ∵ ∠DBO =∠AOM ,又AO =BO ,∠BOD =∠MAO =90∘,∵ △BOD ≅△OAM(ASA),∵ ∠BDO =∠AMO ,OD =AM .∵ AM ⊥OA ,∠BAO =45∘,∵ ∠BAM =∠BAO =45∘.∵ ∠BDO =∠AEP ,∠BDO =∠AMO ,∵ ∠AEP =∠AMO ,又∠BAM =∠BAO =45∘,AP =AP ,∵ △APM ≅△APE(AAS).∵ AM =AE ,又AM =OD .∵ OD =AE .6.【答案】解:(1)如图1,过C 作CM ⊥x 轴于M 点,∵ ∠MAC +∠OAB =90∘,∠OAB +∠OBA =90∘, ∵ ∠MAC =∠OBA ,在△MAC 和△OBA 中,{∠CMA =∠AOB =90∘,∠MAC =∠OBA,AC =AB,∴ △MAC ≅△OBA(AAS),∴ CM =OA =2,MA =OB =4,∴ OM =OA +AM =2+4=6,∴ 点C 的坐标为(−6,−2).(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE =OQ ,∴ OP −DE =OP −OQ =PQ .∵ ∠APO +∠QPD =90∘,∠APO +∠OAP =90∘,∴ ∠QPD =∠OAP ,在△AOP 和△PQD 中,{∠AOP =∠PQD =90∘,∠OAP =∠QPD,AP =PD,∴ △AOP ≅△PQD(AAS),∴ PQ =OA =2,即OP −DE =2.(3)如图3,过点F 分别作FS ⊥x 轴于S 点,FT ⊥y 轴于T 点,则FS =FT =2,∠FHS =∠HFT =∠FGT ,则△FSH ≅△FTG(AAS),则GT =HS .又∵ G(0,m),H(n,0),点F 坐标为(−2,−2),∴ OT =OS =2,OG =|m|=−m ,OH =n ,∴ GT =OG −OT =−m −2,HS =OH +OS =n +2, 则−2−m =n +2,则m +n =−4.【考点】全等三角形的性质与判定等腰直角三角形【解析】左侧图片未给出解析.左侧图片未给出解析.左侧图片未给出解析.【解答】解:(1)如图1,过C 作CM ⊥x 轴于M 点,∵ ∠MAC +∠OAB =90∘,∠OAB +∠OBA =90∘, ∵ ∠MAC =∠OBA ,在△MAC 和△OBA 中,{∠CMA =∠AOB =90∘,∠MAC =∠OBA,AC =AB,∴ △MAC ≅△OBA(AAS),∴ CM =OA =2,MA =OB =4, ∴ OM =OA +AM =2+4=6, ∴ 点C 的坐标为(−6,−2).(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE =OQ ,∴ OP −DE =OP −OQ =PQ . ∵ ∠APO +∠QPD =90∘,∠APO +∠OAP =90∘,∴ ∠QPD =∠OAP ,在△AOP 和△PQD 中,{∠AOP =∠PQD =90∘,∠OAP =∠QPD,AP =PD,∴ △AOP ≅△PQD(AAS),∴ PQ =OA =2,即OP −DE =2.(3)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,则△FSH≅△FTG(AAS),则GT=HS.又∵ G(0,m),H(n,0),点F坐标为(−2,−2),∴ OT=OS=2,OG=|m|=−m,OH=n,∴ GT=OG−OT=−m−2,HS=OH+OS=n+2,则−2−m=n+2,则m+n=−4.7.【答案】(1)证明:∵ △ABC是等边三角形,且AD=DB,∠ACB=30∘.∵ ∠DCB=12由题意得,AD=BE,∵ DB=BE,∵ ∠BDE=∠BED.∵ ∠BDE+∠BED=∠ABC=60∘,∵ ∠BDE=∠BED=30∘,∵ ∠DCE=∠BED,∵ DE=DC.(2)解:DE=DC,理由如下:如图,作DF//AC交BC于F,则∠BDF=∠A=60∘,∠DFB=∠ACB=60∘,∵ △DBF为等边三角形,∵ DB=DF=BF,∠DBF=∠DFB=60∘,∵ FC=AD=BE,∠DBE=∠DFC.在△DBE和△DFC中,{BE=FC,∠DBE=∠DFC,DB=DF,∵ △DBE≅△DFC(SAS),∵ DE=DC.(3)解:如图,在BE上截取BH=BD,连接DH,∵ ∠DBH=∠ABC=60∘,∵ △BDH为等边三角形,∵ DH=DB,∠BDH=∠BHD=60∘,∵ ∠DHE=∠DBC=120∘.∵ AD=BE,BH=BD,AB=BC,∵ HE=BC.在△DHE和△DBC中,{HE=BC,∠DHE=∠DBC,DH=DB,∵ △DHE≅△DBC(SAS),∵ ∠DEH=∠DCB.∵ ∠EDC=90∘,∵ ∠DEC=180∘−∠EDC2=45∘.【考点】三角形的外角性质等边三角形的性质全等三角形的性质与判定平行线的性质等边三角形的性质与判定三角形内角和定理【解析】此题暂无解析【解答】(1)证明:∵ △ABC是等边三角形,且AD=DB,∵ ∠DCB=12∠ACB=30∘.由题意得,AD=BE,∵ DB=BE,∵ ∠BDE=∠BED.∵ ∠BDE+∠BED=∠ABC=60∘,∵ ∠BDE=∠BED=30∘,∵ ∠DCE=∠BED,∵ DE=DC.(2)解:DE=DC,理由如下:如图,作DF//AC交BC于F,则∠BDF=∠A=60∘,∠DFB=∠ACB=60∘,∵ △DBF为等边三角形,∵ DB=DF=BF,∠DBF=∠DFB=60∘,∵ FC=AD=BE,∠DBE=∠DFC.在△DBE和△DFC中,{BE=FC,∠DBE=∠DFC,DB=DF,∵ △DBE≅△DFC(SAS),∵ DE=DC.(3)解:如图,在BE上截取BH=BD,连接DH,∵ ∠DBH=∠ABC=60∘,∵ △BDH为等边三角形,∵ DH=DB,∠BDH=∠BHD=60∘,∵ ∠DHE=∠DBC=120∘.∵ AD=BE,BH=BD,AB=BC,∵ HE=BC.在△DHE和△DBC中,{HE =BC ,∠DHE =∠DBC ,DH =DB ,∵ △DHE ≅△DBC (SAS ),∵ ∠DEH =∠DCB .∵ ∠EDC =90∘,∵ ∠DEC =180∘−∠EDC 2=45∘.8.【答案】解:(1)过B 作BE ⊥y 轴于E 点,如下图,∵ OA =7.5,OD =10,OE =6,BE =3,OC =3, ∵ DE =4,CD =7.在Rt △DEB 中, BD =√DE 2+EB 2=√42+32=5.(2) 如图①,∵ △DPQ ≅△DBC ,∵ DP =DB =5,DQ =DC =7,∵ AD =√(152)2+102=252,∵ CP =7−5=2,AQ =252−7=112.∴ {CP =1⋅t =2,AQ =at =112, 解得{t =2,a =114.如图②,∵ △DPQ ≅△DBC ,∴ DP =BD =5,DQ =DC =7,∴ CP =7+5=12,AQ =252+7=392,{CP =1⋅t =12,AQ =at =392,解得{t =12,a =138.如图③,∵ △DPQ ≅△DCB ,∵ DP =CD =7,QD =BD =5,∵ CP =14,AQ =252+5=352, {CP =1⋅t =14,AQ =at =352,{t =14,a =54.∵ 综上,a =114或138或54. 【考点】勾股定理全等三角形的性质动点问题【解析】暂无暂无【解答】解:(1)过B 作BE ⊥y 轴于E 点,如下图,∵ OA =7.5,OD =10,OE =6,BE =3,OC =3, ∵ DE =4,CD =7.在Rt △DEB 中,BD =√DE 2+EB 2=√42+32=5.(2) 如图①,∵ △DPQ ≅△DBC ,∵ DP =DB =5,DQ =DC =7, ∵ AD =√(152)2+102=252,∵ CP =7−5=2,AQ =252−7=112.∴ {CP =1⋅t =2,AQ =at =112,解得{t =2,a =114. 如图②,∵ △DPQ ≅△DBC ,∴ DP =BD =5,DQ =DC =7, ∴ CP =7+5=12,AQ =252+7=392,{CP =1⋅t =12,AQ =at =392,解得{t =12,a =138. 如图③,∵ △DPQ ≅△DCB ,∵ DP =CD =7,QD =BD =5, ∵ CP =14,AQ =252+5=352,{CP =1⋅t =14,AQ =at =352,{t =14,a =54. ∵ 综上,a =114或138或54.。
八年级数学全等三角形中的动点问题压轴题汇总
八年级数学全等三角形中的动点问题压轴题汇总教学重点难点利用熟悉的知识点解决陌生的问题思路:1.利用图形想到三角形全等2.分析题目,了解有几个动点,动点的路程,速度3.结合图形和题目,得出已知或能间接求出的数据4.分情况讨论,把每种可能情况列出来,不要漏5.动点一般都是压轴题,步骤不重要,重要的是思路6.动点类问题一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论.【典型例题】例1. 如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD 的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为_____________,数量关系为______________.请利用图2或图3予以证明(选择一个即可).例2. 如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.(1)求证:△ADF≌△CEF.(2)试证明△DFE是等腰直角三角形.(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.(4)求△CDE面积的最大值.变式如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③C.①③④D.②③④例3. 正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.(1)求证:DF=BF(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.例4.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?变式如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q 点从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?【拓展提高】1..两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE2.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.3. 已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证12DEF CEF ABCS S S+=△△△.当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.4. 如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B做BK⊥BE与B,交AC于点K,连接CF,交AB于点H,交BK于点G.(1)求证:BH=BG;(2)求证:BE=BG+AE.5.正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.6.如图1,若△ABC和△ADE为等边三角形,M、N分别为EB、CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕点A旋转到图2的位置时,CD=BE是否依然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕点A旋转到图3位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.7.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧做△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=_________度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.8.思考与推理如图,在四边形ABCD中,AB=AD=6cm,CB=CD,AB⊥BC,CD⊥AD,∠BCD=120°. ∠PCQ=60°,两边分别交线段AB、AD于点P、Q,把△PBC绕点C顺时针旋转120°得到△MDC.请在图中找出一对全等的三角形并加以证明(△PBC与△MDC除外).探究与应用在上边的条件下,若∠PCQ绕顶点C在∠BCD内转动,两边始终与线段AB、AD相较于点P、Q,试探究在转动过程中△APQ的周长是否变化,若不变,求它的周长;若变化,请说明理由.9.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为______________.10.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,BC=2,AD是BC边上的高.作正方形DEFG,使点A、C分别在DG和DE上,且DE=BC,且连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,或小于90°),DG、DE分别交AB、AC于点M和N(如图②),则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.11.如下图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?12.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC 上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边三角形边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.。
专题8填空题压轴题之动点问题(原卷版)
专题8填空题压轴题之动点问题(原卷版)模块一 2022中考真题训练类型一用函数观点描述几何图形1.(2022•烟台)如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DE∥AB,交AC于点E,EF∥BC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为.2.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A 出发,点P以√2cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=72(s)时,则y=cm2.3.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C 停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为.类型二三角形、多边形上的动点问题4.(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=√2.当AM+BN的值最小时,CM的长为.5.(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF=,FB+FD的最小值为.6.(2022•广州)如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP′,连接PP′,CP′.当点P′落在边BC上时,∠PP′C的度数为;当线段CP′的长度最小时,∠PP′C的度数为.7.(2022•柳州)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.8.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是.9.(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.10.(2022•盘龙区)如图,已知四边形ABCD中,AB=10cm,BC=8cm,CD=12cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3cm/s的速度沿B﹣C﹣B运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为cm/s时,能够使△BPE与△CQP全等.类型三有关圆的动点问题11.(2022•宁波)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.12.(2022•东城区模拟)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0)与(7,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴正半轴上,则点P的坐标为.模块二2023中考押题预测13.(2022•驻马店二模)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.14.(2022•普定县模拟)如图,点M是∠AOB平分线上一点,∠AOB=60°,ME⊥OA于E,OE=√5,如果P是OB上一动点,则线段MP的取值范围是.15.(2022•徐州二模)如图,在等边三角形ABC中,AB=2,点D,E,F分别是边BC,AB,AC边上的动点,则△DEF周长的最小值为.16.(2022•仁怀市模拟)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点D为边AB的中点,点P为边AC上的动点,则PB+PD的最小值为.17.(2022•亭湖区校级三模)在平面直角坐标系中,A(3,3),B(6,0),点D、E是OB的三等分点,点P是线段AB上的一个动点,若只存在唯一一个点P使得PD+PE=a,则a需满足的条件是:.18.(2022•夏邑县校级模拟)如图,在等腰三角形ABC中,∠A=30°,BC=2,点D为AC的中点,点E 为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF,当EF⊥AC时,AE的长为.19.(2022•新昌县模拟)在△ABC中,∠A=60°,点P和点Q分别是边AC和BC上的两个动点,分别连结BP和PQ.把△ABC分割成三个三角形.若分割成的这三个三角形都是等腰三角形,则∠ABC的度数可以是.20.(2022•新化县一模)已知在Rt△ABC中,∠C=90°,∠ABC=75°,AB=5.点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是.21.(2022•顺城区模拟)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=6,点M是射线AC上的一个动点,MC=1,连接BM,以AB为边在AB的上方作∠ABE=∠AMB,直线BE交AC的延长线于点F,则CF=.23.(2022•碧江区一模)如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为.24.(2022•抚顺县二模)如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC CB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 .25.(2022•德保县二模)如图,在平面直角坐标系中,△OAB 是边长为4的等边三角形,OD 是AB 边上的高,点P 是OD 上的一个动点,若点C 的坐标是(0,−√3),则P A +PC 的最小值是 .26.(2022•元宝区校级一模)如图,在△ABC 中,∠C =90°,AC =6,BC =8,动点P 从点B 出发以每秒1个单位长度的速度沿B →A 匀速运动;同时点Q 从点A 出发以同样的速度沿A →C →B 匀速运动.当点P 到达点A 时,P 、Q 同时停止运动,设运动时间为t 秒,当t 为 时,以B 、P 、Q 为顶点的三角形是等腰三角形.27.(2022•大理州二模)如图,Rt △ACB 中,∠ACB =90°,AB =13cm ,AC =5cm ,动点P 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为 .28.(2022•锡山区校级模拟)如图,△ABC 中,∠C =90°,BC =6,∠ABC 的平分线与线段AC 交于点D ,且有AD =BD ,点E 是线段AB 上的动点(与A 、B 不重合),连结DE ,当△BDE 是等腰三角形时,则AE 的长为 .29.(2022•衡南县校级二模)等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到P A与腰垂直的位置时,点P运动的时间应为秒.30.(2022•大冶市校级模拟)如图,已知四边形ABCD是正方形AB=2√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连CG.(1)CE+CG=;(2)若四边形DEFG面积为5时,则CG=.31.(2022•玉树市校级一模)如图,菱形ABCD中,∠A=60°,AD=4,P是AB边一个动点,E、F分别是DP、BP的中点,则线段EF的长为.32.(2022•浉河区校级模拟)如图,在矩形纸片ABCD中,AB=4,AD=5,点F是AB的中点,点E为AD上一动点,作△AEF关于直线EF的对称图形,点A的对应点为点A′,作△A′EF关于直线A′E 的对称图形,点F的对应点为F'.当点F'落在矩形ABCD的边上时,AE的长为.33.(2022•嵩县模拟)如图,四边形ABCD和AEFG都是正方形,点E是AB边上一个动点,点G在AD 边上,AB=√2cm,连接BF,CF,若△BCF恰为等腰三角形,则AE的长为cm.34.(2022•赣州模拟)如图,矩形ABCD中,AB=6,AD=2,点E是边CD的中点,点P在AB边上运动,点F为DP的中点;当△DEF为等腰三角形时,则AP的长为.35.(2022•华龙区校级模拟)如图,正方形ABCD中,AB=6,点E为对角线AC上的动点,以DE为边作正方形DEFG,点H是CD上一点,且DH=23CD,连接GH,则GH的最小值为.36.(2022•柘城县校级二模)如图,在矩形ABCD中,AB=1,BC=√2,点E为射线AD上的动点(不与点A,D重合),点A关于直线BE的对称点为A',连接A'B,A'D,A'C,当△A'BC是以BC为底边的等腰三角形时,AE的长为.37.(2022•武汉模拟)如图,菱形ABCD中,AB=5,BD=4√5,动点E、F分别在边AD、BC上,且AE =CF,过点B作BP⊥EF于P,当E点从A点运动到D点时,线段CP的长度的取值范围为.38.(2022•保亭县二模)如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A →E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x 之间的函数关系图象如图2,则BC的长为;当x=6时,PQ的长为.39.(2022•丹江口市模拟)已知定点P(a,b),且动点Q(x,y)到点P的距离等于定长r,根据平面内两点间距离公式可得(x﹣a)2+(y﹣b)2=r2,这就是到定点P的距离等于定长r圆的方程.已知一次函数的y=﹣2x+10的图象交y轴于点A,交x轴于点B,C是线段AB上的一个动点,则当以OC为半径的⊙C 的面积最小时,⊙C的方程为40.(2022•香洲区校级三模)如图正方形ABCD的边长为3,E是BC上一点且CE=1,F是线段DE上的动点.连接CF,将线段CF绕点C逆时针旋转90°得到CG,连接EG,则EG的最小值是.41.(2022•韶关模拟)如图,已知正方形ABCD中,AB=2,点E为BC边上一动点(不与点B、C重合),连接AE,将AE绕点E顺时针旋转90得到EF,连接CF,连接AF与CD相交于点G,连接DF,当DF 最小时,四边形CEGF的面积是.42.(2022•珠海校级三模)如图,在矩形ABCD中,AB=4,BC=6,点P是线段BC上一动点,将线段P A 绕点P顺时针转90°得到线段P A',连接DA',则DA'的最小值为.43.(2022•仁怀市模拟)如图,在等边△ABC中,AD是BC边上的高,点E是AD上一动点,连接CE,将线段CE绕点E顺时针旋转60°得到线段FE,连接AF,若AB=4,AF=√19,则CF的长为.44.(2022•大庆二模)如图是边长为2的等边三角形ABC,D为△ABC内(包括△ABC的边)一动点,且满足CD2=AD2+BD2,则CD的长度m的取值范围为.45.(2022•雁塔区校级模拟)如图,正方形ABCD中,AB=4,点E为边BC上一动点,将点A绕点E顺时针旋转90°得到点F,则DF的最小值为.46.(2022•沈阳二模)如图,在矩形ABCD中,AB=5,BC=6,点E(不与点B重合)是BC边上一个动点,将线段EB绕点E顺时针旋转90°得到线段EF,当△DFC是直角三角形时,那么BE的长是.47.(2022•台山市校级一模)△ABC中,AB=AC=13,BC=24,点D为△ABC的对称轴上一动点,过点D作⊙O与BC相切,BD与⊙O相交于点E,那么AE的最大值为.48.(2022•蓬江区校级一模)矩形ABCD中,AB=2,BC=6,点P为矩形内一个动点.且满足∠PBC=∠PCD,则线段PD的最小值为.49.(2022•芜湖二模)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=4.点F为射线CB上一动点,过点C作CM⊥AF于M,交AB于E,D是AB的中点,则DM长度的最小值是.50.(2022•周至县一模)如图,在Rt△ABC中,∠B=90°,∠C=30°,AD平分∠BAC,BC=6,点O 为线段AD上的动点,若以点O为圆心,1为半径的⊙O在△ABC内(⊙O可以与△ABC的边相切),则点D到⊙O上的点的距离最大值为.51.(2022•丹东模拟)在平面直角坐标系中,已知点A(﹣4,0),B(2,0),点M是y轴上的一个动点,当∠BMA=30°时,点M的坐标为.52.(2022•常山县模拟)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC 边上的动点,以EF为直径作⊙O,当⊙O与矩形的边相切时,BF的长为.53.(2022•元宝区校级模拟)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则△MBC面积的最小值为.54.(2022•亭湖区校级一模)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=6,BD=4,若点P为直径AB上的一个动点,连接EP,若△AEP与△ABD相似,AP的长.55.(2022•柯桥区一模)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(1,2),(6,2),(6,0).点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B .当点A 从M 运动到N 时,点B 随之运动,点B 经过的路径长是 .。
初二动点问题及中考压轴题
初二动点问题及中考压轴题1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C 作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q 运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D 运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q 分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是 81=8(秒),∴点P的速度是 6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵ 485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P( 85, 245)M1( 285, 245),M2(- 125, 245),M3( 125,- 245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.动点问题及四边形难题习题1如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);2.已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;3.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. A BDC O P xy(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?4. 如图,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD =CD ,∠ADB =90°,CH ⊥AB 于H ,CH 交AD 于F.(1)求证:CD ∥AB ;(2)求证:△BDE ≌△ACE ;(3)若O 为AB 中点,求证:OF =12BE.5、如图1―4―2l ,在边长为a 的菱形ABCD 中,∠DAB =60°,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足A E +CF=a ,说明:不论E 、F 怎样移动,三角形BEF 总是正三角形.6、如图1-4-38,等腰梯形ABCD 中,AD ∥BC ,AB =CD ,∠ DBC =45○ ,翻折梯形使点B 重合于点 D ,折痕分别交边 AB 、BC 于点F 、E ,若AD=2,BC=8,求BE 的长.7、在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . A QC DB P(1)求证:CF AB ;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.8、如图l -4-80,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过点A 作AG ⊥EB ,垂足为G ,AG 交BD 于F ,则OE=OF . (1)请证明0E=OF(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E 在AC 的延长线上,AG ⊥EB ,AG 交 EB 的延长线于 G ,AG 的延长线交DB 的延长线于点F ,其他条件不变,则仍有OE=OF .问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.9已知:如图4-26所示,△ABC 中,AB=AC ,∠BAC=90°,D 为BC 的中点,P 为BC 的延长线上一点,PE ⊥直线AB 于点E ,PF ⊥直线AC 于点F .求证:DE ⊥DF 并且相等.10已知:如图4-27,ABCD 为矩形,CE ⊥BD 于点E ,∠BAD 的平分线与直线CE 相交于点F .求证:CA=CF .FEDCBA11已知:如图4-56A .,直线l 通过正方形ABCD 的顶点D 平行于对角线AC ,E 为l 上一点,EC=AC ,并且EC 与边AD 相交于点F .求证:AE=AF .本例中,点E 与A 位于BD 同侧.如图4-56B .,点E 与A 位于BD 异侧,直线EC 与DA 的延长线交于点F ,这时仍有AE=AF .请自己证明.动点问题练习题1、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.C P Q BA MNO M A N B C yx2、如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒).(1)求线段AB 的长;当t 为何值时,MN ∥OC ?(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? 若有最小值,最小值是多少? (3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直?若存在,求出这时的t 值;若不存在,请说明理由.2、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.A D CB M NA P C QB DEDBCAQP3、如图,A 、B 分别为x 轴和y 轴正半轴上的点。
苏教版八年级上册复习专题练习一:动点问题压轴题(含答案)
初二数学期中复习专题一:动点问题3、动点中的旋转问题1、如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上一动点,连接OP,将线段OP 绕点O 逆时针旋转60°得到线段OD.要使点D 恰好落在BC 上,则AP 的长是.2、如图所示:一副三角板如图放置,等腰直角三角板ABC 固定不动,另一块三角板的直角顶点放在等腰直角三角形的斜边中点D 处,且可以绕点D 旋转,在旋转过程中,两直角边的交点G、H 始终在边AB、BC 上.(1)在旋转过程中线段BG 和CH 大小有何关系?证明你的结论.(2)若AB=BC=4cm,在旋转过程中四边形GBHD 的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围.(3)若交点G、H 分别在边AB、BC 的延长线上,则(1)中的结论仍然成立吗?请画出相应的图形,直接写出结论.3、如图1,已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG,使点A、C 分别在DG 和DE 上,连接AE,BG.(1)试猜想线段BG 和AE 的数量关系是;(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2 证明你的结论;②若BC=DE=4,当AE 取最大值时,求AF 的值.4、点的移动问题4、如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B、P 在直线a 的异侧,BM⊥直线a 于点M,CN⊥直线a 于点N,连接PM、PN;(1)延长MP交CN于点E(如图2),①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a 绕点A 旋转到图3 的位置时,点B、P 在直线a 的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由.5、在△ABC 中,∠BAC=90°,AB=AC.点D 从点B 出发沿射线BC 移动,以AD 为边在AB 的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D 在BC 边上,则∠BCE=°;(2)如图2,若点D 在BC 的延长线上运动.①∠BCE 的度数是否发生变化?请说明理由;②若BC=3,CD=6,则△ADE 的面积为.6、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.7、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为1 米,∠B=90°,BC=4 米,AC=8 米,当正方形DEFH 运动到什么位置时,即当AE=米时,有DC2=AE2+BC2.8、【新知学习】如果一个三角形有一边上的中线等于这条边的一半,那么我们就把这样的三角形叫做“智慧三角形”.【简单运用】(1)下列三个三角形,是智慧三角形的是(填序号);(2)如图1,已知等边三角形ABC,请用刻度尺在该三角形边上找出所有满足条件的点D,使△ABD 为“智慧三角形”,并写出作法;【深入探究】(3)如图2,在正方形ABCD 中,点E 是BC 的中点,F 是CD 上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;【灵活应用】(4)如图3,等边三角形ABC 边长5cm.若动点P 以1cm/s 的速度从点A 出发,沿△ABC 的边AB ﹣BC﹣CA 运动.若另一动点Q 以2cm/s 的速度从点B 出发,沿边BC﹣CA﹣AB 运动,两点同时出发,当点Q首次回到点B时,两点同时停止运动.设运动时间为t(s),那么t为.(s)时,△PBQ为“智慧三角形”.动点问题压轴题1、【解答】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△APO 和△COD 中,,∴△APO≌△COD(AAS),即AP=CO,∵CO=AC﹣AO=6,∴AP=6.故答案为6.2、【解答】解:(1)BG和CH为相等关系,如图1,连接BD,∵等腰直角三角形ABC,D 为AC 的中点,∴DB=DC=DA,∠A=∠DBH=45°,BD⊥AC,∵∠EDF=90°,∴∠ADG+∠GDB=90°,∴∠BDG+∠BDH=90°,∴∠ADG=∠HDB,∴在△ADG 和△BDH 中,,∴△ADG≌△BDH(ASA),∴AG=BH,∵AB=BC,∴BG =HC ,(2) ∵等腰直角三角形 ABC ,D 为 AC 的中点,∴DB =DC =DA ,∠DBG =∠DCH =45°,BD ⊥AC ,∵∠GDH =90°,∴∠GDB +∠BDH =90°,∴∠CDH +∠BDH =90°,∴∠BDG =∠HDC ,∴在△BDG 和△CDH 中,,∵△BDG ≌△CDH (ASA ),∴S 四边形 DGBH =S △BDH +S △GDB =S △ABD ,∵DA =DC =DB ,BD ⊥AC ,∴S △ABD = S △ABC ,∴S 四边形 DGBH =S △ABC =4cm 2,∴在旋转过程中四边形 GBHD 的面积不变,(3) 当三角板 DEF 旋转至图 2 所示时,(1)的结论仍然成立,如图 2,连接 BD ,∵BD ⊥AC ,AB ⊥BH ,ED ⊥DF ,∴∠BDG =90°﹣∠CDG ,∠CDH =90°﹣∠CDG ,∴∠BDG =∠CDH ,∵等腰直角三角形 ABC ,∴∠DBC =∠BCD =45°,∴∠DBG =∠DCH =135°,∴在△DBG 和△DCH 中,,∴△DBG ≌△DCH (ASA ),∴BG =CH .3、.【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG 就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG 就可以得出结论;②由①可知BG=AE,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【解答】解:(1)BG=AE.理由:如图1,∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG 是正方形,∴DE=DG.在△BDG 和△ADE 中,,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为:BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC 中,D 为斜边BC 中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD 为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG 和△ADE 中,,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG 取得最大值时,AE 取得最大值.如图3,当旋转角为270°时,BG =AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF 中,由勾股定理,得AF==,∴AF=2 .4、【解答】证明:(1)①如图2:∵BM⊥直线a 于点M,CN⊥直线a 于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P 为BC 边中点,∴BP=CP,在△BPM 和△CPE 中,,∴△BPM≌△CPE,(ASA)②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE 中,PN=ME,∴PM=PN;(2)成立,如图3.延长MP 与NC 的延长线相交于点E,∵BM⊥直线 a 于点M,CN⊥直线a 于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P 为BC 中点,∴BP=CP,在△BPM 和△CPE 中,,∴△BPM≌△CPE,(ASA)∴PM=PE,∴PM=ME,则Rt△MNE 中,PN=ME,∴PM=PN.5、【解答】解:(1)∵△ABC和△ADE都是等腰Rt△,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ACE 和△ABD 中,,∴△ACE≌△ABD(SAS);∴∠ACE=∠ABD=45°,∴∠BCE=∠BCA+∠ACE=45°+45°=90°;故答案为:90;(2)①不发生变化.∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°,∵∠BAC=∠DAE=90°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE,在△ACE 和△ABD 中∴△ACE≌△ABD(SAS)∴∠ACE=∠ABD=45°∴∠BCE=∠BCA+∠ACE=45°+45°=90°∴∠BCE 的度数不变,为90°;② 11746、【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD 与△ACE 中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD 与△ACE 中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D 在射线BC 上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD 和△ACE 中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D 在射线BC 的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB 和△AEC 中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.7、【解答】解:如图,连接CD,假设AE=x,可得EC=8﹣x.∵正方形DEFH 的边长为1 米,即DE=1 米,∴DC2=DE2+EC2=1+(8﹣x)2,AE2+BC2=x2+16,∵DC2=AE2+BC2,∴1+(8﹣x)2=x2+16,解得:x=,所以,当AE=米时,有DC2=AE2+BC2.故答案是:.8、【解答】解:(1)因为直角三角形的斜边上的中线等于斜边的一半,所以①是“智慧三角形”.故答案为①(2)用刻度尺分别量取AC、BC 的中点D、D′.点D、D′即为所求.(3)结论:△AEF 是“智慧三角形“.理由如下:如图,设正方形的边长为4a∵E 是BC 的中点∴BE=EC=2a,∵CF=CD∴FC=a,DF=4a﹣a=3a,在Rt△ABE 中,AE2=(4a)2+(2a)2=20a2在Rt△ECF 中,EF2=(2a)2+a2=5a2在Rt△ADF 中,AF2=(4a)2+(3a)2=25a2∴AE2+EF2=AF2∴△AEF 是直角三角形,∠AEF=90°∵直角三角形斜边AF 上的中线等于AF 的一半∴△AEF为“智慧三角形”.(4)如图3 中,①当点P 在线段AB 上,点Q 在线段BC 上时,若∠PQB=90°,则BP=2BQ,∴5﹣t=4t,解得t=1.若∠BPQ=90°,则BQ=2PB,∴2t=2(5﹣t)∴t=.②当点Q在线段AC上时,不存在“智慧三角形”.③当点P 在线段BC 上,点Q 在线段AB 上时,若∠PQB=90°,则BP=2BQ,∴t﹣5=2(15﹣2t),∴t=7,若∠QPB=90°,则BQ=2PB,∴15﹣2t=2(t﹣5),∴t=,综上所述,满足条件的t 的值为1 或或或7.故答案为1 或或或7.。
初中数学压轴题-动点问题
通常动点的运动场所将从以下选出:1、在直角三角形的边上运动2、在梯形的边上运动3、在坐标轴上运动4、在抛物线上运动如果设时间为t,一般情况将从以下12个问题中选出(1)求某条线段的长度(2)求某个三角形的面积s与时间t的函数关系式(3)求两个图形重叠部分或动点所带的射线扫某个图形部分的面积s与时间t的函数关系式并求面积的最大值(4)t取何值时两直线平行(5)t取何值时两直线垂直?(6)t取何值时某三角形为等腰三角形三角形?(7)t取何值时某三角形为直角三角形?(8)t取何值时某四边形为特殊四边形?(9)t取何值时两个三角形全等或相似(10)当动点所带的射线把某个中心对称图形的面积二等分时求t.(11)点在运动的过程中,某个图形的面积或角度是否发生变化,若不变,求出这个面积或角的度数,若变化,说明怎样变?(12)当抛物线等分某些特殊点的数量时求t的取值范围E图1CD PD、A的距离之差最大,求出点第2题图),用待第2题图R 1R 2R 3D?E 3932. 函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
明确运动路径,运动速度,起始点,终点,从而确定自变量的取值范围,画出相应的图形。
找出一个基本关系式,把相关的量用一个自变量的表达式表达出来。
人教版八年级上册数学期末动点问题压轴题(含答案)
人教版八年级上册数学期末动点问题压轴题(含答案)1.在平面直角坐标系中,点A 的坐标为()4,0,点B 为y 轴正半轴上的一个动点,以B 为直角顶点,AB 为直角边在第一象限作等腰Rt ABC .(1)如图1,若3OB =,则点C 的坐标为______;(2)如图2,若4OB =,点D 为OA 延长线上一点,以D 为直角顶点,BD 为直角边在第一象限作等腰Rt BDE △,连接AE ,求证:AE AB ⊥;(3)如图3,以B 为直角顶点,OB 为直角边在第三象限作等腰Rt OBF .连接CF ,交y 轴于点P ,求线段BP 的长度.2.如图1,在△ABC 中,AB AC =,点E 在线段BC 上,连接AE 并延长到G ,使得EG AE =,过点G 作GD BA ∥分别交BC ,AC 于点F ,D .(1)求证:△≌△ABE GFE ;(2)若3GD =,1CD =,求AB 的长度;(3)如图2,过点D 作DH BC ⊥于H ,P 是直线DH 上的一个动点,连接AF ,AP ,FP ,若45C ∠=︒,AF 2)条件下,求△AFP 周长的最小值.3.如图,在Rt ABC △中,90ACB ∠=︒,点D 是AB 上一动点,连接CD ,以点C 为直角顶点,CD 为直角边作等腰直角DCE △,DE 交BC 于点F .(1)如图1,若20B ∠=︒,当CDF 为等腰三角形时,请直接写出此时BDF ∠的度数; (2)如图2,若ED AB ⊥,点G 为EF 上一点,BD GE FG +=. △求证:BFD A ∠=∠; △求证:2AB FG =.4.如图,已知CD 是线段AB 的垂直平分线,垂足为D ,C 点在D 点上方,△BAC =30°,P 是直线CD 上一动点,E 是射线AC 上除A 点外的一点,PB =PE ,连接BE .(1)如图1,若点P 与点C 重合,求△ABE 的度数;(2)如图2,若P 在C 点上方,试猜想线段PD ,AC ,CE 的数量关系并说明理由; (3)若AC =6,CE =2,则PD 的值为 .(直接写出结果)5.如图,在△ABC 中,AB =AC ,△BAC =90°,BC =8cm ,过点C 作直线MN △BC ,动点D 从点C 开始沿射线CB 方向以每秒3厘米的速度运动,动点E 也同时从点C 开始在直线MN 上以每秒1厘米的速度向远离C 点的方向运动,分别连接AD ,AE ,设运动时间为()0t t >秒.(1)若点E在射线CM上,当t=2时,直接写出CE,CD,BD的长;(2)在(1)的条件下,求证:△ABD△△ACE;(3)若点E在射线CN上,是否存在某一时刻t,使得△ABD和△ACE全等?若存在,求出t的值,若不存在,请说明理由.6.如图,等边ABC的边长为7cm,现有两动点M,N分别从点A、B同时出发,沿三角形的边按照图中标识的方向运动,已知点M的速度为1cm/s,点N的速度为2.5cm/s,当点N第一次到达点B时,点M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动过程中,点M,N能否与ABC中的某一顶点构成等边三角形,若能求出对应的时间t,若不能请说明理由.(3)当点M、N在边BC上运动时,连接AM、AN,能否得到以MN为底边的等腰三角形AMN?若能,请求出此时MN的边长,若不能请说明理由.7.已知△ABC的三个内角均为60,且AB=BC=AC=4cm,如图1,P、Q分别是边AB、BC上的动点,点P从顶点A、点Q从顶点B同时出发,且它们的速度都是1cm/s,连接AQ、CP相交于点M.(1)试判断图1中AQ与CP的数量关系,并证明你的结论.(2)在图1上P、Q两点运动的过程中,△CMQ变化吗?若变化,请说明理由;若不变,求出△CMQ的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ,CP交点为M,则△CMQ变化吗?若变化,请说明理由;若不变,求出△CMQ的度数.8.如图,边长为4cm的等边△ABC中,点P、Q分别是边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ,CP 交于点M,在点P,Q运动的过程中.(1)求证:△ABQ△△CAP;(2)△QMC的大小是否发生变化?若无变化,求△QMC的度数;若有变化,请说明理由;(3)连接PQ,当点P,Q运动多少秒时,△PBQ是直角三角形?9.如图,在Rt△ABC中,△ACB=90,△A=30°,AC=BC=6,CD平分△ACB 交斜边AB于点D,动点P从点C出发,沿折线CA―AD向终点D运动.(1)点P 在CA 上运动的过程中,当CP = 时,△CPD 与△CBD 的面积相等;(直接写出答案)(2)点P 在折线CA ―AD 上运动的过程中,若△CPD 是等腰三角形,求△CPD 的度数; (3)若点E 是斜边AB 的中点,当动点P 在CA 上运动时,线段CD 所在直线上存在另一动点M ,使两线段MP 、ME 的长度之和,即MP +ME 的值最小,则此时CP 的长度= .(直接写出答案)10.如图,AB BC CD DA ===,60A ∠=︒,点E ,F 分别为线段AD ,CD 上的动点,且60EBF ∠=︒.(1)当BE AD ⊥时,求证:12AE AD =; (2)连接EF ,判断BEF △的形状,并作证明;(3)当AB 的长度为定值时,四边形BEDF 的面积是否为定值?请说明理由.11.如图1,在等边△ABC 中,点E 是边AC 上的一定点,过点E 作EH △AB ,交BC 于点H .(1)求证:△CEH是等边三角形;(2)如图2,点D是射线BC上的一动点(不与点B,C重合),以DE为一边,在DE的右侧作等边△DEF.△当点D在边BC上(不与点H重合)时,求证:△DEH△△FEC.△当点D在射线BC上(不与点H重合)时,直接写出线段CE,CF,CD之间满足的数量关系.12.已知△ABC为等边三角形,边长为8,点D,E分别是边AB,BC上的动点,以DE 为边作等边三角形DEF.(1)如图1,若点F落在边AC上.△求证:AD=BE;△当△BDE为直角三角形时,求BE的长.(2)如图2,当AD=2BE时,点G为BC边的中点,求GF的最小值.13.△ABC是等边三角形,点D是AC边上动点,△CBD=α(0°<α<30°),把△ABD 沿BD对折,得到△A′BD.(1)如图1,若α=15°,则△CBA′=.(2)如图2,点P在BD延长线上,且△DAP=△DBC=α.△试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.△若BP =10,CP =m ,求CA ′的长.(用含m 的式子表示)14.如图,在△ABC 中,△ACB =90°,AC =BC ,D 是边AB 上的动点,连接CD ,点B 关于直线CD 的对称点为E ,射线AE 与射线CD 交于点F ,设BCD α∠=.(1)△当20α=︒时,连接CE .则△AFC 的大小是___________; △当45α<︒时,求AFC ∠的大小.(2)在△中△的条件下,若AD BC =,求证:AF CF =.15.如图,在△ABC 中,△ACB =90°,AC =BC ,D 是AB 边上的一个动点,连接CD ,点B 关于直线CD 的对称点为E ,射线AE 与射线CD 交于点F .(1)连接CE ,求证:△CAE =△CEA (2)当BD <AD 时,求△AFC 的大小;(3)若AD =AC ,试猜想AE 与CD 的数量关系,并证明.16.如图,△ABC 中,AB =BC =CA =3,点D 是边AB 延长线上的一动点,分别以C ,D 为圆心,CD 长为半径作弧,两弧在CD 上方交于点E ,连接EB 并延长EB ,交过点A 且垂直于AD 的直线于点F .(1)求证:EB=DA;(2)当110DCA∠=时,求△DEF的度数;(3)在点D运动过程中,线段BF的长度是否会发生变化?若不会发生变化,则求出BF 的长度;若会发生变化,请说明理由.17.已知:如图,ABC中,AB=AC,△A=45°,E是AC上的一点,△ABE=13△ABC,过点C作CD△AB于D,交BE于点P.(1)直接写出图中除ABC外的所有等腰三角形;(2)求证:BD=12PC;(3)点H、G分别为AC、BC边上的动点,当DHG周长取取小值时,求△HDG的度数.18.如图,△ABC是等腰直角三角形,△ACB=90°,AB=6.动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动.点P出发后,连接CP,以CP为直角边向右作等腰直角三角形CDP,使△DCP=90°,连接PD,BD.设点P的运动时间为t秒.(1)△ABC 的AB 边上高为 ; (2)求BP 的长(用含t 的式子表示); (3)就图中情形求证:△ACP △△BCD ; (4)当BP :BD =1:2时,直接写出t 的值.19.如图1所示,在边长为6 cm 的等边△ABC 中,动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动设点P 的运动时间为t (s ),t >0(1)当t = 时,△P AC 是直角三角形;(2)如图2,若另一动点Q 从点C 出发,沿线段CA 向点A 运动,且动点P ,Q 均以1cm/s 的速度同时出发,那么当t 取何值时,△P AQ 是直角三角形?请说明理由;(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动,且动点P ,Q 均以1cm/s 的速度同时出发.当点P 到达终点B 时,点Q 也随之停止运动,连接PQ 交AC 于点D ,过点P 作PE △AC 于E ,试问线段DE 的长度是否变化?若变化,请说明如何变化;若不变,请求出DE 的长度.20.ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B ∠的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.参考答案:1.(1)点C (3,7);(3)2.2. (2)2; (3)23.(1)70︒4.(1)90°(2)PD 12+AC =CE , (3)1或55.(1)CE =2cm ,CD =6cm ,BD =2cm(3)存在,t =46.(1)点M 、N 运动143秒后重合; (2)点M 、N 运动时间为2秒时,AMN 是等边三角形;点M 、N 运动时间为6秒时,CMN 是等边三角形;(3)当点M 、N 运动8秒时,AMN 是以MN 为底边等腰三角形.7.(1)AQ CP =(2)不变,60CMQ ∠=︒(3)不变,120CMQ ∠=︒8. (2)△QMC 的大小不发生变化,△QMC =60°; (3)43秒或83秒9.(1)6(2)45︒或90︒或67.5︒或37.5︒(3)310. (2)等边三角形,(3)是定值,11. (2)△线段CE ,CF ,CD 之间满足的数量关系为CD =CF +CE 或CD =CE -CF 或CD =CF -CE .12.(1);△BE =83或163; (2)213.(1)30°(2)△BP AP CP =+;△102m -14.(1)△45°;△45°15.(2)45°;(3)AE =CD ,16. (2)50°(3)不会,617.(1)△ADC ,△CPE ,△BCE 都是等腰三角形,(3)45°18.(1)3(2)当0<t ≤3时,PB =6-2t ;当t >3时,PB =2t -6;(4)t 的值为2或6.19.(1)3(2)2或4,(3)不变化,3DE20.(1)40°;(2)10°;(3)AB△CF,。
人教版八年级下册数学期末动点问题压轴题训练
人教版八年级下册数学期末动点问题压轴题训练1.如图,在Rt△ABC 中,△ACB =90°,AB =10,AC =6,动点P 从点B 出发,以每秒2个单位长的速度,沿射线BC 运动,设运动时间为t 秒,请解答以下问题:(1)BC 边的长为________;(2)当△ABP 为直角三角形时,求t 的值,写出求解过程; (3)当△ABP 为等腰三角形时,直接写出t 的值.2.综合与实践,如图,E 、F 是等腰Rt ABC △的斜边BC 上的两动点,45EAF ∠=︒,CD BC ⊥且CD BE =.(1)求证:△ABE △△ACD ;(2)深入探究:猜想EF 、BE 、CF 之间的关系,并说明理由.3.如图1,在△ABC 中,AB =AC ,△BAC =90°,D 为AC 边上一动点,且不与点A 点C重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB =AC ,连接CE .(1)若△AED =20°,则△CAE =______°,△AEC =______°.(2)若△AED =α,小明说△BEC 一定是45°,你认为正确吗?请说明理由.(3)如图2,过点A 作AF △BE 于点F ,AF 的延长线与EC 的廷长线交于点H ,求证:EH 2+CH 2=2AB 2.4.如图,在正方形ABCD 中,E 为BC 边上一动点(不与点B ,重合),延长AE 到点F ,连接BF ,使得45AFB ∠=︒.G 为DC 边一点,且DG BE =,连接DF .点F 关于直线AB 的对称点为P ,连接AP ,BP .(1)依据题意补全图形,证明:DAG BAP ∠=∠;(2)延长PB 交AG 的延长线于点Q ,则APQ ∆的形状是 ; (3)用等式表示线段BP ,AB 与DF 的数量关系,并证明.5.已知:在ABC ∆中,6AB =,5AC =,ABC ∆的面积为9.点P 为边AB 上动点,过点B 作//BD AC ,交CP 的延长线于点D .ACP ∠的平分线交AB 于点E .时,求PA的长;(1)如图1,当CD AB(2)如图2,当点E为AB的中点时,请猜想并证明:线段AC、CD、DB的数量关系.6.在菱形ABCD中,△B=60°,AB=4,动点M以每秒1个单位的速度从点A出发运动到点B,点N以相同的速度从点B出发运动到点C,两点同时出发,过点M作MP△AB交直线CD于点P,连接NM、NP,设运动时间为t秒.(1)当t=2时,△NMP=________度;(2)求t为何值时,以A、M、C、P为顶点的四边形是平行四边形;(3)当△NPC为直角三角形时,求此时t的值.7.已知:在平面直角坐标系中,四边形ABCD是长方形,△A=△B=△C=△D=90°,AB∥CD,AB=CD=8,AD=BC=6,D点与原点重合.(1)直接写出点B的坐标.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动,动点Q从点C出发,以每秒4个单位长度的速度沿射线CD方向匀速运动,若P、Q两点同时出发,设运动时间为t秒,当t为何值时,PQ∥y轴?(3)在Q的运动过程中,当Q运动到什么位置时,使△ADQ的面积为9?求出此时Q 点的坐标.8.已知:在矩形ABCD中,AB=6,BC=3,BD的垂直平分线EF分别交AB,CD于点E,F,垂足为O.(1)如图1,连接DE,BF.△求证:四边形DEBF为菱形;△直接写出AE的长.(2)如图2,动点P,Q分别从D,B两点同时出发,沿DEA和BCF各边匀速运动一周,即点P自D→E→A→D停止,点Q自B→C→F→B停止,在运动过程中,若点P,Q的运动路程分别为x,y(xy≠0),已知A,C,P,Q四点为顶点的四边形是平行四边形,请直接写出x与y满足的数量关系式.9.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D—A返回到点A停止,点P的运动时间为t秒.(1)当t=3秒时,BP=cm;(2)当t 为何值时,连结CP ,DP ,△CDP 为等腰三角形;(3)Q 为AD 边上的点,且DQ =5,当t 为何值时,以长方形的两个顶点及点P 为顶点的三角形与△DCQ 全等.10.已知正方形ABCD ,点F 是射线DC 上一动点(不与C 、D 重合),连接AF 并延长交直线BC 于点E ,交BD 于H ,连接CH ,过点C 作CG △HC 交AE 于点G . (1)若点F 在边CD 上,如图1. △证明:△DAH =△DCH ; △猜想GFC 的形状并说明理由.(2)取DF 中点M ,连结MG .若MG =5,正方形边长为8,求BE 的长.11.如图,在ABCD 中,点O 是边AD 的中点,连接BO 并延长,交CD 的延长线于点E ,连接BD 、AE .(1)求证:四边形AEDB 是平行四边形;(2)请在图1中用一把无刻度的直尺画出AB 边的中点F (保留画图痕迹,无需证明过程);(3)若90BDC ∠=︒,4DC =,5BC =,动点P 从点E 出发,以每秒1个单位的速度沿EC CB BA --向终点A 运动,设点P 运动的时间为()0t t >秒.△若点Q 为直线AB 上的一点,当P 运动时间t 为何值时,以B 、C 、P 、Q 构成的四边形BCPQ 可以是菱形?△在点P 运动过程中,直接写出点P 到四边形AECB 相邻两边距离相等时t 的值.12.已知四边形OABC 是边长为4的正方形,分别以OA 、OC 所在的直线为x 轴、y 轴,建立如图1所示的平面直角坐标系,直线l 经过A 、C 两点.(1)写出点A 、点C 坐标并求直线l 的函数表达式;(2)若P 是直线l 上的一点,当△OP A 的面积是5时,请求出点P 的坐标;(3)如图2,点D (3,-1),E 是直线l 上的一个动点,求出使|BE -DE |取得最大值时点E 的坐标和最大值(不需要证明).13.如图,在平面直角坐标系中,O 为坐标原点.ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m 、(),0C n ,()10,0B -,且()260n -=,点P 为x 轴上任意一点.(1)求A 、C 两点的坐标;(2)连接PA ,当POA 的面积等于AOB 面积的14时,求PB 的长度;(3)点M 为直线AC 上的动点,当APM △是以AP 为直角边的等腰三角形时,请直接写出点M 的坐标.14.如图,直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,点C 的坐标是()0,1-,P 为直线AB 上的动点,连接PO ,PC ,AC .(1)求A ,B 两点的坐标. (2)求证:ABC 为直角三角形.(3)当PBC 与POA 面积相等时,求点P 的坐标.15.已知:如图,一次函数334y x =-的图像分别与x 轴、y 轴相交于点A 、B ,且与经过x 轴负半轴上的点C 的一次函数y =kx +b 的图像相交于点D ,直线CD 与y 轴相交于点E ,E 与B 关于x 轴对称,OA =3OC .(1)直线CD 的函数表达式为______;点D 的坐标______;(直接写出结果) (2)点P 为线段DE 上的一个动点,连接BP .△若直线BP 将△ACD 的面积分为79∶两部分,试求点P 的坐标;△点P 是否存在某个位置,将△BPD 沿着直线BP 翻折,使得点D 恰好落在直线AB 上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,过点B(﹣6,0)的直线AB与直线OA相交于点A(﹣4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式;(2)求OAC的面积;(3)当ONC的面积是OAC面积的1时,求出这时点N的坐标.217.如图1,在平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),P为线段AB上的一点.(1)如图1,若S△AOP=6,求点P的坐标.(2)如图2,若P为AB的中点,点M,N分别是OA,OB边上的动点,点M从顶点A 出发向点O运动,点N从顶点O同时出发向点B运动,且它们的速度都为1单位长度/秒,在点M,N运动的过程中,探究线段PM,PN之间的关系并证明.(3)如图3,若P为线段AB上异于A,B的任意一点,过点B作BD△OP,分别交OP、OA于F,D两点,E为OA上一点,且△PEA=△BDO,探究线段OD与AE的关系并说明理由.18.如图,在平面直角坐标系中,一次函数12y x m =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()2,4C .(1)求m 的值及2l 的解析式;(2)若点M 是直线12y x m =-+上的一个动点,连接OM ,当AOM 的面积是BOC 面积的2倍时,请求出符合条件的点M 的坐标;(3)一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.19.如图1,在平面直角坐标系xOy 中,点O 为坐标原点,直线AB :32y kx =+与直线AC :2y x b =-+交于点A ,两直线与x 轴分别交于点()3,0B -和点()2,0C .(1)求直线AB 和AC 的函数表达式;(2)点P为y轴上一动点,当PA PC最小时,求点P的坐标;(3)点M为直线AC上一动点,当△ABM是等腰直角三角形时,请直接写出点M的坐标.20.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(﹣3,0),点B (0,﹣4),点C(2,﹣1)是直线BC上一点.(1)求直线AB和直线BC的函数表达式;(2)点D是y轴上的一个动点,连接CD,当△BCD是以BC为腰的等腰三角形时,请直接写出点D的纵坐标为;(3)点E是直线AB上的一个动点,在x轴上找一个点F,连接CE,EF,CF,当△CEF 是以CE为底边的等腰直角三角形时,请直接写出△CEF的面积为.参考答案:1.(1)8(2)t =4或t =254(3)t =5或t =8或t =2582. (2)222EF BE CF =+,3.(1)50,65(2)正确,4. (2)等腰直角三角形(3)2222BP DF AB +=,5.(1)PA 的长为4(2)AC=CD +DB ;6.(1)30;(2)1;(3)t = 83 或t =103时,△PNC 是直角三角形. 7.(1)(8,6);(2)87;(3)Q 点的坐标(3,0)或(-3,0). 8.(1)△94;(2)x +y =9 9.(1)2;(2)1或3或9;(3)2.5或4.5或7.5或9.510.(1)△见解析;△GFC 是等腰三角形,理由见解析;(2)BE 的长为14或2. 11.(1)见解析;(2)见解析;(3)△3或398;△0或3或8或13或14或17 12.(1)A (4,0)和C (0,4),y =﹣x +4 (2)P 1(32,52)、P 2(132,5-2)(3)(6,-2)13.(1)点A 的坐标是()0,8,点C 的坐标是()6,0 (2)152或252(3)点M 的坐标是88,3⎛⎫- ⎪⎝⎭或568,3⎛⎫- ⎪⎝⎭或488,77⎛⎫- ⎪⎝⎭或()48,56- 14.(1)()2,0A ,()0,4B (3)820,99P ⎛⎫ ⎪⎝⎭或()8,20P -15.(1)934y x =+,(-4,-6) (2)△P 点坐标为5334⎛⎫-- ⎪⎝⎭,或918⎛⎫- ⎪⎝⎭,;△存在,P 点坐标为2421,1111⎛⎫-- ⎪⎝⎭或833⎛⎫-- ⎪⎝⎭, 16.(1)6y x =+(2)12(3)N 1(﹣2,1)或N 2(﹣2,4) 17.(1)(1,3)(2)PM =PN ,PM △PN ,(3)OD =AE ,18.(1)5m =,2l 的解析式为2y x =(2)()6,2M 或()142-,(3)12k =-或2或1 19.(1)1322y x =+,24y x =-+ (2)40,3P ⎛⎫ ⎪⎝⎭(3)()1,6M -或()3,2-20.(1)443AB y x =--;342BC y x =-;(2)(0,4-+或(0,4-或(0,2) (3)30598或5772。
人教版八年级上册数学期末动点问题压轴题专题训练(含解析)
人教版八年级上册数学期末动点问题压轴题专题训练(1)当时,点C 的坐标为 .(2)动点A 在运动的过程中,试判断发生变化,请说明理由.(3)当时,在坐标平面内是否存在一点若存在,请直接写出点P 的坐标;若不存在,请说明理由.(1)如图1,当点在边上时.①求证:;②求证:;(2)如图2,当点在边的延长线上时,其他条件不变,请写出2a =3a =D BC ABD ACE ≌△△BC DC CE =+D BC(1)请直接写出点A 和点B 的坐标;(2)请判断的形状并说明理由;(3)下列结论:①四边形为定值.请选择一个正确的结论并说明理由.(1)求证:;(2)求的面积;(3)点M ,N 分别是线段,上的动点,连接,求的最小值.DEF OEDF OEF DFE ∠+∠CD CE =CDE BC BD MN 12MN DN +(1)求出点的坐标.(2)求证:.(3)数学活动小组进行深入探究后发现变,你同意这个说法吗?请说明理由B OD BC =(1)如图①,请找出图中与相等的角,并说明理由;(2)如图②,交轴于点,过点作轴于点,求证:平分;(3)如图③,若,点在轴正半轴移动,且,取,连交轴OAB ∠BC x M C CD x ⊥,2D AM CD =AD BAC ∠()3,0A B y OB OA >()0,3P CP x边三角形,使其与点在直线的两侧,与直线相交于点(点与点A 不重合),连接.(1)如图,当时,①求证:;②在点A 运动的过程中,的度数是否会发生改变?如果会请说明理由,如果不会请求出的度数;(2)在点A 运动的过程中,试探究线段,,之间的数量关系.11.在平面直角坐标系中,点在轴的正半轴上,点在第一象限,,.(1)如图1,求证:是等边三角形;(2)如图1,若点M 为y 轴正半轴上一动点,以为边作等边三角形,连接并延长交轴于点,求证:;(3)如图2,若,,点为的中点,连接、交于,请问、与之间有何数量关系,并证明你的结论.12.在平面直角坐标系中,点A 为y 轴正半轴上一点,点B 为x 轴上一动点,连接ABD C AB DC l E E EB 120BAC ∠<︒ABE ACE =∠∠DCB ∠DCB ∠EA EB ED A y B OB AB =150BOP ∠=︒OAB BM BMN NA x P 2AP AO =BC BO ⊥BC BO =D CO AC DB E AE BE CE,以为腰作等腰,.(1)如图1,点B 在x 轴负半轴上,点C 的坐标是,直接写出点A 和点B 的坐标;(2)如图2,点B 在x 轴负半轴上,交x 轴于点D ,若平分.且点C 的纵坐标是,求线段的长;(3)如图3,点B 在x 轴正半轴上,以为边在左侧作等边,连接,,若,且,求的面积.13.等腰直角中,,,,点、分别是轴,轴上两个动点,直角边交轴于点,斜边交轴于点.(1)如图1,已知点的横坐标为,直接写出点的坐标;(2)如图2,若点为轴上的固定点,且,当点在轴正半轴运动时,分别以、为直角边在第一、二象限作等腰直角和等腰直角,连接交轴于点,问当点在轴的正半轴上运动时,的长度是否变化?若变化请说明理由;若不变化,请求出的长度.14.在平面直角坐标系中,点为坐标原点,点、分别位于轴和轴AB AB Rt ABC △90BAC ∠=︒(2,2)-AC BD ABC ∠3-BD BC BC BCE EO CO 60COE ∠=︒8CO =AOC ABC 90BAC ∠=︒AB AC =ABC C ∠=∠B A x y AC x D BC y E C 2-A A x ()6,0A -B y OB AB BOD ABC CD y P B y BP BP O ()6,0B -()0,6A x y上,连接,交轴于点.(1)求点的坐标;(2)动点从出发以个单位/秒的速度沿轴向终点运动,连接,将线段绕着点逆时针旋转后得到线段,与为对应点.连接、,为的面积,用含的式子表示;(3)在()的条件下,连接,过点作于,交轴于,交于,若,求点的坐标.15.如图①,在中,,现有一动点,从点出发,沿着三角形的边运动,回到点停止,速度为,设运动时间为秒.(1)如图①,当的面积等于面积的一半时,求的值:(2)如图②,点在边上,点在边上,在的边上,若另外有一个动点与点同时从点出发,沿着边运动,回到点停止.在两点运动过程中的某一时刻,以为顶点的三角形恰好与全等,求点的运动速度.16.如图,在平面直角坐标系中,,点在轴正半轴上,.AB CA AB ⊥x C C P B 2x C AP AP A 90︒AQ P Q PQ CQ S PCQ △t S 2BQ A AH BQ ⊥G x H PQ AC M :2:1APM AQM S S = H Rt ABC △90,12cm,16cm,20cm B AB BC AC ∠=︒===P A AB BC CA →→A 2cm /s t ABP ABC t D BC 4cm CD =E AC 5cm,,3cm CE ED BC ED =⊥=ABC Q P A AC CB BA →→A ,,A P Q EDC △Q ()0,9A B x 45OAB ∠=︒(1)求出点坐标;(2)动点从点出发,以每秒个单位长度的速度沿轴正半轴运动,同时点从点出发,以相同速度沿轴向左运动,连接,过点作交直线于点,连接,设点的运动时间为,请用含的式子表示的面积;(3)在(2)的条件下,直线与直线交于点,当时,求点坐标.17.已知中,,过点的直线交轴于,其中是方程组的解,(1)求的值(2)动点从点出发,沿线段以每秒1个单位的速度运动,运动时间为秒;请用含的式子表示线段的长度;并直接写出此时的取值范围;(3)在(2)的条件下,当为何值时,直线与直线互相垂直.18.在平面直角坐标系中,O 为坐标原点,直线交x 轴的正半轴于点A ,交y 轴的B P O 1y Q B x PQ O OG PQ ⊥AB G PG P t t OPG PQ AB H 72OPG S =△H AOB OA OB a ==A AM x (),0M b ,a b 3830a b a b +=⎧⎨+=⎩,a b P A AO t t OP t t BP AM AB(1)如图1求的长;(2)如图2动点E 在第二象限,点E 的坐标为,连接,,请写出面积s 与t 的关系;(3)在(2)的条件下,如图3点F 在第一象限,连接、、,,连接,当,求的值.OD (,)t m DE OE ODE FE FD FA 30ADF ∠=FE FA =EB 12,4EBO ODA ODA EFA EOB ∠=∠∠+∠=∠t m +参考答案:1.(1)(2)动点A 在运动的过程中,的值不变,(3)或或【分析】本题考查全等三角形判定及性质.(1)根据题意过点C 作轴于点,证明出,利用全等性质即可得到本题答案;(2)由(1)得,利用全等性质及点坐标表示线段长即可得到本题答案;(3)根据题意分3种情况讨论P 点位置,利用全等三角形性质及判定即可得到本题答案.【详解】(1)解:如下图,过点C 作轴于点E ,则,,∵是等腰直角三角形,∴,∴,∴.在和中,∴(AAS ),∵,∴,∴,∴;(2)解:动点A 在运动的过程中,的值不变.理由如下:(2,3)-+c d (4,)1-(3,2)--(2,1)-CE y ⊥E ACE BAO ≌ACE BAO ≌CE y ⊥CEA AOB ∠=∠ABC ,90AC BA BAC =∠︒=90ACE CAE BAO CAE ∠+∠=︒=∠+∠ACE BAO ∠=∠ACE △BAO CEA AOB ACE BAOAC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩ACE BAO ≌(0,1),(0,2)B A -12BO AE AO CE ====,123OE =+=2,3C -()+c d由(1)知,,∵,,∴,∴,∴,又∵点C 的坐标为,∴,即的值不变;(3)解:存在一点P ,使与全等,符合条件的点P 的坐标是或或,分为三种情况讨论:①如下图,过点P 作轴于点E ,则,∴,∴,在和中,,∴(AAS ),∴,∴,即点P 的坐标是,②如下图,过点C 作轴于点M ,过点P 作轴于点E ,ACE BAO ≌(0,1)B (0,)A a -1,BO AE AO CE a ====1OE a =+(,1)C a a --(,)c d 11c d a a +=--=-+c d PAB ABC (4,)1-(3,2)--(2,1)-PE x ⊥90PBA AOB PEB ∠=∠=∠=︒90,90EPB PBE PBE ABO ∠+∠=︒∠+∠=︒EPB ABO ∠=∠PEB △BOA △EPB OBA PEB BOA PB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩PEB BOA △≌△1,3PE BO EB AO ====314OE =+=(4,)1-CM x ⊥PE x ⊥则.∵,∴,∴,∴,∴,在和中,,∴(AAS ),∴.∵,∴,即点P 的坐标是;③如下图,过点P 作轴于点E ,则.∵,∴,∴,90CMB PEB ∠=∠=︒CAB PAB △≌△45,PBA CBA BC BP ∠=∠=︒=90CBP ∠=︒90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒MCB PBE ∠=∠CMB BEP △MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩CMB BEP △≌△,PE BM CM BE ==3,4),10C B -((,)2,413PE OE BE BO ==-=-=(3,2)--PE x ⊥90BEP BOA ∠=∠=︒CAB PBA △≌△,90AB BP CAB ABP =∠=∠=︒90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒∴.在和中,,∴(AAS ),∴,∴,即点P 的坐标是,综上所述,符合条件的点P 的坐标是或或.2.(1)①见解析;②见解析;(2),见解析【分析】本题主要考查了等边三角形,全等三角形.(1)①根据等边三角形的性质得出,,,根据得出,从而说明三角形全等;②根据全等的性质得出,然后根据即得;(2)根据等边三角形的性质得出,,,根据得出,从而说明,根据全等的性质得出,然后根据即得.【详解】(1)证明:①∵和是等边三角形,∴,,.∴,∴.在和中,,∴;②∵,ABO BPE ∠=∠BOA △PEB △ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩BOA PEB △≌△1,3PE BO BE OA ====312OE BE BO =-=-=(2,1)-(4,)1-(3,2)--(2,1)-BC CD CE +=AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠-∠=∠-∠BAD EAC ∠=∠BD CE =BC BD CD =+AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠+∠=∠+∠BAD EAC ∠=∠ABD ACE ≌△△BD CE =+=BC CD BD ABC ADE V 60BAC DAE ∠=∠=︒AB BC AC ==AD DE AE ==BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE △≌△ABD ACE ≌△△∵,,∴,∴是等腰直角三角形,即∵点D 是线段中点,∴,,(0,6)A (6,0)B 6O A O B ==AOB ∠AB OD AB ⊥12OD AD AB ==∠∵,,∴在中,∵在(1)中已求出根据翻折可知:、∴N 点关于的对称点H 在根据对称性有:∴,∴是等边三角形,∵N 点关于的对称点是点H ,3BD =30CBD ∠=︒DG Rt BDG △12DG BD =CE CD =11BDC BKC △BE BK DBC KBC ∠=∠60BDK DBC KBC ∠=∠+∠=︒BDK BE NH如图,,即:,在中,PNC DNC∠=∠24PNC αβ∠==2αβ=MCN DCM DCN x β∠=∠+∠=+MCN △180MCN DCN NMC ∠+∠+∠=2180x βαα+++=︒3180x βα++=︒解得:,.II.当点在线段上时,如图,,,即:,在中,,,即:联立得:,解得:,此时:,不合题意舍去;III .当点在线段上时,如图,,52550x βα=︒⎧⎪=︒⎨⎪=︒⎩∴5DCM ∠=︒N PD 180PNC DNC ∠+∠=︒∴24180αβ+=︒290αβ+=︒∴MCN DCM DCN x β∠=∠+∠=+ CMN PCN MCN CMN x βα∠=∠+∠=++∴4180PCN NDC x βαβ∠+∠=+++=︒5180x βα++=︒2602905180x x ααββα+=︒⎧⎪+=︒⎨⎪++=︒⎩11.2526.2537.5x βα=︒⎧⎪=︒⎨⎪=︒⎩11.2526.5PCN DCN ∠=︒<∠=︒N DM PNC DNC ∠=∠【详解】(1)解:过点B 作轴于点D ,∵,∴,∵轴,∴,∵,∴,∴,在和中,,∴,∴,∵,∴;(2)解:∵,∴,∴,∵轴,∴,∴,∴,在和中,BD y ⊥()()6,0,0,3A C -6,3OA OC ==BD y ⊥90BCD CBD ∠+∠=︒90ACB ∠=︒90BCD ACO ∠+∠=︒ACO CBD ∠=∠ACO △CBD △90AOC CDB ACO CBDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩≌ACO CBD 6,3OA CD OC BD ====()0,3C ()3,3B -90ACB ∠=︒90BCF ∠=︒90CBF F ∠+∠=︒BE y ∥90AEF ∠=︒90CAD F ∠+∠=︒CAD CBF ∠=∠CAD CBF V∴,∴,∵,∴∴.【点睛】本题主要考查了三角形综合,折叠的性质,全等三角形的判定和性质,角平分线的性质,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,对应角相等;折叠前后对应角相等;角平分线上的点到两边距离相等.7.(1)(2)见解析(3)的度数总是保持不变,理由见解析【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质,坐标与图形;(1)根据等腰三角形的性质解答即可;(2)根据等式的性质得出,进而利用证明与全等,进而解答即可;(3)根据全等三角形的性质得出,进而利用平角的定义解答即可.【详解】(1)解:如图所示,过作轴于,()Rt Rt HL EFO EFN ≌FN FO =(),0F t FO t=-2FG HG t +=-()2,0-COD ∠BAC OAD ∠=∠SAS BAC OAD AOD ABO ∠=∠A AE x ⊥E),点C 是的中点,,D 作轴于点F ,,,4=AB 114222AB ==⨯=DF x ⊥90DFO =︒90FDO DOF +∠=︒),的坐标为,关于x 轴的对称点,则的坐标为,交x 轴于点,则为定值,此时的周长最小.作轴于点Q ,114222AB '==⨯=M '()0,2M '''M ''M AM ''P PAM C AM AP ''=+ AM 'PAM '△()4,4A -AQ y ⊥对于(3),作轴,先证明,可得,再得出,进而得出,根据等腰直角三角形的性质和判定即可得出答案.【详解】(1).理由:,;(2)证明:如图②中,延长交的延长线于点..∵,,,.,即.垂直平分,平分.(3)的长度不变,.理由:如图③中,过点作轴于点...CH y ⊥≌CHB BOA △△,3===CH BO BH OA 3==OA OP ==OB PH CH OAB OBC ∠=∠90,90OAB OBA OBC OBA ∠+∠=∠+∠=︒︒ OAB OBC ∴∠=∠AB CD T ,90,90,AD CD ADT T BAM BCT BAM ⊥∴∠=∴∠+∠=∴∠=∠︒︒ BC BA ===90CB T A B M ∠∠︒()CBT ABM ASA ∴≌△△CT AM ∴=2,2AM CD CT CD =∴= CD DT =,AD CT AD ⊥∴ CT ,AC AT AD ∴=∴BAC ∠OQ 3OQ =C CH y ⊥H 90,90CHB BOA HBC HCB ∴∠=∠=∴∠+∠=︒︒90,90,ABC OBA HBC HCB OBA ∠=∴∠+∠=︒︒∴∠=∠..,..,.【点睛】本题主要考查了全等三角形的性质和判定,同角的余角相等,线段垂直平分线的性质,等腰直角三角形的性质和判定等,构造辅助线是解题的关键.10.(1)①见解析;②不变,(2)或【分析】(1)①根据垂直平分线的性质得出,再由等边对等角及各角之间的数量关系求解即可;②设与交于点M ,根据等边三角形的性质及各角之间的关系得出,即可求解;(2)分两种情况进行分析:当时,当时,分别利用全等三角形的判定和性质及等边三角形的判定和性质分析求解即可.【详解】(1)证明:①点A 、E 在线段的垂直平分线l 上,∴,∴,∴,即;②在点A 运动的过程中,的度数不变,理由如下:如图,设与交于点M ,(),CB AB CHB BOA AAS =∴ ≌△△,3∴===CH BO BH OA ()()3,0,0,3,3A P OA OP ∴== ,BH OP OB PH CH ∴=∴==90,45CHP CPH OPQ ∠=∴∠=∠=︒︒ 90,45∠=∴∠=︒=︒∠ POQ OQP OPQ 3OQ OP ∴==30DCB ∠=︒ED EB EA =+EB ED EA=+AC AB EC EB ==,AB CD 260ECB ∠=︒120BAC ∠<︒120BAC ∠>︒BC ,AC AB EC EB ==,ABC ACB EBC ECB ∠∠∠∠==ABC EBC ACB EBC ∠∠∠∠-=-ABE ACE ∠∠=DCB ∠AB CD∵是等边三角形,∴ ,∴,∴,∴,∴,∴,∵,∴,即;(2)当时,在上截取,连接,∵,∴,由(1)得直线,,∴,∴是等边三角形,∴ ,∴,即,ABD ,60AB AD BAD ∠==︒AD AC =ADC ACE ∠∠=,ABE ADC EBC ECB ∠∠∠∠==,180,180AMD EMB BED ABE EMB BAD ADC AMD ∠∠∠∠∠∠∠∠==︒--=︒--60BED BAD ∠∠==︒,EBC ECB BED EBC ECB ∠∠∠∠∠+==260ECB ∠=︒30DCB ∠=︒120BAC ∠<︒ED EF EA =AF ED DF EF =+ED DF EA =+l BC ⊥30DCB ∠=︒903060AED ∠=︒-︒=︒AEF 60,EAF BAD AE AF ∠∠==︒=–EAF BAF BAD BAF ∠∠∠∠=-BAE DAF ∠∠=∴,∴,∵,∴;当时,如图所示在上截取,连接,∵,∴,由(1)得直线,,,∴,∴F 是等边三角形,∴,∴,∴,∴,∴,∵,∴;综上可得:或.【点睛】题目主要考查线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等,理解题意,作出相应辅助线是解题关键,同时注意进行分类讨论.11.(1)见解析(2)见解析(3),证明见解析【分析】(1)根据有一个角是的等腰三角形是等边三角形可得结论;(SAS)BAE DAF ≌ EB DF =ED DF EA =+ED EB EA =+120BAC ∠>︒EB EF EA =AF EB BF EF =+EB BF EA =+l BC ⊥30DCB ∠=︒BE BC =903060AEB AEC ∠∠==︒-︒=︒AE 60,EAF BAD AE AF ∠∠==︒=–EAF DAF BAD DAF ∠∠∠∠-=EAD BAF ∠∠=(SAS)BAF DAE ≌ BF ED =EB BF EA =+EB ED EA =+ED EB EA =+EB ED EA =+AE BE CE =+60︒(2)根据证明,得,由8字形可得,最后由含角的直角三角形的性质可得结论;(3)如图2,在上截取,先证,方法是根据题意得到三角形为等边三角形,三角形为等腰直角三角形,确定出度数,根据,且,得到度数,进而确定出为,再由,得到,再由,且夹角,利用得到三角形与三角形全等,利用全等三角形的对应边相等得到,得到三角形为等边三角形,得到,由,等量代换即可得证.【详解】(1)解:证明:,,,,是等边三角形;(2)证明:由(1)知:是等边三角形,,是等边三角形,,,,,,,,,,,,SAS MBO NBA ≌OMB ANB ∠∠=60FAM FBN ∠∠==︒30︒AC AG CE =60AEB ∠=︒ABO BOC ABD ∠AB BC =150ABC ∠=︒BAE ∠AEB ∠60︒AG CE =AE CG =AB CB =BAC BCA ∠=∠SAS BCG BAE BG BE =BEG BE EG =AE EG AG =+150BOP ∠=︒ 90AOP ︒=∠60AOB ∴∠=︒OB AB = OAB ∴ OAB 60ABO ∴∠=︒BMN BM BN ∴=60MBN ∠=︒MBO NBA ∴∠=∠AB OB = (SAS)MBO NBA ∴△≌△OMB ANB ∴∠=∠AFM BFN ∠=∠ 60FAM FBN ∴∠=∠=︒60OAP FAM ∠=∠=︒ 90AOP ︒=∠30APO ∴∠=︒;(3),理由如下:如图2,在上截取,连接,,即,,,,为的中点,平分,即,,,,,,,在和中,,,,为等边三角形,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的性质和判定,全等三角形的判定和性质,以及含角的直角三角形的性质,添加辅助线.12.(1),2AP AO ∴=AE BE CE =+AC AG EC =BG AG EG CE EG +=+AE CG =BC BO ⊥ BC BO =90OBC ∴∠=︒D CO BD ∴OBC ∠45CBD OBD ∠=∠=︒60ABO ∠=︒ 105ABD ∴∠=︒150ABC ∠=︒AB OB BC == 15BAC BCA ∴∠=∠=︒154560AEB ∴∠=︒+︒=︒ABE CBG AB CB BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CBG ∴△≌△BG BE ∴=BEG ∴△BE EG ∴=AE AG EG CE BE ∴=+=+30︒()02A ,()40B -,∴,∵∴,∵,∴,,90ADC BOA ∠=︒=∠90CAD BAO ABO ∠+∠=︒=∠CAD ABO ∠=∠(2,2)C -2CD =2OD =∴,,∴,;(2)解:如图2,作轴,交轴于,交的延长线于,∴,∵平分,∴,,,∴,∴,∵,∴,∵,∴,∴,∵,,∴,∴,∴的长为6;(3)解:∵为等边三角形,∴,,如图3,在上截取,使,连接,2AO CD ==4BO AD AO OD ==+=()02A ,()40B -,CM x ⊥x N BA M 90BNM BNC ∠=︒=∠BD ABC ∠MBN CBN ∠=∠BN BN =90BNM BNC ∠=︒=∠()ASA MBN CBN ≌3MN CN ==∥CM AO ACM CAO ∠=∠90CAO BAO ABD BAO ∠+∠=︒=∠+∠CAO ABD ∠=∠ACM ABD ∠=∠AC AB =90MAC DAB ∠=︒=∠()ASA ACM ABD ≌6BD CM CN MN ==+=BD BCE BE CE =60BEC EBC ECB ∠=∠=∠=︒OC OF OF OE =EF∴是等边三角形,∴,∴∵,∴,∴,OEF OE EF =60OEF ∠=︒=∠OEF BEF BEC ∠-∠=∠-∠OE EF =BEO CEF ∠=∠()SAS BEO CEF ≌OBE FCE ∠=∠13.(1)(2)【分析】(1)如图①,过作 轴于, 证明可得从而可得答案;(2)如图①,过点作 轴于点.证明 ,可得 ,再证明,从而可得: .【详解】(1)解: 如图①,过作 轴于,∴,∵,∴,∴,∵,∴.∴,,∴,∴,故答案为 : .(2)的长度不变,理由如下:如图②, 过点作 轴于点.()0,23BP =C CF y ⊥F ,ACF BAO ≌CF AO =C CE y ⊥E CBE BAO ≌,6CE BO BE AO ===CPE DPB ≌3BP EP ==C CF y ⊥F 90,90CFA AOB ACF CAF ∠=∠=︒∠+∠=︒90BAC ∠=︒90CAF OAB ∠+∠=︒ACF OAB ∠=∠AC AB =()AAS ACF BAO ≌CF AO =2c x =- 2CF AO ==()0,2A ()0,2BP C CE y ⊥E∵ ,∴∵∴ .∵90ABC ∠=︒90CBE ABO ∠+∠=︒90BAO ABO ∠+∠=︒CBE BAO ∠=∠90CEB AOB ∠=∠=∵,∴,在和中,90BAC PAQ ∠=∠=︒BAP CAQ ∠=∠BAP △CAQ AB AQ =⎧∴四边形为正方形,∴,过作于点,∵AOCN 6OA CN OC ===T TL CN ⊥L AH BQ⊥AOH TLQ ≌∴,解得;②当点在上,点∴,解得;3AP DE cm AQ EC ===,352x =103x =cm/s P AB 5AP EC cm AQ ==,532x =65x =cm/s∴点P 的路程为∴点P 的路程为3AP ED AQ EC ===,AB +1216205AQ =++-=4543x =5AP EC cm AQ ==,AB +1216203AQ =++-=4345x =从出发,以每小时从出发,以相同速度沿,①当在线段上时,P O Q B OQ ∴=AP =t P AO,等腰,,设,,为的一个外角,RO PO ∴=∴POR 45R BAO ∴∠=∠=︒QPO α∠=45RPQ α∴∠=︒-QON BOG α∠==∠ABO ∠ OBG,,,,90HTA ∴∠=︒45HAT OAB ∠=∠=︒45HAT AHT ∴∠=∠=︒HT AT ∴=由(1)知,,则,∵直线与直线互相垂直,∴,()1.0M -1OM =BP AM 90MNB ∠=︒。
2022—2023学年人教版数学八年级上册期末动点问题压轴题
人教版八年级上册数学期末动点问题压轴题1.Rt ABC △中,90,ABC AB BC ∠=︒=,过点A 作AE AB ⊥.连接,BE CE ,M 为平面内一动点.(1)如图1,若4BC =,则EBC S =△______.(2)如图2,点M 在BE 上,且CM BE ⊥于M ,过点A 作AF BE ⊥于F ,D 为AC 中点,连接FD 并延长,交CM 于点H .求证:MF MH =;(3)如图3,连接,BM EM ,过点B 作BM BM '⊥于点B ,且满足BM BM '=,连接AM ',MM ',过点B 作BG CE ⊥于点G ,若18,3,4ABC S EM BG ===△,求线段AM '的长度的取值范围.2.如图,在ABC 中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,10cm AF =,14cm AC =,动点E 以2/s cm 的速度从A 点向F 点运动,动点G 以1/s cm 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF AM =;(2)当t 取何值时,DFE △与DMG 全等.3.已知ABC 为等边三角形,边长为8,点D ,E 分别是边,AB BC 上的动点,以DE 为边作等边DEF .(1)如图1,若点F 落在边AC 上. ①求证:AD BE =;②连接,AE DC 交于M 点,则CME ∠=__________. (2)如图1,当BDE 为直角三角形时,求BE 的长.(3)如图2,当2AD BE =时,点G 为BC 边的中点,求GF 的最小值.4.ABC 中,45C ∠=︒,点D E ,分别是边AC BC ,上的点,点P 是直线AB 上一动点,连接PD PE ,,设DPE α∠=.(1)如图1,若点P 在线段BA 上,且30α=︒,则PEB PDA ∠+∠=___________︒;(2)当点P 在线段BA 上运动时,依题意补全图2,用等式表示PEB ∠与PDA ∠的数量关系(用含α的式子表示),并证明;(3)当点P 在线段BA 的延长线上运动时,请直接用等式表示PEB ∠与PDA ∠的数量关系(用含α的式子表示).5.如图,平面直角坐标系中,()4,0A ,B 为OA 的中点,C 是y 轴上的动点,连接AC ,过点A 作AC AD ⊥,并截取AD AC =,E 是CD 的中点,连接OE ,BE ,且E 在第四象限.(1)如图1,当点C 与O 重合时,求E 点的坐标;(2)如图2,当点C 在y 轴上运动时,AOE ∠的度数是否会发生变化;若不变,请求出AOE ∠的度数;若改变,请说明理由;(3)当BE 最短时,求线段OC 的长.6.如图,在平面直角坐标系中,点()3,0C ,点A 在y 轴正半轴上,点B 在x 轴负半轴上,AB AC =,点D 是x 轴上的一动点(点D 不与B 、C 重合),90CAB EAD ∠=∠=︒,AD AE =,连接CE .(1)如图1,直接写出点A ,B 的坐标;(2)如图2,当点D 在边BC 上时,求证:①BC CE CD =+,②BC CE ⊥; (3)当5CD =时,求点E 坐标.7.如图①,在ABC 中,=60B ∠︒,8AB =,10BC =,动点P 从点A 出发以每秒1个单位的速度沿AB 匀速运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿BC 匀速运动,点Q 到达点C 后,立即以每秒4个单位的速度沿CB 返回,当点Q 返回到点B 时,P 、Q 两点都停止运动,设点Q 运动时间为t 秒.(1)当3t =时,BQ = ,当7t =时,BQ = . (2)用含t 的代数式表示BQ 的长.(3)如图②,当点P 运动到AB 的中点时,PQ 与AB 的位置关系是 ,请说明理由. (4)在点P 、Q 运动过程中,请直接写出BPQ 是等边三角形时t 的值.8.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:△ABQ ≌△CAP ;(2)当点P 、Q 分别在AB 、BC 边上运动时,∠QMC 变化吗?若变化,请说明理由;若不变,求出它的度数. (3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则∠QMC 变化吗?若变化,请说明理由;若不变,则求出它的度数.9.(1)如图1,在△ABC 中,D 为BC 的中点,若AB =5,AC =3,求AD 的取值范围;(2)如图2,在△ABC 中,AB =AC ,AB ⊥AC ,D 是线段BC 上一动点,F 为BD 的中点,AD =AE 且AD ⊥AE ,求AF 与EC 的数量关系,并说明理由;(3)如图3,在△ABC 中,AB =AC ,D 是△ABC 内一点,E 是BD 的中点,连接AE ,作AE ⊥EF ,若DF =CF ,直接写出∠BAC 与∠DFC 的之间关系是.10.等腰直角三角形ABC 中,AB AC =,90BAC ∠=︒,P 为射线BC 上的一个动点(不与点B ,C 重合),连接AP ,以AP 为直角边,A 为直角顶点,在AP 右侧作等腰直角三角形P AD ,使AP AD =,连接CD .(1)如图①,当点P 在线段BC 上时,求证:BAP CAD ≌△△;(2)如图②,当点P 在线段BC 的延长线上时,请直接写出线段BP 和CD 的数量关系与位置关系.11.已知:如图,∠xOy =90°,点A 是射线Ox 上的一个动点,点B 是射线Oy 上的一个动点,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于点C .(1)当∠OAB =50°时,求∠ACB 的度数;(2)试问动点A ,B 分别在射线Ox ,Oy 上的运动过程中,∠ACB 的大小是否发生变化?如果保持不变,请给出证明;如果随点A ,B 的运动发生变化,请求出变化的范围.12.如图,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C .动点E ,D 同时从A 点出发,其中动点E 以2cm /s 的速度沿射线AN 方向运动,动点D 以1cm/s 的速度在直线AM 上运动.已知6cm AC =,设动点D ,E 的运动时间为t /s .(1)当点D 在射线AM 上运动时,满足:2:1ADBBECSS=,试求点D ,E 的运动时间t 的值;(2)动点D 在直线AM 上运动,E 在射线AN 上运动的过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.13.△ABC 中,90ACB ∠=︒,AC =BC ,点D 是BC 边上的一个动点,连接AD ,过点B 作BF ⊥AD 于点F .(1)如图1,分别延长AC ,BF 相交于点E ,求证:BE =AD ; (2)如图2,若AD 平分∠BAC ,AD =5,求BF 的长;(3)如图3,M 是FB 延长线上一点,AD 平分∠MAC ,试探究AC ,CD ,AM 之间的数量关系并说明理由.14.如图,在ABC ∆中,BAD DAC ∠=∠,,,10DF AB DM AC AF ⊥⊥=厘米,14AC =厘米,动点E 以4厘米/秒的速度从A 点向F 点运动,动点G 以2厘米/秒的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t 秒.(1)AF 与AM 有什么数量关系______;(2)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△; (3)当t 取何值时,DFE △与DMG 全等.15.如图1,已知A (0,a )(b ,0)且a ,b 满足()2240||a b -+-=.(1)求A 、B 两点的坐标;(2)如图2,连接AB ,若D (0,﹣6),DE ⊥AB 于点E ,OB =OC ,M 是线段DE 上的一点,且DM =AB ,连接AM ,试判断线段AC 与AM 之间的位置和数量关系,并证明你的结论;(3)如图3,在(2)的条件下,若N 是线段DM 上的一个动点,P 是MA 延长线上的一点,且DN =AP ,连接PN 交y 轴于点Q ,过点N 作NH ⊥y 轴于点H ,当N 点在线段DM 上运动时线段QH 是否为定值?若是,请求出这个值;若不是,请说明理由.16.在△ABC 中,AB =20cm ,BC =16cm ,点D 为线段AB 的中点,动点P 以2cm/s 的速度从B 点出发在射线BC 上运动,同时点Q 以α cm/s (α>0且α≠2)的速度从C 点出发在线段CA 上运动,设运动时间为x 秒.(1)若AB =AC ,P 在线段BC 上,求当α为何值时,能够使△BPD 和△CQP 全等? (2)若∠B =60°,求出发几秒后,△BDP 为直角三角形? (3)若∠B =60°,求出发几秒后,△BDP 为等边三角形?17.如图,在ABC 中,AB AC =,点E 为边BC 上的一动点,过点E 作EF BC ⊥交直线AB 于点D ,交直线AC 于点F .(1)若E 点在BC 边上(如图①),判断F ∠与ADF ∠的关系并说明理由;(2)若点E 在线段BC 的延长线上(如图②),同样过点E 作EF BC ⊥交直线AB 于点D ,交直线CA 于点F . ①在图②中补全变化后的图形;②(1)中的结论是否仍成立?若成立,请直接回答结果,不成立,给出证明.18.如图,∠ABC=∠BCD=90°,AB=BD,BD平分∠ABC,AE⊥BD于E,P为线段AD上一动点.(1)求∠DAE(2)作PG⊥BD于G,PH⊥AB于H.当P到BD的距离为1,到AB的距离为2时,求AE的长(3)当P运动至CE延长线上时,连接BP,求证:BP⊥AD参考答案:1.(1)8 (2)见解析 (3)AM '6<<122.(1)见解析 (2)14s 3t =3.(1)①见解析;②60︒ (2)83或163(3)2 4.(1)75(2)45PEB PDA α∠+∠=︒+,见解析(3)45PEB PDA α∠-∠=︒+或45PEB PDA α∠-∠=︒-或45PEB PDA ∠-∠=︒.5.(1)()2,2E - (2)不变,45° (3)26.(1)()0,3A ,()3,0B - (2)①见解析;②见解析 (3)E 点为()3,1或()3,117.(1)6,2(2)2(05)15304(5)2t t BQ t t ≤≤⎧⎪=⎨-≤⎪⎩<(3)PQ AB ⊥,理由见解析(4)83t=或223=t8.(1)证明见解析(2)点P、Q在运动的过程中,∠QMC不变.∠QMC=60°(3)点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.∠QMC=120°9.(1)1<AD<4(2)CE=2AF,理由见解析(3)∠DFC+∠BAC=180°10.(1)见解析(2)BP CD=;BP CD⊥11.(1)45︒(2)∠ACB的大小不发生变化,证明见解析12.(1)1245t=或时,:2:1ADB BECS S=(2)存在,t的值为2或6 13.(1)见解析(2)5 2(3)AC+CD=AM,理由详见解析14.(1)AF=AM.(2)见详解.(3)当73t=秒时,△DFE与△DMG全等.15.(1)A(0,2),B(4,0)(2)AC=AM,AC⊥AM.理由见解析(3)是定值,定值为4.理由见解析16.(1)2.5(cm/s)(2)出发2.5S或10S时,△BPD为直角三角形x=时,△BPD为等边三角形(3)当517.(1)F ADF∠=∠,理由见解析(2)①见解析;②成立18.(1)∠DAE=22.5°(2)AE=3(3)见解析。
人教版八年级下册数学期末动点压轴题训练(带答案)
人教版八年级下册数学期末动点压轴题训练(带答案)1.如图,平面直角坐标系xOy 中,直线334y x =-+交x 轴于点A ,交y 轴于点B ,点P 是线段OA 上一动点(不与点A 重合),过点P 作PC AB ⊥于点C .(1)当点P 是OA 中点时,求APC △的面积;(2)连接BP ,若BP 平分ABO ∠,求此时点P 的坐标;(3)BP 平分ABO ∠,在x 轴上有一动点H ,H 横坐标为a ,过点H 作直线l x ⊥轴,l 与线段PC 有交点,求a 的取值范围;(4)BP 平分ABO ∠,M 为x 轴上动点,CPM △为等腰三角形,求M 坐标.2.如图,直线l 1:y =kx +b 与y 轴交于点B (0,3),直线l 2:y =﹣2x ﹣1交y 轴于点A ,交直线l 1于点P (﹣1,t ).(1)求k 、b 和t 的值; (2)求△ABP 的面积;(3)过动点D(a,0)作x轴的垂线与直线l1、l2,分别交于M、N两点,且MN<4.①求a的取值范围;①当△AMP的面积是△AMB的面积的1时,求MN的长度.23.在平面直角坐标系中,坐标轴上的三个点A(a,0),B(0,b),C(c,0)(a<0,b>0)满足|c﹣1|+(a+b)2=0,F为射线BC上的一个动点.(1)c的值为,①ABO的度数为.(2)如图(a),若AF①BC,且交OB于点E,求证:OE=OC.(3)如图(b),若点F运动到BC的延长线上,且①FBO=2①F AO,O在AF的垂直平分线上,求①ABF的面积.4.已知,长方形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A 的坐标为(10,0),点B的坐标为(10,8).(1)直接写出点C的坐标为:C(,);(2)已知Q(5,n)在直线AC;求n的值;(3)若动点P 从A 点出发,沿折线AO →OC 的路径以每秒2个单位长度的速度运动,到达C 处停止.求①OPQ 的面积S 与点P 的运动时间t (秒)的函数关系式.5.在①ABC 中,90ACB ∠=︒,60ABC ∠=︒,点D 是直线AB 上一动点,以CD 为边,在它右侧作等边①CDE .(1)如图1,当E 在边AC 上时,直接判断线段DE ,EA 的数量关系______; (2)如图2,在点D 运动的同时,过点A 作AF CE ∥,过点C 作CF AE ∥,两线交于点F ,判断四边形AECF 形状,并说明理由;(3)若BC =AECF 为正方形时,直接写出AD 的值.6.已知在平面直角坐标系中,点()0,2A ,动点P 在x 轴正半轴上,作矩形OABP ,点C 为PB 中点,①ABC 沿AC 折叠后得到①ADC ,直线CD 与矩形OABP 一边交于点E .(1)如图,当点E 与原点O 重合时, ①求证:OCP ADO ≌△△. ①求OP 长.(2)当5EC ED =,求点P 坐标.7.如图(1),在平面直角坐标系中点(),A x y ,()2,0B x 满足0x ,点C 为线段OB 上一个动点,以CA 为腰作等腰直角ACD △,且AC AD =.(1)求点A 、B 的坐标及AOB 的面积;(2)试判断CD 、OC 、BC 间的数量关系,并说明理由;(3)如图(2),若点C 为线段OB 延长线上一个动点,则(2)中的结论是否成立,并说明理由.8.如图,在平面直角坐标系中,直线4y x =+交y 轴于A 点,与直线BC 相交于点B (-2,m ),直线BC 与y 轴交于点C (0,-2),与x 轴交于点D ;(1)求①ABC 的面积;(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;(3)在(2)的条件下,点P 是直线AB 上一动点且在x 轴的上方,Q 为直角坐标平面内一点,如果以点D 、E 、P 、Q 为顶点的平行四边形的面积等于①ABC 面积,请求出点P 的坐标,并直接写出点Q 的坐标.9.如图,已知①ABC中,①B = 90°,AB = 8cm,BC = 6cm,P、Q是①ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,①PQB第一次能形成等腰三角形?(3)当点Q运动到CA上时,求能使①BCQ是等腰三角形时点Q的运动时间.10.如图1,四边形形ABCD是一个边长为2的正方形,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF①CE于点G,交AD于点F.(1)求证:①ABF①①BCE;(2)如图2,当点E运动到AB中点时,①求BG的长;①连接DG,求证:DC=DG.11.如图,在平面直角坐标系中,点O 为坐标原点,点A 、B 、C 的坐标分别为(0,6)、(-8,0)、(-3,0),10AB =,将ABC 沿着射线AC 翻折,点B 落到y 轴上点D 处.(1)求点D 的坐标;(2)动点P 以每秒1个单位长度的速度从点B 出发沿着线段BO 向终点O 运动,运动时间为t 秒,请用含有t 的式子表示PCA 的面积,并直接写出t 的取值范围; (3)在(2)的条件下,动点M 以每秒2个单位长度的速度从点A 出发沿着线段AO 向终点O 运动,动点N 以每秒a 个单位长度的速度从点O 出发沿着x 轴正方向运动,点P 、M 、N 同时出发,点M 停止时,点P 、N 也停止运动,当DOP MON △△≌时,求a 的值.12.如图,在平面直角坐标系中,一次函数21y x =--的图象分别交x 轴、y 轴于点A 和B ,已知点C 的坐标为(-3,0).若点P 是x 轴上的一个动点.(1)求直线BC 的函数解析式;(2)过点P 作y 轴的平行线交AB 于点M ,交BC 于点N ,当点P 恰好是MN 的中点时,求出P 点坐标.(3)若以点B 、P 、C 为顶点的①BPC 为等腰三角形时,请直接写出所有符合条件的P 点坐标.13.如图所示,菱形ABCD 的顶点A B ,在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上.点C 的坐标为(4.动点P 从点A 出发,以每秒1个单位长度的速度,按照A D C B A →→→→的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.(1)①点B 的坐标 ; ①求菱形ABCD 的面积;(2)当3t =时,问线段AC 上是否存在点E ,使得PE DE +最小,如果存在,求出PE DE +最小值;如果不存在,请说明理由.14.如图,①ABC 中,①C =90°,AC =8cm ,BC =6cm ,若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm ,设运动的时间为t 秒.(1)当t = 秒时,CP 把①ABC 的面积分成相等的两部分,此时CP = cm ;(2)当t 为何值时,①ABP 为等腰三角形.(3)若点P 在线段AC 上运动,点Q 是线段AB 上的动点,求PB +PQ 的最小值.15.已知等边①ABC 中,AB =8,点D 为边BC 上一动点,以AD 为边作等边①ADE ,且点E 与点D 在直线AC 的两侧,过点E 作EF //BC ,EF 与AB 、AC 分别相交于点F 、G .(1)求证:四边形BCEF 是平行四边形;(2)设BD =x ,FG =y ,求y 关于x 的函数解析式,并写出定义域; (3)当AD 的长为7时,求线段FG 的长.16.如图,在平面直角坐标系中,点D 的横坐标为4,直线1l :2y x =+经过点D ,与x 轴、y 轴分别交于A 、B 两点,直线2l :y kx b =+经过点()1,0C 、点D 两点.(1)求直线2l 的函数表达式; (2)求ACD △的面积;(3)点P 为线段AD 上一动点,连接CP . ①求CP 的最小值;①当ACP△为等腰三角形时,直接写出点P的坐标.17.如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当①DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长.18.如图1,点A在y轴上,点B,点C在x轴上,点D在第一象限,且△ABC与△ADC均为等边三角形,点B坐标为(﹣3,0),点E为线段BC上一动点,点F为直线DC上一动点,且∠EAF=60°,连接EF.(1)填空:写出点A、点D的坐标,点A;点D;(2)试判断△AEF的形状,并给予证明;(3)直接写出EF长度的最小值以及此时点F的坐标;(4)将条件改为“点E为CB延长线上一点”,其他条件不变,△AEF的形状是否发生变化?在图2中画全图形(不必证明),直接写出当点E坐标为(﹣5,0)时,EF的长度以及此时点F的坐标.19.如图,在平面直角坐标系中,直线y=kx过点B(m,6),过点B分别作x轴和y轴的垂线,垂足分别为点A,C,①AOB=30°.动点P从点O出发,以每秒2个单位C运长度的速度向点B运动,动点Q从点B动.点P,Q同时开始运动,当点P到达点B时,点P,Q同时停止运动,设运动时间为t秒.(1)求m与k的值;(2)设①PQB的面积为S,求S与t的关系式;(3)若以点P,Q,B为顶点的三角形是等腰三角形,请求出t的值.(温擎提示:在直角三角形中,30°的角所对的直角边等于斜边的一半)20.如图,在平面直角坐标系中,OA=OB=6,OD=1,点C为线段AB的中点.(1)直接写出点C的坐标为;(2)点P是x轴上的动点,当PB+PC的值最小时,求此时点P的坐标;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.参考答案:1.(1)解:如图,连接BP ,直线334y x =-+交x 轴于点A ,交y 轴于点B ,∴点()4,0A ,点()0,3B , 4AO ∴=,3OB =,5AB ∴,点P 是OA 中点,2AP OP ∴==,1122ABP S AP OB AB CP =⨯⨯=⨯⨯, 65CP ∴=,85AC ∴==, 124225APC S AC PC ∴=⨯⨯=; (2)如图,连接BP ,BP 平分ABO ∠,OBP CBP ∴∠=∠,又BP BP =,90BOP BCP ∠=∠=︒,BOP ∴①()BCP AAS ,3BO BC ∴==,OP CP =,532AC AB BC ∴=-=-=,222AP PC AC =+,22(4)4OP OP ∴-=+,32OP ∴=, 3,02P ⎛⎫∴ ⎪⎝⎭; (3)过点C 作⊥CH x 轴于点H .由()2得,OP CP ==32,2AC =, 4AP ∴=-32=52, ①65AC CP CH AP ⋅==,AH ∴85, OH OA AH ∴=-=125, a ∴的取值范围31225a ≤≤; (4)设点(),0M x ,过点C 作⊥CH x 轴于点H ,则22222126()()55MC HM CH x =+=-+,同理可得:2239()24CP ==,223()2MP x =-, 当MC CP =时,即221269()()554x -+=,解得3310x =或3(2舍去); 当MC MP =时,同理可得392x =; 当CP MP =时,同理可得0x =或3,故点M 的坐标为33,010⎛⎫ ⎪⎝⎭或39,02⎛⎫ ⎪⎝⎭或()0,0或()3,0. 2.解:①点P (﹣1,t )在直线直线l 2上,①t =﹣2×(﹣1)﹣1=1,即P (﹣1,1),把B 、P 的坐标代入可得13k b b -+=⎧⎨=⎩, 解得 23k b =⎧⎨=⎩, ①t =1,k =2,b =3;(2)解:①直线y =﹣2x ﹣1交y 轴于点A ,①A (0,﹣1),①P (﹣1,1),B (0,3), ①1114222PAB SAB =⨯=⨯=; (3)解:①①MN ①y 轴,①M、N的横坐标为a,设M、N的纵坐标分别为ym和yn,由(1)可知直线l1的函数表达式为y=2x+3,①ym=2a+3,yn=﹣2a﹣1,当MN在点P左侧时,此时a<﹣1,则有MN=yn﹣ym=﹣2a﹣1﹣(2a+3)=﹣4a﹣4,①MN<4,①﹣4a﹣4<4,解得a>﹣2,①此时﹣2<a<﹣1;当MN在点P的右侧时,此时a>﹣1,则有MN=ym﹣yn=2a+3﹣(﹣2a﹣1)=4a+4,①MN<4,①4a+4<4,解得a<0,①此时﹣1<a<0;当a=﹣1时,也符合题意,综上可知当﹣2<a<0时,MN<4;①由(2)可知S△APB=2,由题意可知点M只能在y轴的左侧,当点M在线段BP上时,过点M作MC①y轴于点C,如图1①S△APM=12S△AMB,①S△ABM=23S△APB=43,①12AB•MC=43,即2MC=43,解得MC=23,①点M的横坐标为﹣23,即a=﹣23,①MN=4a+4=﹣83+4=43;当点M在线段BP的延长线上时,过点M作MD①y轴于点D,如图2,①S△APM=12AMB S,①S△ABM=2S△APB=4,①12AB•MD=4,即2MD=4,解得MD=2,①点M的横坐标为﹣2,①MN=﹣4a﹣4=8﹣4=4(不合题意舍去),综上可知MN的长度为43.3.解:①|c﹣1|+(a+b)2=0,①c=1,a=﹣b,①OA=OB,①①ABO=45°,故答案为:1,45°.(2)证明:①AF ①BC ,①①AOE =①BFE =90°,①①AEO =①BEF ,①①OBC =①OAE ,在①AOE 和①BOC 中,===OAE OBC AOE BOC OA OB ∠∠⎧⎪∠∠⎨⎪⎩, ①①AOE ①①BOC (AAS ),①OE =OC ;(3)解:连结OF ,过点F 作FG ①x 轴,垂足为点G ,设①F AO =x ,则①FBO =2①F AO =2x ,①O 在AF 的垂直平分线上,①AO =OF ,①①OAF =①OF A =x ,①①GOF =①OAF +①OF A =2x ,①①FBO =2①F AO =2x ,OB =OA =OF ,①①OFC =①OBF =2x ,①①BCO =①COF +①OFB =4x ,①①OBC +①OCB =90°,①6x =90°,解得x =15°,①①OBC =①GOF =2x =30°,①C (1,0),①OC =1,①①BOC =90°,①OBC =30°,①BC =2OC =2,OB ,①OA =OF =OB,同理可得:FG = ,①=+AC AO OC ,①S △ABF =S △ACB +S △ACF =12×AC ×FG +12×AC ×OB =12=94 4.(1)①四边形ABCO 是矩形①AB =OC ,AO =BC①A (10,0),B (10,8)①OC =OB =8①点C 的坐标为(0,8)故答案为:0,8(2)设直线AC 的解析式为y kx b =+把点A (10,0),B (0,8)代入y kx b =+得,1008k b b +=⎧⎨=⎩ 解得,458k b ⎧=-⎪⎨⎪=⎩ ①直线AC 的解析式为485y x =-+ 把点Q (5,n )代入485y x =-+得, 45845n =-⨯+=; (3)①当05t ≤≤时,102OP OA AP t =-=-过点Q 作QD ①OA 于点D ,如图,①Q (5,4)①QD =4 ①1(102)42042S t t =-⨯=-; ①当59<≤t 时,OP = AP -AO =2t -10过点Q 作QE ①OC 于点E ,如图,①Q (5,4)①QE =5 ①1(210)55252S t t =-⨯=- 综上,204(05)=525(59)t t S t t -≤≤⎧⎨-<≤⎩5(1)①90ACB ∠=︒,60ABC ∠=︒①30A ∠=︒①CDE △为等边三角形①60DEC ∠=︒①DEC ∠是ADE 外角①DEC A ADE ∠=∠+∠①30ADE A ∠=︒=∠①DE EA =故答案为相等.(2)取AB 中点O ,连接OC 、OE①AF CE ∥, CF AE ∥①四边形AECF 是平行四边形①90ACB ∠=︒①OC OB OA ==①60ABC ∠=︒①①BCO 为等边三角形①①CDE 是等边三角形①60DCB OCE DCO ∠=∠=︒-∠①OC BC = CD CE =①BCD OCE ≌△△①60EOC B ∠=∠=︒①60EOA ∠=︒又①OE OE =,OA OC =①()OCE OAE SAS ≌△△①CE EA =①平行四边形AECF 是菱形(3)当点D 在AB 延长线上时,作CH AD ⊥于H ,当四边形AECF 为正方形时,45ACE BCE ∠=∠=︒,90AEC ∠=︒ ①60DCE ∠=︒①15DCB ∠=︒①60ABC ∠=︒①45CDH ∠=︒①BC =①AC ==①12CH AC =①AH ==①CDE △为等边三角形 ①CH DH ==①AD =当点D 在AB 上时作CH AB ⊥于H ,同理可得CDH △是等腰直角三角形,则AD AH DH =-=综上AD =6.解:①矩形OABP 中,()02A ,, AB OP ∴=,2BP OA ==,90AOP OAB ABC OPB ∠=∠=∠=∠=︒ . ABC 沿AC 折叠后得到ADC ,90ADC ABC ∴∠=∠=︒,AD AB =,AD OP ∴=,当点E 与原点O 重合时,18090ADO ADC ∠=︒-∠=︒,90AOD COP AOP ∠+∠=∠=︒,90AOD OAD ∴∠+∠=︒,COP OAD ∴∠=∠.在OCP △和AOD △中,90OPC ADO COP OAD OP AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()OCP AOD AAS ∴≌;①①点C 为PB 的中点,112CP BC PB ∴===, 由①知:OCP AOD ≌,2OC AO ∴==,在Rt COP 中,由勾股定理得OP ,即OP(2)解:当5EC DE =,则4CD DE =.ABC 沿AC 折叠后得到ADC ,1CD BC ∴==,90ADC ABC ∠=∠=︒,AD AB =,1144DE CD ∴==,90ADE ∠=︒,AD OP =, 554CE ED ∴==, 设OP p =,则AD AB OP p ===,若点E 在OP 上,连接AE ,如下图,在Rt CPE △中,1CP =,34EP ∴=, 34OE OP PE p ∴=-=-, 在Rt AOE 中,22222324AE OA OE p ⎛⎫=+=+- ⎪⎝⎭, 在Rt ADE △中, 222221=4AE DE AD p ⎛⎫=++ ⎪⎝⎭, 222213+244p p ⎛⎫⎛⎫∴=+- ⎪ ⎪⎝⎭⎝⎭, 即22139+416216p p p =+-+, 解得3p =,此时,点P 的坐标为()30,; 若点E 在OA 上,点D 在第一象限,过点E 作EF BC ⊥于F 点,如下图,则90EFP EFC ∠=∠=︒,90EOP OPF EFP ∴∠=∠=∠=︒,①四边形EFPO 是矩形,90CEF ECF ∠+∠=︒,EF OP ∴=,90OEF ∠=︒,AD EF ∴=,90CEF AED AEF ∠+∠=∠=︒,AED ECF ∴∠=∠.在AED 和ECF △中,AED ECF ADE EFC AD EF ∠=∠∠=∠=⎧⎪⎨⎪⎩,()AED ECF AAS ∴≌,54AE EC =∴=. 在Rt ADE △中,AD ==OP AD ∴== 此时,点P的坐标为0⎫⎪⎪⎝⎭.若点E 在OA 上,点D 在第二象限时,过点C 作CF OA ⊥于F 点,如下图, 则90AFC ∠=︒.①①F AB =①B =①AFC =90°,①四边形AFCB 是矩形,①AB =CF ,1AF BC ==ABC 沿AC 折叠后得到ADC ,①90ADC ABC ADE ∠=∠=∠=︒,AD AB OP CF ===,90ADE EFC ∴∠=∠=︒.在AED 和CEF △中,AED CEF ADE EFC AD CF ∠⎪∠⎧=∠∠=⎪⎨⎩=,()AED CEF AAS ∴≌,AE CE ∴=,DE EF =.5EC ED =,1AF AE EF BC =+==,15CE EF CE DE DE DE ∴+==+=+,16DE EF ∴==,556CE DE ==, 在Rt EFC 中,CF =即OP , ∴点P的坐标为⎫⎪⎪⎝⎭.综上所述,点P 坐标()30,或0⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 7.(1)①0x =,①(0x ≥0≥,①x y ==①A ,()B ,132AOB S =⨯=△. (2)结论:222CD OC BC =+.理由:连接,①OA AB ==OB =①222OA OB OB +=,①90OAB ∠=︒,45AOB ABO ∠=∠=︒,①OAB CAD ∠=∠,①OAC BAD ∠=∠,①AO AB ∠=,AC AD =,①OAC BAD △△≌,①OC BD =,45AOC ABD ∠=∠=︒,①90CBD ∠=︒,①222CD BC BD =+.①222CD OC BC =+.(3)(2)中的结论仍然成立理由:连接,①90OAB ∠=︒,45AOB ABO ∠=∠=︒,①OAB CAD ∠=∠,①OAC BAD ∠=∠,①AO AB =,AC AD =,①OAC BAD △△≌,①OC BD =,45AOC ABD ∠=∠=︒,①90OBD DBC ∠=∠=︒,①222CD BC BD =+,①222CD OC BC =+.8.(1)解:将点2()B m -,,代入4y x =+得24m ,解得2m =,①()22B -,, 当0x =时,4y =,①()0,4A , ①12662ABC S ∆=⨯⨯=. (2)解:设直线BC 的解析式为()20y kx k =-≠,将B 点坐标代入得222k --=,解得2k =-,①直线BC 的解析式为22y x =--,故设过点A 且平行于BC 的直线解析式为2y x b =-+,将A 点坐标代入得4b =,①过点A 且平行于BC 的直线解析式为24y x =-+,当0y =时,2x =,①()2,0E .(3)解:由(2)可得()1,0D -,以点D 、E 、P 、Q 为顶点的平行四边形分两种情况求解: ①当DE 是平行四边形的边长时,则点Q 在x 轴上方,设(),4P m m +,①62DEPQ ABC DEP SS S ===, ①()1432DEP S DE m =⨯+=, 解得2m =-,①()2,2P -,①PQ DE ∥,PQ DE =,①()5,2Q -;同理62DEQP ABC DEP S S S ===,①()2,2P -,①()1,2Q ;①当DE 是平行四边形的对角线时,则点Q 在x 轴下方,设(),4P m m +,同理62DQEP ABC DEP S S S ===,①()2,2P -,①D E 、的中点坐标为102,⎛⎫ ⎪⎝⎭, ①P Q 、的中点坐标为102,⎛⎫ ⎪⎝⎭, ①()3,2Q -;综上所述,P 点坐标为()2,2-,Q 的点坐标为()5,2- 或()1,2 或()3,2-.9.如图所示:BQ=2×2=4cm,BP=AB-AP=8- 2×1=6cm,①①B= 90°①PQ==;(2)当△PQB第一次形成等腰三角形时,BQ =BP,①BQ = 2t,BP= 8-t,①2t= 8-t,解得:t=83;(3)①①B = 90°,AB = 8cm,BC = 6cm,①AC10=cm,①当CQ= BQ时,如图则①C=①CBQ,①①ABC= 90°,①①CBQ +①ABQ = 90°,①①A+①C= 90°,①①A=①ABQ,①BQ= AQ,①CQ=AQ=5cm,①BC+ CQ = 11cm,①t= 11 ÷2= 5.5秒;①当CQ= BC时,如图2,则BC+CQ=12cm,①t= 12÷2= 6秒;①当BC = BQ时,如图3,过B点作BE①AC于点E,则BE=·6824105AB BCAC⨯==cm,①CE185=cm,①CQ= 2CE = 7.2cm,①BC+ CQ = 13.2cm,①t= 13.2÷2= 6.6秒;综上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.10.(1)证明:①BF ①CE ,①①CGB =90°,①①GCB +①CBG =90°,①四边形ABCD 是正方形, ①①CBE =90°=①A ,BC =AB , ①①FBA +①CBG =90°,①①GCB =①FBA ,在①ABF 和①BCE 中,A CBE AB BCABF BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①ABF ①①BCE (ASA );(2)解:①由题意可知AB =CD =BC =2, ①点E 是AB 的中点,①EA =EB =12AB =1,①CE在Rt①CEB 中,12BG •CE =12CB •EB , ①BG =CB EB CE⋅①证明:如图,过点D 作DH ①CE 于H ,由①可得CG = ①①DCE +①BCE =90°,①CBF +①BCE =90°,①①DCE =①CBF ,①CD =BC ,①CHD =①CGB =90°,①①CHD ①①BGC (AAS ),①CH =BG①GH =CG ﹣CH =CH , ①CH =GH ,DH ①CE ,①DC =DG ;11.(1)解:①AD 是由AB 折叠得到,①10AD AB ==,①()0,4D -;(2)BP t =,当05t ≤<时,①()8,0B -,()3,0C -,①8OB =,3OC =, ①1163922ACO S OA OC =⋅=⨯⨯=△,8OP OB BP t =-=-, ①()116824322APO S OA OP t t =⋅=⨯-=-△,①2439153PCA APO ACO S S S t t =-=--=-△△△,当58t <≤时,()9243315PCA ACO APO S S S t t =-=--=-△△△,综上所述,PCA 的面积是153S t =-,(05t ≤<),或315S t =-,(58t <≤).(3)①DOP MON △△≌,①OP ON =,OM OD =,由题意可知:BP t =,2AM t =,ON at =,4OD =①8OP OB BP t =-=-,62OM AO AM t =-=-,①624t -=,解得1t =,8t at -=,解得7a =,①a 的值是7.12.(1)解:①一次函数21y x =--的图象分别交x 轴,y 轴于点A 和B ,①点A (-12,0),点B (0,-1),设直线BC 的解析式y kx b =+代入B (0,-1),C (-3,0).解得13k =-,1b =- ①直线BC 的函数解析式113y x =--. (2)①设点P (m ,0),则点M (m ,21m --),点N (m ,113m --) 依题意可得PM =PN ①1210013m m ⎛⎫---=--- ⎪⎝⎭解得:67m =- ①点P (-67,0) (3)设(),0,P x 而0,1,3,0,B C22222223,1,3110,PC x PB x BC 当PC PB =时,2231,x x 解得:4,3x4,0.3P 当,PB BC2110,x解得:3,x =±当3x =-时,不合题意舍去,3,0.P当PC BC =时,2310,x 12310,310,x x 310,0P 或310,0.P综上:点P (3,03,0)或(3,0)或4,03⎛⎫- ⎪⎝⎭. 13.(1)①①(490C AOD ∠=︒,,①4DC AD DO ===,①2OA ==,①四边形ABCD 是菱形,①42AB AD OB AB OA ===-=,,①点B 的坐标(2)0,, 故答案为:(2)0,①①在菱形ABCD 中,4DC AB OD ===,①菱形ABCD 的面积•4AB OD ==⨯(2)如图所示:当3t =时,3AP =,在菱形ABCD 中,点P 关于AC 的对称点为3P AP ''=,,连接DP '交AC 于点E ,连接PE ,①PE DE P E ED P D ''+=+=.①2OA OD ==,①1OP '=,在Rt DOP '中,①222DO P O P D ''+=,①P D'①PE DE+14.(1)解:在直角三角形ACB中,由勾股定理得AB10,①CP把△ABC的面积分成相等的两部分,①P为AB的中点,CP=152AB=.①运动的路径长为AC+AP=8+5=13.运动的时间为13÷1=13(秒)所以t=13;CP=5.(2)解:①ABP为等腰三角形,点P只能在AC上且P A=PB,设CP=t,则AP=BP=8﹣t,在Rt①BCP中,BC2+CP2=BP2,即62+t2=(8﹣t)2,解得,t=74,①当t=74时,①ABP为等腰三角形;(3)作点B关于AC的对称点B′,过点B′作AB的垂线段,交AC于点P,交AB于点Q,连接AB′,则垂线段B′Q即为所求的PB+PQ的最小值,①S△ABB′=12×BB′×AC=12×12×8=48,S△ABB′=12×AB×B′Q,①B′Q=485,即PB+PQ最小值为485.15.(1)①①ABC 是等边三角形① AB =AC①60,BAC ABC ACB ∠=∠=∠=︒①①ADE 是等边三角形①AD =AE①60,DAE ∠=︒BAC DAC DAE DAC∠-∠=∠-∠ 即BAD CAE∠=∠ ①ABD ACE ∆≅∆ (SAS )① BD =EC①60ACE B ∠=∠=︒①120,BCE ACB ACE ∠=∠+∠=︒①180,B BCE ∠+∠=︒①AB //EC①EF //BC①四边形BCEF 是平行四边形(2)①EF //BC①60CGE ACB ∠=∠=︒①60CGE ACE ∠=∠=︒①GE =EC①GE =EC =BD =x①FG FE GE =-①8(08)y x x =-<<(3)作AH ①BC ,垂足为H在Rt AHB ∆中,90,AHD ∠=︒222AH BH AB +=①22248AH +=①AH =在Rt ADH ∆中,90,AHD ∠=︒①222AH DH AD +=即(222(4)7x +-=,解得5x =或3x =; ① 8FG x =-①FG 的长为3或516.(1)将4x =代入2y x =+得:6y =①点D 的坐标为()4,6.将()1,0C ,()4,6D 代入y kx b =+得046k b k b +=⎧⎨+=⎩解得22k b =⎧⎨=-⎩ ①直线2l 的表达式为22y x =-.(2)过点D 作DE x ⊥轴于点E ,①()4,6D ,①6DE =将0y =代入2y x =+得2x =①()2,0A -,①3AC = ①192ACD S AC DE =⋅=△. (3)①由题可知:当CP AB ⊥时,CP 的值最小, 由(2)可知6DE =,①点E 坐标为()4,0,①246AE AO OE =+=+=在Rt ADE △中,90AED ∠=︒.①AD ==①192ACD S AD CP =⋅=△①29CP AD ⨯=== ①①点P 在直线y =x +2上,①设点P (x ,x +2),①A (-2,0),C (1,0)①22[1(2)]9AC =--=,222(2)PA x =+,222(1)(2)PC x x =-++ (a )当AP AC =时,即22AP AC =,则:22(2)=9x +解得,x =当x =y =x =时,y =①点P (b )当AC PC =时,即22AC PC =,则:22(1)(2)9x x -++=解得,x =1或x =-2(舍去)当1x =时,3y =;①点P 的坐标为(13,)(c )当AP PC =时,即22AP PC =,则:22()2x +22(1)(2)x x =-++ 解得,12x =- ①32y = ①点P 的坐标为(12-,32)综上,点P 的坐标为:13,)或(12-,32) 17(1)解:①四边形ABCD 是矩形,①①BAD =90°,①①DAG =30°,①①BAG =60°由折叠知,①BAE =12①BAG =30°,在Rt △BAE 中,①BAE =30°,AB =3,①BE(2)解:如图4,连接GE ,①E 是BC 的中点,①BE =EC ,①①ABE 沿AE 折叠后得到△AFE ,①BE =EF ,①EF =EC ,①在矩形ABCD 中,①①C =90°,①①EFG =90°,①在Rt △GFE 和Rt △GCE 中,EG EG EF EC =⎧⎨=⎩①Rt △GFE ①Rt △GCE (HL ),①GF =GC ;设GC =x ,则AG =3+x ,DG =3﹣x ,在Rt △ADG 中,42+(3﹣x )2=(3+x )2,解得x =43. (3)解:如图1,由折叠知,①AFE =①B =90°,EF =BE , ①EF +CE =BE +CE =BC =AD =4,①当CF 最小时,△CEF 的周长最小,①CF≥AC-AF ,①当点A ,F ,C 在同一条直线上时,CF 最小, 由折叠知,AF =AB =3,在Rt △ABC 中,AB =3,BC =AD =4,①AC=5,①CF=AC﹣AF=2,在Rt△CEF中,EF2+CF2=CE2,①BE2+CF2=(4﹣BE)2,①BE2+22=(4﹣BE)2,①BE=32.18.解:(1)∵△ABC是等边三角形,AO⊥BC,∴OB=OC,∠BAO=∠CAO=30°,∵点B坐标为(﹣3,0),∴OB=OC=3,∴AB=6,∴OA∴A(0,,∵△ABC和△ADC都是等边三角形,∴AD=AC=AB=6,∠ACB=∠ACD=∠D=60°,∴∠D+∠BCD=180°,∴AD∥BC,∴D(6,,故答案为:(0,,(6,;(2)△AEF是等边三角形.证明:∵△ABC和△ADC都是等边三角形,∴AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等边三角形.(3)由(2)知AE=EF=AF,当AE⊥BC时,AE取得最小值,∴AE=OA=过点F作FM⊥x轴于点M,∵∠FOM=30°,OF=∴FM=∴OM92 =,∴F(92,即EF的最小值为F(92;(4)由(2)可知△ABE≌△ACF(ASA),∵E(﹣5,0),OB=3,∴BE=2,∴BE=CF=2,CE=8,∵∠ACD=∠ACB=60°,∴∠ECF=60°,过点F作FN⊥BC于点N,如图3,∴CN 12=CF =1,∴NF∴EF∵OC =3,∴ON =OC ﹣CN =3﹣1=2,∴F (2,.19.(1)解:BA OA ⊥,90BAO ∴∠=︒,30AOB ∠=︒,6(),B m ,OA m ∴=,6AB =,212OB AB ∴==,OA =m ∴=B 6),直线y kx =过点B 6),k ∴= (2)如图1,过点P 作PF BC ⊥于点F ,BQ ∴,2OP t =,则122PB t =-,30OBC ∠=︒,∴在Rt PFB ∆中,6PF t =-,()2162S t ∴=⨯-=+; (3)分三种情况:①当BQ BP =122t =-, 解得24t =-①当PQ PB =时,如图2,过点P 作PM BQ ⊥于点M ,BM ∴,2)t -, 解得4t =;①当OB QP =时,如图3,过点Q 作ON BP ⊥于点N ,则6BN t =-,6t ∴-=, 解得125t =;综上所述,当PQB ∆为等腰三角形时,t 的值为24-4或125. 20.(1)解:过点C 作CN OA ⊥于点N ,过点C 作CM OB ⊥于点N .①CN OA ⊥①//CN OB又①点C 为线段AB 的中点,OA = 6 ①132ON OA == 同理132OM OB == ①C (3,3)(2)作点B关于x轴的对称点B',连接CB'交x轴于点P,此时PB+PC的值最小,由已知得,点B的坐标为(0,6),①点B关于x轴的对称点B'(0,﹣6),由(1)知,C(3,3),可设直线CB'的解析式为y=kx+b,①633bk b-=⎧⎨=+⎩解得36kb=⎧⎨=-⎩① 直线CB'的解析式为y=3x﹣6,令y=0,则3x﹣6=0,解得:x=2,① P(2,0);(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:当AC为对角线时,①A(6,0),C(3,3),D(1,0),①1632200322mn++⎧=⎪⎪⎨++⎪=⎪⎩,解得:83mn=⎧⎨=⎩,①点F1的坐标为(8,3);①当AD为对角线时,①A(6,0),C(3,3),D(1,0),①3162230022mn++⎧=⎪⎪⎨++⎪=⎪⎩,解得:43 mn=⎧⎨=-⎩,①点F2的坐标为(4,-3);①当CD为对角线时,①A(6,0),C(3,3),D(1,0),①6312203022mn++⎧=⎪⎪⎨++⎪=⎪⎩,解得:23mn=-⎧⎨=⎩,①点F3的坐标为(-2,3).综上所述,点F的坐标是(8,3),(4,-3)或(-2,3).。
八年级数学下册期末动点问题及压轴题带答案
1.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.2.(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm.一动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB 边向点B以3cm/s的速度运动.P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t s,则(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)AB边的长是否存在一数值,使四边形PQCD为菱形.如果存在,请求出AB 边的长,如果不存在,请说出理由.3.(本题10分)已知:在正方形ABCD 中,AB =6,P 为边CD 上一点,过P 点作PE ⊥BD 于点E ,连接BP(1) O 为BP 的中点,连接CO 并延长交BD 于点F① 如图1,连接OE ,求证:OE ⊥OC② 如图2,若53=EF BF ,求DP 的长 (2) CP EP 22+=___________4.(本题12分)如图1,直线333+-=x y 分别与y 轴、x 轴交于点A 、点B ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E(1) 点B 的坐标为__________,不等式0333>+-x 的解集为___________(2) 若S △COE =S △ADE ,求点D 的坐标(3) 如图2,以CD 为边作菱形CDFG ,且∠CDF =60°.当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.5.(11分)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)菱形ABCO的边长是 ;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S≠0),点P 的运动时间为t 秒.①求S 与t 之间的函数关系式;②在点P 运动过程中,当S =3,请直接写出t 的值.6.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.7、如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、D Q、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x 的值.8、如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P 作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.1.【解答】解:(1)∵A(0,4),B(0,2),∴OA=4,OB=2,点B为线段OA的中点,又点D为OC的中点,即BD为△AOC的中位线,∴BD∥AC;(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3),∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=4,∴x=∵点C在x轴的正半轴上,∴点C的坐标为(,0);(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)代入AC的解析式得:解得:∴直线AC的解析式为y=﹣x+4.2.【解答】解:(1)由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∵四边形PQCD为平行四边形,∴DP=CQ,∴24﹣t=3t,∴t=6;(2)如图2,过点D作DE⊥BC于E,过点P作PF⊥BC于F,∴四边形EFPD是矩形,∴DE=PF,[来源:Z|xx|]∵四边形PQCD是等腰梯形,∴∠PQC=∠DCQ,∵∠PFQ=∠DEC=90°,∴△PFQ≌△DEC,∴FQ=CE,∴BE=AD=24,∴CE=BC﹣BE=2,∵四边形PQCD为等腰梯形,∴CQ=DP+2CE,由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∴24﹣t+2×2=3t,∴t=7,(3)AB边的长是8时,四边形PQCD为菱形,理由:由(1)知,t=6时,四边形PQCD是平行四边形,∴DP=24﹣6=18,∵平行四边形PQCD是菱形,∴CD=DP=18,如图2,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴AB=DE,在Rt△CDE中,CE=2,CD=18,∴DE==8.3.证明:(1) ① ∵∠PEB =∠PCB =90°,O 为BP 的中点∴OE =OB =OP =OC∴∠POE =2∠DBP ,∠POC =2∠CBP∴∠COE =∠POE +∠POC =2(∠DBP +∠CBP )=90°∴OE ⊥OC② 连接OE 、CE∵△COE 为等腰直角三角形∴∠ECF =45°在等腰Rt △BCD 中,BF 2+DE 2=EF 2设BF =3x ,EF =5x ,则DE =4x∴3x +4x +5x =26,解得x =22 ∴DP =2DE =424=x(2) ∵62==-+=+CD C DP CP EP ∴2322=+CP EP4.解:(1) (3,0)、x <3(2) ∵S △COE =S △ADE∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF∵∠CDF =60°∴△CDF 为等边三角形连接AC∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-) 令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6.解:根据题意得:PA=2t ,CQ=3t ,则PD=AD-PA=12-2t .(1)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,在直角△CDE 中,∵∠CED=90°,DC=10cm ,DE=8cm ,∴22DC DE -,∴BC=BE+EC=18cm .…………………………………………………………………2分(直接写出最后结果18cm 即可)(2)∵AD ∥BC ,即PD ∥CQ ,∴当PD=CQ 时,四边形PQCD 为平行四边形,即12-2t=3t ,解得t=125秒, 故当t=125秒时四边形PQCD 为平行四边形;………………………………………4分(3)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,当PQ=CD 时,四边形PQCD 为等腰梯形.过点P 作PF ⊥BC 于点F ,过点D 作DE ⊥BC 于点E ,则四边形PDEF 是长方形,EF=PD=12-2t ,PF=DE .在Rt △PQF 和Rt △CDE 中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分(4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103;②当DQ=DC时,36 2t=∴t=4;③当QD=QC时,3t×65 10=∴t=259.故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=25 97.解:(1);-1;(2)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°∵Q点为A点关于BP的对称点∴AB=QB,∠A=∠PQB=90°∴QB=BC,∠BQE=∠BCE∴∠BQC=∠BCQ∴∠EQC=∠EQB-∠CQB=∠ECB-∠QCB=∠ECQ∴EQ=EC在Rt△ABC中∵∠QDE=90°-∠QCE,∠DQE=90°-∠EQC∴∠QDE=∠DQE∴EQ+ED∴CE=EQ=ED即E是CD的中点②(3)或或8.解:(1)∵y=﹣x+b交x轴于点A(8,0),∴0=﹣×8+b,b=6,∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);(2)∵A(8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB=10=BC,∴OC=4,∴点C(0,﹣4),设直线AC解析式为y=kx+b’,∴,∴∴直线AC解析式为y=x﹣4,∵P在直线y=﹣x+6上,∴可设点P(t,﹣t+6),∵PQ∥y轴,且点Q在y=x﹣4 上,∴Q(t, t﹣4),∴d=(﹣t+6)﹣(t ﹣4)=﹣t+10;(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ,∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=8,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QMN=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∴∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN,∴HN=RM=k,NR=QH=4+k,∵HR=HN+NR,∴k+4+k=8,∴k=2,∴GH=NH=RM=2,∴HQ=6,∵Q(t,t﹣4),∴N(t+2,t﹣4+6)即 N(t+2,t+2)∵N在直线AB:y=﹣x+6上,∴t+2=﹣(t+2)+6,∴t=2,∴P(2,),N(4,3),∴PH=,NH=2,∴PN==.。
初中数学数轴动点问题压轴题
初中数学数轴动点问题压轴题
数轴上的动点问题是一个常见的数学问题,它考察了数轴的基本概念、绝对值和一元一次方程等知识点。
以下是一个初中数学数轴动点问题的压轴题示例:
题目:在数轴上,点A表示的数是-5,若将点A向右平移3个单位到点B,则点B表示的数是 _______.
解析:由题意,点A表示的数是-5。
向右平移3个单位意味着数值会增加3。
因此,点B表示的数为$-5 + 3 = -2$。
答案:$-2$。
这道题目考察了数轴上点的平移规律,即“左减右加”。
对于任意一个点,当它在数轴上向右平移时,其对应的数值会增加平移的单位数;相反,当它向左平移时,其对应的数值会减少平移的单位数。
如果你需要更多类似的问题和解析,可以查阅初中数学教辅资料或请教数学老师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二动点问题及中考压轴题1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C 作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q 运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D 运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q 分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是 81=8(秒),∴点P的速度是 6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵ 485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P( 85, 245)M1( 285, 245),M2(- 125, 245),M3( 125,- 245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.动点问题及四边形难题习题1如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);2.已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;3.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. A BDC O P xy(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?4. 如图,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD =CD ,∠ADB =90°,CH ⊥AB 于H ,CH 交AD 于F.(1)求证:CD ∥AB ;(2)求证:△BDE ≌△ACE ;(3)若O 为AB 中点,求证:OF =12BE.5、如图1―4―2l ,在边长为a 的菱形ABCD 中,∠DAB =60°,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足A E +CF=a ,说明:不论E 、F 怎样移动,三角形BEF 总是正三角形.6、如图1-4-38,等腰梯形ABCD 中,AD ∥BC ,AB =CD ,∠ DBC =45○ ,翻折梯形使点B 重合于点 D ,折痕分别交边 AB 、BC 于点F 、E ,若AD=2,BC=8,求BE 的长.7、在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . A QC DB P(1)求证:CF AB ;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.8、如图l -4-80,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过点A 作AG ⊥EB ,垂足为G ,AG 交BD 于F ,则OE=OF . (1)请证明0E=OF(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E 在AC 的延长线上,AG ⊥EB ,AG 交 EB 的延长线于 G ,AG 的延长线交DB 的延长线于点F ,其他条件不变,则仍有OE=OF .问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.9已知:如图4-26所示,△ABC 中,AB=AC ,∠BAC=90°,D 为BC 的中点,P 为BC 的延长线上一点,PE ⊥直线AB 于点E ,PF ⊥直线AC 于点F .求证:DE ⊥DF 并且相等.10已知:如图4-27,ABCD 为矩形,CE ⊥BD 于点E ,∠BAD 的平分线与直线CE 相交于点F .求证:CA=CF .FEDCBA11已知:如图4-56A .,直线l 通过正方形ABCD 的顶点D 平行于对角线AC ,E 为l 上一点,EC=AC ,并且EC 与边AD 相交于点F .求证:AE=AF .本例中,点E 与A 位于BD 同侧.如图4-56B .,点E 与A 位于BD 异侧,直线EC 与DA 的延长线交于点F ,这时仍有AE=AF .请自己证明.动点问题练习题1、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.C P Q BA MNO M A N B C yx2、如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒).(1)求线段AB 的长;当t 为何值时,MN ∥OC ?(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? 若有最小值,最小值是多少? (3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直?若存在,求出这时的t 值;若不存在,请说明理由.2、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.A D CB M NA P C QB DEDBCAQP3、如图,A 、B 分别为x 轴和y 轴正半轴上的点。