第四讲 数列与数表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲数列与数表综合
【知识点】
一、等差数列
1.首项:a1 =a n-(n-1)×d
2.末项:a n =a1+(n-1)×d
3.公差:d=( a n – a1 )÷(n-1)
4.项数:n=( a n – a1 )÷d+1
5.和:Sn=( a1 + a n )×n÷2
二、特殊数列
1.山顶数列:1+2+3…+n+…+3+2+1=n2
2.奇数数列:1+3+5+…+(2n-1)=n2
3.平方数列:12 + 22+ 32… +n2=n×(n+1)×(2n+1)÷6
4.立方数列:13 + 23+ 33… +n3=(1+2+3…+n)2
三、等比数列
1.公比:q=a2÷a1
2.求和:Sn=(末项×公比-首项)÷(公比-1)
复习:
1.完全平方公式:(a±b)2=a2+b2±2ab
2.平方差公式:a2-b2=(a+b)×(a-b)
【周周测】
练习1 已知数列2、3、4、6、6、9、8、12、……,该数列中的前101项和是(),2010是数列中的第()项
练习2 昊昊从1开始写了若干个连续奇数,并对它们列竖式求和.因为粗心,昊昊把一个数多加了,最后得到的和是2011.请问:昊昊从1写到哪个数?多加了哪个数?
练习3 我们知道:9=3×3,16=4×4,这里,9、16叫做“完全平方数”,在前300个自然数中(不包括自然数0),去掉所有的“完全平方数”,剩下的自然数的和是()。
练习4 1×3+2×4+3×5+…+97×99+98×100=
练习5 在一次数学竞赛中,获得一等奖的八名同学的分数恰好构成等差数列,总分为656,且第一名得分数超过了90分(满分100分)。已知同学们的分数都是整数,那么第三名的分数是()。
练习6 在圆周上一条直径的两端填上数1与2,第一次将两端两数的和1+2=3填在圆弧的中点,如图所示;第二次将每段圆弧两端两数的和1+3=4,2+3=5填在每段圆弧的中点;……如此反复进行下去,当第8次填完数之后,圆周上所有数的和是( )。
练习7 自然数每9个数一行进行排列,现在用2×3的小方框围出6个数,然后算出它们的和.如图,可以横着围或竖着围.若某个方框围出的6个数之和为567,那么其中最大的数为( ).
1 2 3 4 5 6 7 8 9
10
18
19 27
28
练习8 将自然数从1开始,顺次排成如图所示的螺旋形,其中2,3,5,7,…处为拐点,请问:(1
)第
30个拐点处的数是( );(2)前30个拐点处的各数之和是( )