初一竞赛讲座-06整式的恒等变形
第二讲 式的恒等变形常用的技巧

第二讲式的恒等变形常用的技巧
一、定义
恒等变形(Identity Transformation),即恒等转换,是数学中用来把一个等式变成另一个等式,保持等式的真值不变的变形方法,是一种常见的数学技术,被广泛用于研究不等式和方程的性质。
二、作用
恒等变形可以帮助人们更快地理解某一关系,从而推导出证明结果,它可以帮助学生更深入地掌握算法,提高学习效率,发展思维能力。
三、常用技巧
1. 左右交换法
左右交换法是把等式中的等号之外的式子分成两边,然后左右交换这两边的式子,例如,把x+y=6变成y+x=6.
2. 同乘除法
同乘除法是在等式中的式子两边同乘除一个数,例如,把2x+3y=6变成x+1.5y=3.
3. 组合法
组合法是通过简单的加减乘除把两边的式子组合起来,例如,把
x+y=6变成x+2y=8.
4. 公式法
公式法是把等式中式子变成另一个形式,如把2x+3y=6变成3x-2y=6.
5. 变数法
变数法是把等式中的公式变成另一个形式,如把x+2y=8变成2x+y=8.
6. 变换形式法
变换形式法是把等式中的公式变成另一个形式,如把2x+3y=6变成6-3y=2x.。
整式恒等变形

第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初中联赛题型解读一:整式与恒等变形

联赛题型解读(一)——整式与恒等变形左右。
而代数的基础便是整式,其中乘法公式、因式分解以及恒等变形,为代数提供了丰富的知识和技巧。
下面我们通过统计近16 年初中数学联赛中整式的分值(注:至少在结构和形式上是对整式的考察才会计入分值统计),帮助大家更好的了解整式在联赛中考察的分值比重。
总结这几年来初中数学联赛对整式的考察,整式一般会考察2道题左右,考察的分值最高达到41 分(3 道一试题外加 1 道二试题),而且整体趋势是在有一两年的高分值之后跟随几年的低峰。
我们可以认为在接下来的一两年内,会在一试中进行2 题左右的考察。
而且近三年的趋势就是这一块的内容有加强考察的趋势,说明这方面的能力要求在提升。
恒等变形的技巧贯穿了整个代数,可以说整式是整个初中代数的基础与灵魂所在。
整式中的知识大体来说包含了:乘法公式,因式分解及恒等变形,三个部分,这里简单的介绍前两个部分的基础知识。
1.乘法公式这里介绍常用的八个乘法公式:(1)平方差:a2 -b2 =(a +b)(a -b);⎣⎦(2) 平方: (a ± b )2= a 2 ± 2ab + b 2 ;(3) 三元完全平方: (a + b + c )2= a 2 + b 2 + c 2 + 2ab + 2bc + 2ca ;(4)a 2 +b 2 +c 2 ± ab ± bc ± ca = 1 ⎡(a ± b )2 + (b ± c )2 + (c ± a )2⎤ ; 2 (5) 和(差)的立方: (a + b )3= a 3 + b 3 + 3ab (a + b );(a - b )3= a 3 - b 3 - 3ab (a - b );(6) 立方和(差): a 3 + b 3 = (a + b )(a 2 - ab + b 2 ); a 3 - b 3 = (a - b )(a 2 + ab + b 2 );(7)(8) a 3 + b 3 + c 3 - 3abc = (a + b + c )(a 2 + b 2 + c 2 - ab - bc - ca )-a 4 - b 4 - c 4 + 2a 2b 2 + 2b 2c 2 + 2c 2 a 2= (a + b + c )(a + b - c )(b + c - a )(c + a - b )2. 因式分解简单的介绍一下初中阶段可以学习和使用的 10 种常见因式分解的方法: (1) 提取公因式:上午+下午=(上+下)午;(2) 公式法: x 6 - y 6 = (x 3 + y 3 )(x 3 - y 3 ) = (x + y )(x - y )(x 2 + xy + y 2 )(x 2 - xy + y 2 ); (3) 分组分解法: ax + ay + bx + by = a (x + y ) + b (x + y ) = (a + b )(x + y ) ; (4) 十字相乘:二次三项式 abx 2 + (ad + bc ) x + cd = (ax + b )(cx + d ) ;(5) 双十字相乘:选定两个二次三项式进行十字相乘;分步两次十字相乘大致相同; (6) 拆项天项: a 4 + a 2b 2 + b 4 = a 4 + 2a 2b 2 + b 4 - a 2b 2 = (a 2 + ab + b 2 )(a 2 - ab + b 2 ) ; (7) 整体换元:对于较复杂的式子可以进行适当换元让结构形式变得简单;(8) 主元法:多字母的代数式,可以选择结构较好的字母当做主元进行因式分解; (9) 因式定理:多项式 f (x ) ,当 x = a 的时候 f (a ) = 0 ,则 f ( x ) 有因式 x - a (10) 轮换对称式:简单举例:若关于 x 、y 、z 的轮换式有因式 x - y ,则其有因式(x - y )( y - z )(z - x )前 8 种因式分解的方法在初中均要求学生掌握,后 2 种有兴趣有精力的学生可以选择性的进行学习。
初中数学竞赛:恒等式的证明

初中数学竞赛:恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).。
浙江省七年级数学下册 第六讲 因式分解的高端方法及恒等变形讲.

【本讲预现】
1、换元法
整体换元在初中一直是一个很重要的思想,都说初中学习数学只要掌握几个思想,其他 不成问题。
举例说明: x2 3x 2 22 x2 3x 72
解:设 x2 3x 为 a
则原式 a2 22a 72 a 4 a 18 x2 3x 4 x2 3x 18
第六讲 因式分解的高端方法及恒等变形
因式分解对于大部分孩子来说都是一个很大的难题。然而只要不断地思考、练习和总结, 你会慢慢发现它并没有想象中的那么可怕的~那么本节课希望孩子们多去思考何时需要换元, 何时须要添拆2、3+1;五项:3+2;六项:3+3、3+2+1、2+2+2 练习 1、(1)(四项式) x3 3x2 4x 12
仿照上题自己试一试:
例 1: x2 2x 2 7 x2 2x 8
x 4 x 1 x 6 x 3
2、添拆项
核心思想:为了促成合适的分组分解,一般促成公式。 举例说明:
x4 4 x4 4x2 4 4x2 x2 2 2 4x2 x2 2 2x x2 2 2x x2 2x 2 x2 2x 2
尝试做一做:
例 2、 x4 4 y4
练习答案: 练习 1:(1) x3 3x2 4x 12 x2(x+3)-4(x+3)=( x2-4) (x+3)=(x-2)(x+2)(x+3)
(2) x5 x4 x3 x2 x 1=
1+
1+ 1
4+ 2+1
整式的恒等变形精品讲义

整式的恒等变形1. 乘法公式也叫作简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
⒉ 基本公式就是最常用、最基础的公式,并且可以由此而推导出其他公式。
完全平方公式:()2222a b a ab b ±=±+,平方差公式:()()22a b a b a b +-=-. 立方和(差)公式:()()2233a b a ab b a b ±+=±.⒊ 公式的推广:①多项式平方公式:()22222222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:()3322333a b a a b ab b ±=+±()4432234464a b a a b a b ab b ±=±+±+()554322345510105a b a a b a b a b ab b ±=±+±+±…………注意观察右边展开式的项数、指数、系数、符号的规律 ③由平方差、立方和(差)公式引伸的公式()()322344a b a a b ab b a b +-+-=-()()43223455a b a a b a b ab b a b +-+-+=+()()5432234566a b a a b a b a b ab b a b +-+-+-=-…………注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n 为正整数()()2122232222122n n n n n n n a b a a b a b ab b a b -----+-+-+-=-()()2212222122121n n n n n n n a b a a b a b ab b a b ---+++-+--+=+类似地: ()()123221n n n n n n n a b a a b a b ab b a b ------+++++=-⒋ 公式的变形及其逆运算由()2222a b a ab b +=++得()2222a b a b ab +=+-由()()3322333333a b a a b ab b a b ab a b +=+++=+++得()()3333a b a b ab a b +=+-+ 由公式的推广③可知:当n 为正整数时 n n a b -能被a b -整除, 2121n n a b +++能被a b +整除,22n n a b -能被a b +及a b -整除。
七年级(上)数学培优班--第8讲 整式恒等变形 教师版

【例题2】 ★★☆☆☆ (1)已知 x y ,且 x4 x 2018 , y4 y 2018 ,求 x3 x2 y xy2 y3 的值. (2)已知 x y ,且 x2 x 3 , y2 y 3 ,求 x5 y5 的值.
题型六、降幂法(长除法) Eg. 已知 x2 x 3 0 ,求 x3 2x2 2x 2015 的值. 解:因为 x2 x 3 ,所以 x3 2x2 2x 2014 x(x2 x) x2 2x 2014 x2 x 2015 2018 .
2 / 自招班 7 年级 第八讲
⑶矛盾等式:无论用什么数值代替等式中的字母,等式都不成立. 如:1 2 5 , x 2 x 3 .
三、等式的证明:
等式的证明主要分为恒等式的证明和条件等式的证明.恒等式的证明主要是通过恒等变形,从 等式的一边证到另一边,或者证两边等于同一结果;条件等式的证明要认真分析条件和所证等式之 间的关系.
所以 x3 y3 x y x2 y2 xy 10 , x5 y5 x2 y2 x3 y3 x2 y2 x y 61.
3 / 自招班 7 年级 第八讲
整式的恒等证明
一、代数式的恒等变形:
把一个代数式变换成另一个和它恒等的代数式,叫做代数式的恒等变形.代数式的恒等变形是 数学的基础知识,它在化简、求值、证明恒等式等问题中,有着广泛的应用.
题型四、整体思想
Eg. 已知 x2 4xy 7 y2 5 , 3x2 2xy 4y2 6 ,求 9x2 8xy 29y2 的值.
.
解:设 a x2 4xy 7y2 b 3x2 2xy 4y2 9x2 8xy 29y2 ,
初一竞赛讲座06(整式的恒等变形)

初一数学竞赛系列讲座(6)整式的恒等变形一、一、知识要点1、1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:①(a+b) (a-b)=a2-b2②(a±b)2=a2±2ab+b2③(a+b) (a2-ab+b2)=a3+b3④(a-b) (a2+ab+b2)=a3-b3⑤(a+b+c)2= a2+b2+c2+2ab+2bc+2ca⑥(a+b+c) (a2+b2+c2-ab-bc-ca)= a3+b3+c3-3abc⑦(a±b)3= a3±3a2b+3a b2±b34、4、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、5、余数定理多项式()x f除以(x-a) 所得的余数等于()a f。
特别地()a f=0时,多项式()x f能被(x-a) 整除二、二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)()19999992199811998⨯=+⨯是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
初中数学竞赛辅导:代数式、恒等式、恒等变形

初中数学竞赛辅导:代数式、恒等式、恒等变形初中数学竞赛:代数式、恒等式、恒等变形1.某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是(C)A.m(1+a%)(1﹣b%)元B.m•a%(1﹣b%)元C.m(1+a%)b%元D.m(1+a%b%)元解答:解:根据题意,这批衬衣的零售价为每件m(1+a%)元,因调整后的零售价为原零售价的b%,所以调价后每件衬衣的零售价为m(1+a%)b%元.点评:考查列代数式,得到调价后的价格的等量关系是进价本题的关键.2.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为(A)A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2解答:解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.点评:本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.3.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为(C)A.B.C.1 D.解答:解:过A点作AD⊥BC于D,在Rt△BDA中,由于∠B=60°,∴DB=,AD=,在Rt△ADC中,DC 2=AC2﹣AD2,∴(a ﹣)2=b2﹣C2,即a2+c2=b2+ac,∴.点评:本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.4.设a<b<0,a 2+b2=4ab,则的值为(A)A.B.C.2 D.3解答:解:∵a2+b2=4ab,∴a2+b2+2ab=(a+b)2=6ab①∴a2+b2﹣2ab=(a﹣b)2=2ab②,得=∵a<b<0,∴ab>0,a+b<0,a﹣b<0,∴==3,∴=.点评:本题考查了完全平方公式及代数式的求值,属于基础题,关键利用已知条件a2+b2=4ab与完全平方公式(a±b)2=a2±2ab+b2的联系找到与所求比值的关系.5.已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2﹣ab﹣bc﹣ca的值为(D)A.0 B.1 C.2 D.3解答:解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a 2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a 2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a ﹣b)2+(b﹣c)2+(a﹣c)2],=×(1+1+4),=3.点评:本题主要考查公式法分解因式,达到简化计算的目的,对多项式扩大2倍是利用完全平方公式的关键.6.设a、b、c为实数,,则x、y、z中,至少有一个值(A)A.大于0 B.等于0 C.不大于0 D.小于0 解答:解:因x+y+z={(a﹣1)2}+{(b﹣1)2}+{(c﹣1)2}+π﹣3>0,则x、y、z中至少有一个大于0,点评:此题考查的知识点是完全平方公式,关键是把x、y、z相加,运用完全平方公式得出x+y+z={(a﹣1)2}+{(b﹣1)2}+{(c﹣1)2}+π﹣3>0.7.已知abc≠0,且a+b+c=0,则代数式的值是(A)A.3 B.2 C.1 D.0解答:解:把a=﹣(b+c),b=﹣(a+c),c=﹣(a+b)代入,原式=,=﹣()﹣()﹣(),=,=.点评:本题考查了分式的化简求值,属于基础题,主要是由已知条件先变形后再代入化简.8.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是(C)A.零B.负数C.正数D.整数解答:解:M=3x2﹣8xy+9y2﹣4x+6y+13,=(x2﹣4x+4)+(y2+6y+9)+2(x2﹣4xy+4y2)=(x﹣2)2+(y+3)2+2(x﹣2y)2≥0.点评:本题主要考查了非负数的性质,将M的表达式根据完全平方公式的特点进行变形是解答本题的关键.9.某商品的标价比成本高p%,当该商品降价出售时,为了不亏本,降价幅度不得超过d%,若用p表示d,则d=.解答:解:设成本价是1,则(1+p%)(1﹣d%)=1.1﹣d%=,d%=1﹣d=.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.保证不亏本,即让售价和成本价持平.10.已知﹣1<a<0,化简得﹣.解答:解:∵﹣1<a<0,∴a+<0,a﹣>0;∴==(a﹣)[﹣(a+)]=﹣.点评:解决本题的关键是根据已知条件确定a+,a﹣的符号.11.已知实数z、y、z满足x+y=5及z2=xy+y﹣9,则x+2y+3z= 8.解答:解:∵x+y=5,z2=xy+y﹣9,∴(x+1)+y=6,(x+1)•y=z2+9,∴x+1,y是t2﹣6t+z2+9=0的两个实根.∵方程有实数解,∴△=(﹣6)2﹣4(z2+9)=﹣4z2≥0,∴4z2≤0,∴z2≤0,又∵z2≥0,∴z=0.解方程t2﹣6t+9=0,得x+1=3,y=3,∴x=2,y=3.∴x+2y+3z=2+2×3+3×0=8.点评:本题主要考查了一元二次方程的解法,根的判别式(△=b2﹣4ac)与方程的根的对应关系,根与系数的关系,平方的非负性及代数式求值的方法,综合性较强,有一定难度.解题关键在于能够通过观察将两个已知等式改写,从而发现x+1,y是方程t2﹣6t+z2+9=0的两个实根.12.已知x1、x2、…、x40都是正整数,且x1+x2+…+x40=58,若x12+x22+…+x402的最大值为A,最小值为B,则A+B的值等于494.解答:解:因为把58写成40个正整数的和的写法只有有限种,故x12+x22+…+x402的最小值和最大值是存在的.不妨设x1≤x2≤…≤x40,若x1>1,则x1+x2=(x1﹣1)+(x2+1),且(x1﹣1)2+(x2+1)2=x12+x22+2(x2﹣x1)+2>x12+x22,所以,当x1>1时,可以把x1逐步调整到1,这时x12+x22++x402将增大;同样地,可以把x2,x3,x39逐步调整到1,这时x12+x22++x402将增大.于是,当x1,x2,x39均为1,x40=19时,x12+x22++x402取得最大值,即A=+192=400.若存在两个数x i,x j,使得x j﹣x i≥2(1≤i≤j≤40),则(x i+1)2+(x j﹣1)2=x i2+x j2﹣2(x j﹣x i﹣1)<x i2+x j2,这说明在x1,x3,x39,x40中,如果有两个数的差大于1,则把较小的数加1,较大的数减1,这时,x12+x22++x402将减小.所以,当x12+x22++x402取到最小时,x1,x2,x40中任意两个数的差都不大于1.于是当x1=x2=x22=1,x23=x24=x40=2时,x12+x22+…+x402取得最小值,即,故A+B=494.点评:本题考查的是整数问题的综合运用,能根据完全平方公式得出其最大、最小值是解答此题的关键,此题难度较大.13.计算=.解答:解:x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1],∴原式=.点评:本题考查因式分解的应用.解决本题的关键是找到题目中蕴含的共性规律x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1].14.已知多项式ax3+bx2﹣47x﹣15可被3x+1和2x﹣3整除,则a+b=26.解答:解:由已知可知,得,解得,∴a+b=24+2=26.点评:本题考查的是多项式除以多项式,注意理解整除的含义,比如A被B整除,另外一层意思也就是说,B是A的公因式,使公因式B等于0的值,必是A的一个解.15.已知实数a、b、c、d互不相等,且,试求x的值.解答:解:由已知有a+=x,①;b+=x,②;c+=x,③;d+=x,④;即dx3﹣(ad+1)x2﹣(2d﹣a)x+ad+1=0⑦由④得ad+1=ax,代入⑦得(d﹣a)(x3﹣2x)=0由已知d﹣a≠0,∴x3﹣2x=0若x=0,则由⑥可得a=c,矛盾.故有x 2=2,x=±点评:此题主要考查了分式的等式变形,运用未知数简介代换得出两式相乘等于0的形式,是解决问题的关键.16.如果对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数(即整数的平方),证明:(1)2a,2b,c都是整数;(2)a,b,c都是整数,并且c是平方数;(3)反过来,如(2)成立,是否对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数?解答:证明:(1)∵对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数,∴令x=0,a•02+b•0+c=c,c是整数且是平方数,令x=1,﹣1时a•12+b•1+c,a•(﹣1)2+b•(﹣1)+c是平方数,∴可设a•12+b•1+c=m12①a•(﹣1)2+b•(﹣1)+c=n12②c=k12(m1n1k1均为整数),①﹣②得:2b=m12﹣n12,∴2b为整数(整数相减为依然为整数),由①得:2a=2m12﹣2b﹣2c,∴2a为整数,∴2a,2b,c都是整数;(2)(1)中已证c是整数且是平方数,令x=2,﹣2时,可设a•22+b•2+c=m22③a•(﹣2)2+b•(﹣2)+c=n22④c=k12(m2n2k1均为整数),③﹣④得:4b=m22﹣n22=(m2+n2)(m2﹣n2)=2(2b),∵2b为整数,∴2(2b)为偶数,则m22﹣n22为偶数,∴(m2+n2),(m2﹣n2)同奇同偶,则可设(m2+n2)=2m,(m2﹣n2)=2n(m,n均为整数),∴4b=2m•2n=4mn,∴b=mn,∴b为整数;(3)令x=1,a=1,b=1,c=1,则ax2+bx+c=3,而3不是平方数.∴不一定成立.点评:本题考查完全平方数的知识,综合性较强,难度较大,注意在解决多项式的系数的和、差以及其奇偶、整问题一般思路都是用特殊值法.17.若a=19952+19952•19962+19962,求证:a是一完全平方数,并写出a的值.解答:解:设x=1995,则1996=x+1,所以a=19952+19952•19962+19962=x2+x2(x+1)2+(x+1)2=(x+1)2﹣2x(x+1)+x2+2x(x+1)+x2(x+1)2=(x+1﹣x)2+2x(x+1)+[x(x+1)]2=1+2x(x+1)+[x(x+1)]2 =[1+x(x+1)]2=(1+1995×1996)2=39820212.故a是一完全平方数,a的值为39820212.点评:本题考查了完全平方式,在计算中巧用换元法灵活应用公式可化繁为简,起到简便计算的作用.18.设a、b、c、d是四个整数,且使得是一个非零整数,求证:|m|一定是个合数.解答:解:要证明|m|是合数,只要能证出|m|=p•q,p•q均为大于1的正整数即可.====因为m是非零整数,则是非零整数.由于四个数a+b+c﹣d,a+b﹣c+d,a﹣b+c+d,﹣a+b+c+d 的奇偶性相同,乘积应被4整除,所以四个数均为偶数.所以可设a+b+c﹣d=2m1,a+b﹣c+d=2m2,a﹣b+c+d=2m3,﹣a+b+c+d=2m4,其中m1,m2,m3,m4均为非零整数.所以m=(2m1)(2m2)(2m3)(2m4)=4m1m2m3m4,所以|m|=4|m1m2m3m4|≠0,所以|m|是一个合数.点评:本题考查的是质数与合数的定义、因式分解、奇数与偶数的定义、绝对值的性质,涉及面较广,难度较大.19.若a2的十位数可取1、3、5、7、9.求a的个位数.解答:解:设a=10b+c,其中c取自0,1,2,3,4,9,将c2写成两位数的形式为00,01,04,09,16,25,36,49,64,81,其中只有c=4、6时其十位数为奇数,又a2=(10b+c)2=2×(5b2+bc)×10+c2,可见,a2的十位数是一个偶数加上c2的十位数,当a2的十位数为奇数1,2,5,7,9时,a的个位数只能取4、6.点评:此题考查的知识点是尾数特征问题,解答此题的关键是用列举法,依据奇数的平方的十位数字必为偶数解答.。
整式恒等变形一览

整式恒等变形一览 The following text is amended on 12 November 2020.初中数学中的整式恒等式一览表草根雾岩@初中理科班数学学完乘法公式和因式分解后,对比较常见的整式恒等式进行总结,以方便学生们进行查阅. 比较重要的恒等式都有自己的名字,一般以恒等式的形式或者发现者的名字命名;另外一些虽然在“中考中不能使用,但却是广大劳动人民智慧的结晶,所谓的‘民间定理’”!【1】 在恒等式的群山之巅闪耀着不朽的光辉!本文试着按照不同难度要求对恒等式进行分类.【课内涉及的恒等式】(1)平方差公式()()22a b a b a b +-=-()()22a b a b b a ---=-(2)完全平方和、差公式222()2a b a ab b +=++222()2a b a ab b -=-+(3)平方和与完全平方和差的关系()2222a b a b ab +=+-()2222a b a b ab +=-+(4)完全平方和差的关系()()224a b a b ab +--=()()()22222a b a b a b ++-=+(5)三项和完全平方公式()2222222a b c a b c ab bc ca ++=+++++(6)两项轮换差的完全平方和()()()22222212a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦ (7)十字相乘法()()()2x p x q x p q x pq ++=+++(8)分组分解法()()ax by ay bx a b x y +++=++【自招中涉及的公式】(1)立方和、差公式2233()()a b a ab b a b +-+=+2233()()a b a ab b a b -++=-(2)完全立方和、差公式33223()33a b a a b ab b +=+++33223()33a b a a b ab b -=-+-(3)立方和差与完全立方和差的关系()()3333a b a b ab a b +=+-+()()3333a b a b ab a b -=-+-(4)杨辉三角()554322345510105a b a a b a b a b ab b +=+++++ ()554322345510105a b a a b a b a b ab b -=-+-+-(5)四项和完全平方公式()22222222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++【几个比较有名的配方公式】(1)()()()()()()22222222a b c d ac bd ad bc ac bd ad bc ++=++-=-++ 这是着名的菲波那切(Fibonacci ,1170--1250)恒等式. 该恒等式可以推出二元柯西不等式. (2)()()2444222a b a b a ab b +++=++(3)()()()222222111n n n n n n +⋅+++=++(4)()()()2224444222242a b c d abcd a b c d ab cd +++-=-+-+-该恒等式可以推出四元的均值不等式. (5)()()()()22123131x x x x x x ++++=++该恒等式可以说明连续四个正整数的积不是完全平方数.(6)()()()()()22222223122a b b c c a a b c a b c -+-+-=++-++ 一个求最值问题的变形,奥精上有这道题,去年某区初赛考了它的推广形式.(7)()()44222242222n k n nk k n nk k +=++-+双二次式的因式分解,配方法和平方差结合的典例,类似的方法可以证明对于一切整数1n >,441n +及44n +都是合数,前者被称为哥德巴赫定理(Goldbach ,1690--1764),后者被称为吉梅茵(Germain ,1776--1831)定理【2】.当然,4这个系数还可以改为64、324、1024等具有形式44t 的数。
整式恒等变形

第8 讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法)如果x2+x-1=0,那么x3+2x2+3=____________ 【例1】(第14 届“希望杯”邀请赛试题练1】(1990 年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7 的值.题型二整体代入消元法【例2】(第14届希望杯1 试)若x+y=-1,求x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值.【练2】当x-y=1 时,求x4-xy3-x3y-3x2y+3xy2+y4的值.题型三换元法强化挑战【例3】化简(y+z-2x)2+(z+x-2y)2+( x+y-2z)2-3(y-z)2-3(x-y)2-3(x-z)2.【练3】已知x,y,z 为有理数(y-z)2+(z-x)2+(x-y)2=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,求yz 1 zx 1 xy 1 的值.x2 1 y2 1 z2 1模块二题型一恒等变形→因式分解与不定方程因式分解基础夯实【例4】(1)已知a5-a4b-a4+a-b-1=0,且2a-3b=1,则a3+b3的值等于(2)若a4+b4=a2-2a2b2+b2+6,则a2+b2=______________ .【练4】(1)若x满足x5+x4+x=-1则x+x2+x3+⋯+x2012=______________ .(2)已知15x2-47xy+28y2=0,求x的值.y强化挑战【例5】已知:a、b、c 为三角形的三条边,且a2+4ac+3c2-3ab-7bc+2b2=0,求证:2b=a+c.练5】(1)在三角形ABC 中,a2-16b2-c2+6ab+10bc=0,其中a,b,c 是三角形的三边,求证:a+c =2b.(2)已知△ ABC 三边a、b、c,满足条件a2c-a2b+ab2-b2c+c2b-ac2=0,试判断△ ABC 的形状,并说明理由.题型二不定方程【例6】(1)方程xy-2x-2y+7=0 的整数解(x≤y)为_____________ .(2)已知a> b> c≥0,求适合等式abc+ab+ac+bc+a+b+c=2011 的整数a,b,c的值.【练6】(1)长方形的周长为16cm,它的两边长x,y 均为整数,且满足x-y-x2+2xy-y2+2=0,求它的面积.(2)矩形的周长28cm,两边长为xcm、ycm,且x3+x2y-xy2-y3=0,求矩形的面积.例7】(2000 年联赛)实数x,y 满足x≥y≥1 和2x2-xy-5x+y+4=0,则x+y=_________2练7】当x 变化时,分式3x 6 x 5的最小值是 ___________________1 x2 x 12模块三恒等变形→配方法【例8】已知x2+2xy+2y2+4y+4=0,求x,y.练8】已知x2-6xy+10y2-4y+4=0,求x,y.例9】已知x2+2xy+2y2+4x+8=0,求x,y.练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.例10】已知实数a、b、c 满足a-b+c=7,ab+bc+b+c2+16=0.则b的值等于a练10】已知a-b=4,ab+c2+4=0,则a+b=__________模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=.2 ____________________ (2)(a-b)2=.2、三元二次:(3)(a+b+c)2=_____ .222(4)a +b +c +ab+bc+ca= __ .3、二元三次:3(5)(a+b)3=___________ .(6) ___________________a3+b3=.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc2 2 2 2 2 2(9)(a+b+c)(ab+bc+ca)=a b+b c+c a+ab +bc +ca +3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:3 4 4 2 2 2 2 2 2(11)(a+b+c)(a+b-c)(b+c-a)( c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a2 6、二元n 次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+⋯-ab n-2+b n-1)(n 为奇数)7、n 元二次:(14)( a1+a2+⋯+a n)2=a12+a22+⋯+a n2+2a1a2+2a1a3+⋯+2a1a n+2a2a3+2a2a4+⋯+2a n-1a n.2 2 1 2 2(15)a1 +⋯+a n +a1a2+⋯+a1a n+a2a3+⋯+a2a n+⋯+a n-1a n=[(a1+a2)+⋯+(a n-1+a n) ]强化挑战【例11】已知实数a、b、x、y 满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.2【练11】(第6 届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995( x 17 +y)+6xy-( a+b)的值.2例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=__________________【例13】(2009 年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca 的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=8,3 (1)求abc 的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x 2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013第8 讲课后作业习l】已知x2+x-1=0,求x8-7x4+11 的值.习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc 的值.习3】若m=20062+20062×20072+20072,则m()A .是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数习4】正整数a、b、c 是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有() A.1 个B.2个C.3 个D.4 个习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值()A .恒正B .恒负C.可正可负 D .非负习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.2 2 2 2习7】已知实数a、b、x、y 满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.习9】(1999 年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010 的值.习10】(第18 届希望杯初一)有理数a,b,c 满足a:b:c=2:3:5,且a2+b2+c2=abc,求a+b+c的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,⋯,a2007,是彼此互不相等的负数,且M=(a1+a2+⋯+a2006)(a2+a3+⋯+a2007),N=( a1+a2+⋯+a2007)(a2+a3+⋯+a2006),试比较M、N 的大小.习12】(2013 年联赛)已知实数x,y,z 满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=____________ 习13 】(2013 年竞赛)已知正整数a、b、c 满足a+b2-2c-2=0,3a2-8b+c=0,则abc 的最大值为习14】(2001年联赛)求实数x,y 的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初中数学竞赛——恒等式的证明

初中数学竞赛——恒等式的证明恒等式的证明是初中数学竞赛中常见的题型,也是考察学生逻辑思维能力和数学推理能力的重要手段。
本文将从基本概念、常见方法和示例三个方面进行阐述,帮助读者更好地理解和掌握恒等式的证明方法。
一、基本概念1.恒等式在初中数学中,我们通常所说的恒等式指的是在等式两边都有定义的条件下,等号两边的值总是相等的数学表达式。
例如:2x+5=3x-1这是一个恒等式,因为当x取任意实数时,等号两边的值总是相等的。
2.证明证明恒等式的过程,是通过逻辑推理和数学推导来证实等号两边的表达式总是相等的过程。
证明的目的是要通过逻辑推理,严密地推导出等号两边的式子是等价的。
常用的证明方法包括等价变形法、代入法、归纳法等。
二、常见方法1.等价变形法等价变形法是最常见且使用较多的证明方法,其基本思想是通过等价变形将原始的等式转化为一个易证的等式。
例如:证明:1+2+3+...+n=(n*(n+1))/2(其中n为正整数)等式左边是一个等差数列求和,可以利用求和公式将其转化为右边的表达式。
我们需要做的是将等式转化为一个易证的等式。
2.代入法代入法是通过代入数值来验证恒等式的正确性。
通常,我们可以选择一组特定的数值进行验证,如果在这组数值下恒等式成立,那么我们可以认为恒等式是正确的。
例如:证明:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/6我们可以代入一组具体的数值,如n=1,n=2等,通过计算验证等式的正确性。
3.归纳法归纳法是一种常用于证明数学命题的方法,它主要包括两个步骤:基础步骤和归纳步骤。
基础步骤是验证命题在一些特定的情况下是否成立,归纳步骤是假设命题在一些情况下成立,并推出下一个情况下命题也成立。
例如:证明:1+2+3+...+n=n*(n+1)/2基础步骤:当n=1时,等式左边为1,右边为1,两边相等。
归纳步骤:假设当n=k时等式成立,即1+2+3+...+k=k*(k+1)/2、我们要证明当n=k+1时等式也成立。
初一数学竞赛系列讲座

初一数学比赛系列讲座 (7)相关恒等式的证明一、一、知识重点恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常经过恒等变形从一边证到另一边,或证两边都等于同一个数或式。
在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体办理、 “ 1”的代换等;对于条件恒等式的证明,怎样办理好条件等式是重点,要仔细剖析条件等式的结构特点,以及它和要证明的恒等式之间的关系。
二、二、例题精讲例 1 求证: a 1+(1-a 1)a 2+(1-a 1)(1-a 2 )a 3+ +(1-a 1)(1-a 2) (1-an-1)a n=1-(1-a )(1-a ) (1-a n-1 )(1-a n )12剖析:要证等式成立,只需证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 - - (1-a 1)(1-a 2) (1-a n-1)a n=(1-a 1)(1-a 2) (1-a n-1)(1-an )证明: 1- a 1- (1-a 1 )a 2- (1-a 1)(1-a 2)a 3 - - (1-a 1)(1-a 2)(1-a n-1)a n=(1-a 1)[ 1- a 2- (1-a 2 )a 3- (1-a 2)(1-a 3)a 4 - - (1-a 2)(1-a 3) (1-a n-1)a n ]=(1-a 1) (1-a 2)[ 1- a 3- (1-a 3 )a 4- (1-a 3)(1-a 4)a 5 - - (1-a 3)(1-a 4) (1-an-1)a n ]=(1-a ) (1-a ) (1-a 3 )[ 1- a 4 - (1-a )a -(1-a )(1-a )a - - (1-a )(1-a ) (1-a n-1 )a ]12454 5 6 4 5 n==(1-a 1)(1-a 2) (1-an-1)(1-an )∴ 原等式成立例 2 证明恒等式a 1a 2a na 2 a 3a 1a 2 a 1 a 2 a 3 a 2 a 3a 1 a n a 1a 1 a 1 a 2a 2 a 2 a 3a n a n a 1(第二十届全俄数学奥林匹克九年级试题 )a 1a 2a n证明a 2 a 1 a 2a 3 a 2 a 3a 1 a n a 11 111 1 1 a2 a 1 a 2 a3 a 2 a 3a 1 a n a 11 1 111 1a 1a 1 a 2a 2 a 2 a 3a na na 1a 2a 3a 1a 1 a 1 a 2a 2 a 2 a 3a n a n a 1评注:裂项是恒等变形中常用的一种方法ab c1例 3 若 abc=1,求证 aba 1 bcb 1 cac 1剖析:所要求证的等式的左侧是三个分母差别很大的式子,因此变形比较困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学竞赛系列讲座(6)整式的恒等变形一、一、知识要点1、1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:①(a+b) (a-b)=a2-b2②(a±b)2=a2±2ab+b2③(a+b) (a2-ab+b2)=a3+b3④(a-b) (a2+ab+b2)=a3-b3⑤(a+b+c)2= a2+b2+c2+2ab+2bc+2ca⑥(a+b+c) (a2+b2+c2-ab-bc-ca)= a3+b3+c3-3abc⑦(a±b)3= a3±3a2b+3a b2±b34、4、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、5、余数定理多项式()x f除以(x-a) 所得的余数等于()a f。
特别地()a f=0时,多项式()x f能被(x-a) 整除二、二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)()19999992199811998⨯=+⨯是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
例2 计算(2x3-x+6)•(3x2+5x-2)分析计算整式的乘法时,先逐项相乘(注意不重不漏),再合并同类项,然后将所得的多项式按字母的降幂排列。
解法1 原式=6x5+10x4-4x3-3x3-5x2+2x+18x2+30x-12=6x5+10x4-7x3+13x2+32x-12评注:对于项数多、次数高的整式乘法,可用分离系数法计算,用分离系数法计算时,多项式要按某一字母降幂排列,如遇缺项,用零补上。
解法2 2+0-1+6⨯) 3+5-26+0-3+1810+0-5+30-4+0+2-126+10-7+13+32-12所以,原式=6x5+10x4-7x3+13x2+32x-12例3 求(2x6-3x5+4x4-7x3+2x-5) (3x5-x3+2x2+3x-8)展开式中x8的系数解x8的系数=2⨯2+(-3) ⨯ (-1)+(-7) ⨯3= -14评注:只要求x8的系数,并不需要把展开式全部展开。
例4计算(3x4-5x3+x2+2)÷(x2+3)分析整式除法可用竖式进行解 3 x2– 5x - 8x2+3) 3x4 - 5x3 + x2 + 0x + 23x4+9 x2- 5x3 -8 x2+ 0x- 5x3-15x-8 x2+15x+ 2-8 x2- 2415x+ 26所以,商式为3 x2– 5x – 8,余式为15x+ 26评注:用竖式进行整式除法要注意:(1)(1)被除式和除式要按同一字母的降幂排列;(2)(2)如被除式和除式中有缺项,要留有空位;(3)(3)余式的次数要低于除式的次数;(4)(4)被除式、除式、商式、余式之间的关系是:被除式=除式⨯商式+余式例5计算(2x5-15x3+10x2-9) ÷(x+3)分析对于除式是一次项系数为1的一次多项式的整式除法可用综合除法进行。
用综合除法进行计算,首先要将除式中的常数项改变符号,并用加法计算对应项的系数。
解-3 2 0 -15 10 0 -9-6 18 -9 -3 92 -63 1 -3 0∴商式=2x 4-6x3+3x2+x -3评注:用综合除法进行整式除法要注意:(1)(1)被除式按x的降幂排列好,依次写出各项的系数,遇到缺项,必须用0补上;(2)(2)把除式x-a的常数项的相反数a写在各项系数的左边,彼此用竖线隔开;(3)(3)下移第一个系数作为第三行的第一个数,用它乘以a,加上第二个系数,得到第三行的第二个数,再把这个数乘以a,加上第三个系数,就得到第三行的第三个数,…,依次进行运算,最后一个数即为余数,把它用竖线隔开,线外就是商式的多项式系数。
(4)(4)如果除式是一次式,但一次项系数不是1,则应把它化到1才能用综合除法。
例6已知x+y= -3,x3+y3= -18,求x7+y7的值分析:先通过x+y= -3,x3+y3= -18,求出xy,再逐步求出x2+y2、x 4+y 4,最后求出x7+y7的值解由x3+y3=(x+y) 3-3xy (x+y) 得-18=(-3) 3-3 xy⋅(-3) ∴xy=1又由x2+y2=(x+y) 2-2xy 得x2+y2=(-3) 2- 2⋅1=7而x 4+y 4=(x2+y2)2-2 x2y2=72-2=47∴(-18)⨯47=(x3+y3)(x 4+y 4)= x7+y7+ x3 y3 (x+y)= x7+y7 -3从而x7+y7= -843评注:本题充分利用x+y和xy,与x2+y2、x 4+y 4、x7+y7的关系来解题。
例7 求证:(x2-xy+y2)3+(x2+xy+y2)3能被2x2+2y2整除分析如果将(x2-xy+y2)3与(x2+xy+y2)3直接展开,太繁,可将两个式子整体处理,分别看作a和b,然后利用乘法公式展开,可将计算简化。
解(x2-xy+y2)3+(x2+xy+y2)3=[(x2-xy+y2)+(x2+xy+y2)]3 - 3⋅(x2-xy+y2) (x2+xy+y2)[ (x2-xy+y2)+(x2+xy+y2)]=(2x2+2y2)3-3⋅(x2-xy+y2) (x2+xy+y2) (2x2+2y2)所以原式能被2x2+2y2整除。
评注:本题采用的是整体处理思想。
例8 试求x285-x83+x71+x9-x3+x被x-1除所得的余数。
解法1 x285-x83+x71+x9-x3+x=( x285-1) – (x83-1)+( x71-1)+( x9-1) – (x3-1)+( x -1)+2 因为x285-1、x83-1、x71-1、x9-1、x3-1、x -1均可被x-1整除,所以,原式被x-1除所得的余数是2。
解法2 由余数定理,余数等于x285-x83+x71+x9-x3+x在x=1时值,即余数=1285-183+171+19-13+1=2评注:本题两种解法中,解法1是通过恒等变形,将原式中能被x -1整除的部分分解出,剩下的就是余数。
解法2是通过余数定理来求余数,这是这类问题的通法,要熟练掌握。
例9 研究8486,98⨯92,…的简便运算,并请你用整式运算形式表示这一简便运算规律。
分析:观察8486,98⨯92,…可得:它们的十位数字特点是8=8,9=9;而它们的个位数字和为4+6=10,8+2=10。
则可设十位上的数字为a,个位上的数字为b、c,且b+c=10 解:根据上面的分析,设十位上的数字为a,个位上的数字为b、c,且b+c=10 则 (10a+b)(10a+c)=100a2+10a(b+c)+bc=100a2+100a+bc=100a(a+1)+bc评注:以后,凡是遇到上述类型的运算均可用此结果进行简便运算。
如72⨯78=100⨯7⨯8+2⨯8=5600+16=5616例10 已知关于x 的三次多项式除以x 2-1时,余式是2x-5;除以x 2-4时,余式是-3x+4,求这个三次多项式。
分析:利用被除式=除式⨯商式+余式的关系来解。
解:设这个三次多项式为ax 3+bx 2+cx+d (a ≠0),因为这个三次多项式分别除以x 2-1和x 2-4,故可设两个商式是:ax+m 和ax+n ,由题意得:ax 3+bx 2+cx+d=( x 2-1) (ax+m)+2x-5 ①ax 3+bx 2+cx+d=( x 2-4) (ax+n)+ (-3x+4) ②在①式中分别取x=1, -1,得a+b+c+d= -3,-a+b-c+d= -7在②式中分别取x=2, -2,得8a+4b+2c+d= -2,-8a+4b-2c+d= 10由上面四式解得:8 311 3 ,35-===-=d c b a ,,所以这个三次多项式为831133523-++-x x x评注:对于求多项式的系数问题常常使用待定系数法。
三、三、巩固练习选择题1、若m=10x 3-6x 2+5x-4,n=2+9x 3+4x-2x 2,则19x 3-8x 2+9x-2等于A 、m+2nB 、m-nC 、3m-2nD 、m+n2、如果(a+b-x)2的结果中不含有x 的一次项,则只要a 、b 满足( )A 、a=bB 、a=0或b=0C 、a= -bD 、以上答案都不对3、若m 2=m+1,n 2=n+1,且m ≠n ,则m 5+n 5的值为 ( )A 、5B 、7C 、9D 、114、已知x 2-6x+1=0,则221x x +的值为 ( )A 、32B 、33C 、34D 、355、已知33333=++-++c b a abc c b a ,则(a-b)2+(b-c)2+(a-b) (b-c)的值为 ( )A 、1B 、2C 、3D 、46、设()x f =x 2+mx+n (m,n 均为整数)既是多项式x 4+6x 2+25的因式,又是多项式3x 4+4x 2+28x+5的因式,则m 和n 的值分别是( )A 、m=2,n=5B 、m= -2,n=5C 、m=2,n= -5D 、m= -2,n= -5填空题7、设a 、b 、c 是非零实数,则=++++++abc abc ca ca bc bc ab ab c c b b a a8、设(ax 3-x+6)⋅(3x 2+5x+b)=6x 5+10x 4-7x 3+13x 2+32x-12,则a= , b=9、x+2除x 4-x 3+3x 2-10所得的余数是10、若x+y-2是整式x 2+axy+by 2-5x+y+6的一个因式,则a+b=11、(21+1) (22+1) (24+1) (28+1) (216+1) (232+1) (264+1)+1=12、已知a 、b 、c 满足()()a c c b b a a c --=--22,则a+b-2c 的值为 解答题13、设x 、y 、z 都是整数,且11整除7x+2y-5z ,求证:11整除3x-7y+12z14、计算:(4x 4-6x 2+2) (5x 3-2x 2+x-1)15、计算:(8x 2-2x+x 4-14)÷(x+1)16、已知1612422++=++a a a a a a ,试求的值。