车牌识别中字符分割算法的研究与实现毕业答辩PPT课件
车牌识别系统中的字符分割技术研究
【方法】车牌自动识别系统中字符分割方法研究
【关键字】方法1 绪论1.1问题的提出和研究背景车辆牌自动识别(Automated License Plate Recognition,ALPR)技术作为交通管理自动化的重要手段,其任务是分析、处理汽车监控图像,自动识别汽牌照号,并进行相关智能化数据库管理。
ALPR 系统可以广泛应用于高速公路电子收费站、出入控制、公路流量监控、失窃车辆查询、停车场车辆管理、公路稽查入监测黑牌机动车、监控违章车辆的电子警察等需要牌照认证的重要场合。
尤其在高速公路收费系统中,实现不停车收费技术可提高公路系统的运行效率。
人们一般将车牌识别系统划分为三大部分[1],首先将车牌从经过预处理的图像中定位出来,然后对车牌中的字符进行准确的切分,最后对分割好的字符进行识别"如何从复杂图像中将待识别的信息进行准确有效的定位与分割就是自动识别的关键1.2 ALPR系统简介车辆牌自动识别系统,总体来说是图像处理技术与牌照本身特点的有机结合,也包括小波分析、神经网络、数学形态学、模糊理论等数学知识的有效运用。
一个车牌自动识别系统基本包括:图像预处理、牌照定位、牌照校正、牌照字符分割、字符识别及结果输出等。
图1-1为系统的流程框图:图1-1 车辆牌照自动识别流程1.3 ALPR关键技术:1.图像采集:用一个摄像机摄取车辆前视图或后视图。
2.图像处理:对采集到的图像进行增强,恢复,变换。
目的是突出车牌的特征,以便更好的提取车牌。
3.车牌定位:在采样的图像中找到车牌的位置。
4.车牌字符分割:对获得的车牌分离出单个字符(包括汉字、字母和数字等)5.字符识别:对分割得到的字符进行归一化处理,转化为文本存入到数据库或直接显示出来。
由此可见,车牌识别系统在硬件上一般包含一台PC机,摄像头,图像采集设备,相应的图像处理软件,以及汽车到来的检测装置。
1.4国内外研究现状和发展趋势牌照识别技术自1988年以来,人们就对它进行了广泛的研究,目前国内外己经有众多的算法,一些实用的ALPR技术也开始用于车流监控、出入控制、电子收费、移动稽查等场合。
车牌识别答辩PPT课件
. 16
. 17
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
. 18
就是汽车牌照识别技术。
.
3ห้องสมุดไป่ตู้
•车牌识别技术的应用
1、停车场收费管理系统 2、高速公路超速自动化监管系统和高速公路收费管理系统 3、公路布控管理系统 4、城市交通路口的“电子警察” 5、封闭式居民小区物业管理及重要部门的保安管理
. 4
国内外发展现状
• 车牌识别技术研究在国外起步比较早,早在20世纪80年代, 便有一些零零散散的图像处理方法用于车牌识别的某些具 体应用。 到目前,各国均也有适用于本国的车牌识别系 统。各国的车牌识别产品虽然不同,但基本上都是基于车 辆探测器的系统,设备投资都是相当的巨大。
. 6
车牌识别系统
• 车牌识别系统的流程图
车牌图像 采集
车牌图像 预处理
输出识别 结果
字符识别
.
对车牌进 行定位
车牌字符 分割
7
• 图像灰度化 • 因为彩色图像中包含了大量的无用信息,会在定位和识别
中造成干扰,也会拖慢识别的速度,所以就需要将彩色图 像进行灰度化处理,这就是图像灰度化。
. 8
1.车牌图像预处理
• 车牌图像预处理流程图
边 缘 检 测
图 像 腐 蚀
图 像 填 充
形 态 滤 波
. 9
(1)边缘检测
边缘是图像分割、目标区域识 别、区域形状提取等图像分析领域 十分重要的基础,在车牌识别系统 提取车牌位置占了很重要的地位。 所以必须进行边缘检测。
车牌的定位与字符分割报告
车牌的定位与分割实验报告一实验目的针对交通智能系统所拍摄的汽车图片,利用设定的算法流程,完成对汽车车牌部分的定位,分割车牌部分,并完成字符的分割,以便于系统的后续分析及处理。
二实验原理详见《车牌的定位与字符分割》论文。
三概述1一般流程车牌自动识别技术大体可分为四个步骤:图像预处理、车牌定位与分割、车牌字符的分割和车牌字符识别。
而这四个步骤又可归结为两大部分:车牌分割和车牌字符识别。
图1-1为车牌自动识别技术的一般流程图。
2本实验的流程(1)图像预处理:图像去噪(2)车牌的定位:垂直边缘检测(多次)形态学处理的粗定位合并邻近区域结合车牌先验知识的精确定位(3)车牌预处理:车牌直方图均衡化倾斜校正判定(蓝底白字或者黄底黑字)归一化、二值化(4)字符的分割:垂直投影取分割阈值确定各个字符的左右界限(结合字符宽度、间隔等先验知识)分割字符四实验过程4.1图像预处理4.1.1图像去噪一般的去噪方法有:空间域上的均值滤波和中值滤波;频率域上的巴特沃斯滤波器。
图4-1是各滤波器处理椒盐噪声的效果。
a.被椒盐噪声污染的图片 b.均值滤波的效果图 c.中值滤波的效果图 d.BLPF的效果图图4-1 各滤波器处理椒盐噪声的仿真可见,中值滤波对椒盐噪声的处理效果极好,而一般所拍摄的图片上最多的便是孤立的污点,所以此处以中值滤波为主进行去噪。
图4-2是采用中值滤波处理实际汽车图片的效果。
a.原始图像b.灰度图像c.中值滤波后的图像图4-2 中值滤波处理实际汽车图片的效果很显然,经过中值滤波后去除了原图上的部分污点。
4.1.2图像复原由于通常情况下都不知道点扩展函数,所以我们采用基于盲解卷积的图像复原策略。
图4-3~4-7图是函数进行盲解卷积的实验结果,其中图4-3是图像cameraman 的模糊图像。
图4-3 模糊图像在盲解卷积处理中,选择适当大小的矩阵对恢复图像的效果很重要。
PSF的大小比PSF的值更重要,所以首先指定一个有代表性的全1矩阵作为初始PSF。
车牌识别中字符分割算法的研究与实现毕业答辩PPT课件
LOGO
2021
一:论文的背景意义
背景和意义:车牌识别是现代智能交通系统中的重要组成
部分之一,可用于公路电子收费、出入控制和交通监控等众多 场合。它以数字图像处理、模式识别、计算机视觉等技术为基 础,对摄像机所拍摄的车辆图像或视频序列进行分析,得到每 一辆汽车唯一的车牌号码,从而完成识别过程。它主要包括三 个关键部分:车牌区域定位、车牌字符分割、车牌字符识别, 其中车牌字符分割的好坏直接影响到车牌识别的正确率,因此 本文对字符分割的算法进行了深入的研究。
车牌灰度图像 车牌二值化图像
车牌膨胀或腐蚀处理后图像
2021
LOGO
四:车牌分割
本文所采用的车牌字符分割方法为:
车牌像素和模板匹配相结合的车牌字符分割方法
(1)通过车牌字符串的高度H,构建符合实际车牌的
模板。
(2)将车牌模板在字符串上从左向右滑动,同时分
别求取当前位置的M1和N1。其中
, 6 bi
车牌图像分割结果
2021
LOGO
车牌字符分割结果的例证续:
车牌原图像
车牌灰度图像
车牌边缘检测图像
2021
车牌腐蚀后图像
LOGO
车牌平滑图像的轮廓
从对象中移除小对象
车牌图像定位结果
2021
LOGO
车牌图像预处理结果
车牌图像分割结果2021Fra bibliotekLOGO
总结:
本文对其中的车牌分割技术做了深入的研究,主要探讨了车牌定位、预处理以 及字符分割的算法。
LOGO
2021
论文研究步骤:
车牌识别系统中的字符分割与识别
安徽大学硕士学位论文车牌识别系统中的字符分割与识别姓名:高勇申请学位级别:硕士专业:计算机应用技术指导教师:张燕平20070401丘嘲j、’’,慨I。
毕¨硷上第卓系统的具体雌|卜-J其啦别率,【圣j5即为拍摄到的个车图。
因此,必须采取车牌图像顾处理印J}#施以提高Ui别率。
同时,由于车牌不可避免地存在噪声,而且由于车牌识别系统任室外24小时工作,光照度大范【嗣变化,也存在光照不均,亮度太低对比度太小等情况,这蝗都会降低系统的字符识别率,因此需采取滤噪、光照不均校J下和对比度增强等图像增强措施121I。
预处理是整个车牌识别系统的第一步,它的有效与否直接关系到下一步定位的成功率高低。
预处理的主要目的是增强图像中的目标的信息,减少或者消除非目标信息,以有利于下一步的图像进一步处理。
对于含有车牌的图像来说,预处理主要是为了让目标字符的信息加强,并且消除干扰信息,从而便于系统进行下面的车牌区域的定位工作。
一般来说,预处理的方法主要分为空域法和频域法两大类【2lJ。
空域法主要是利用图像中各点之间的位置关系与颜色信息来进行处理,用于其中预处理的空域法主要有图像的点运算、图像增强等;频域法则是将图像变换到频域然后再进行处理,一般采用的变换方式都是线性正交变换、傅立叶变换、离散余弦变换等,然后根据目标信息的特征进行相应的滤波处理。
一般来说,利用空域法比较直接方便,理解上直观;利用频域法则有计算量小、易于消除噪声等特点。
3.3.3车牌定位图5:拍摄到的车图Figure5:aVehiclePlate车牌定位是车牌识别系统中的关键之一,如何在复杂的背景下克服干扰准确定位出含有车牌字符区域直接关系到车牌识别系统后续识别部分的正确率。
到目前为止,有关车牌定位的研究很多,其中主要的方法有下面几种吲:基于边缘的。
一种有效的车牌字符分割方法——模板匹配一垂直投影结合的车牌字符分割方法
( ) P 0的 取 值 范 围 内 建 立 一 个 理 想 的 参 数 空 间 , 虑 车 牌 的 倾 斜 角 度 小 于 _ 1在 、 考 1 0度 , 了 减 少 计 算 为 量 , 0∈[ 1 . 取 0,0] PE[一1 5×n, . . 1 5×n n为 车 牌 图 片 的 宽 度 . ], ( ) 立 一 个 累 加 器 数 组 c u t p , ), 置 每 个 元 素 为 0 2建 o nM( l k 并 . ( 对 边 缘 图 上 的 每 一 个 边 缘 点 计 算 Ho g 3) u h变 换 值 , 计 算 出 该 点 在 P 坐 标 系 中 对 应 的 盐 线 , 在 即 并
合 适 , 能 导 致 采 集 的 车 牌 图 像 发 生 倾 斜 .倾 斜 的 车 牌 图 像 会 给 字 符 分 可
割 带 来 难 度 , 有 甚 者 会 导 致 字 符 分 割 的错 误 .在 对 字 符 进 行 分 割 前 , 更 必 须 对 倾 斜 的 车 牌 图 像 进 行 校 正 , 中 采 用 Ho g 文 u h变 换 进 行 倾 斜 矫 正 . Ho g u h变 换 …是 一 种 变 换 域 提 取 的 方 法 , 把 直 线 上 点 的 坐 标 变 换 它
流 程 图 如 图 1所 示 .
1 图像 去 噪
数 学 形 态 学 是 由 一 组 形 态 学 的 代 数 运 算 子 组 成 的 , 的 基 本 运 算 有 它
4个 :膨 胀 ( 扩 张 ) 腐 蚀 ( 侵 蚀 )、 启 和 闭 合 , 以 进 行 包 括 图 像 分 或 、 或 开 可 割 、 征 提 取 、 缘 检 测 、图像 滤 波 、 像 增 强 和 恢 复 等 图像 分 析 和 处 理 . 特 边 图
汽车牌照定位与字符分割的研究及实现
1.2.1 车牌定位技术研究现状及发展趋势
车牌定位技术是 LPR 系统研究的重点和难点。采集车辆图像过程中一般都有
1
汽车牌照定位与字符分割的研究及实现
各种背景干扰,能够正确分割字符的前提是从图像中准确地分割出牌照区域,这 也是 LPR 系统能否在实际中应用的基础。 目前的车牌定位算法中,主要是分析车牌所共有的部分特征,根据这些特征 来确定车牌区域的位置。车牌几何形状特征及相应的分析方法主要有[2-8]: (1)灰度变化特征:水平/垂直扫描时,牌照区域的像素灰度值按照一定的规 律进行波动;(2)颜色特征:原始车牌区域内部颜色和外部颜色差异的特征;(3) 投影特征:对车辆图像的水平/垂直扫描后其投影直方图中,牌照所对应的区域具 有一定规律的峰谷分布;(4)边缘特征:牌照区域有许多的边缘信息,使用相应的 算子将边缘信息提取出后,再通过边缘投影直方图来确定边缘的信息;(5)几何特 征:主要有车牌的长度、宽度以及长宽比例在一定的范围之内,或者可以通过牌照 的面积在一定的范围之内。利用以上这些特征均可以确定车牌的位置。 目前,车辆牌照的定位方法有基于彩色图像牌照区域字符和背景的颜色差异 特征进行定位,也有基于灰度图像牌照区域字符几何纹理特征进行定位,还有其 它结合了牌照区的颜色差异和字符纹理两种特征的方法定位,另外还有的是基于 数学形态学、神经网络、遗传算法、灰度聚类等牌照定位方法[9]。
作者签名: 导师签名:
日期: 日期:
年 年
月 月
日 日
中南民族大学硕士学位论文
第1章
1.1 问题的提出
绪论
车牌识别技术(License Plate Recognition, LPR )是智能交通管理系统的 重要组成部分,主要用于识别车牌号码。 LPR 技术在实际生活中主要应用于高速 公路实现无人收费功能、道路行车的流量监控、交通违规车辆的监控等。特别是 在各种场合实现无人收费功能的系统中,为了提高车辆的运行效率, LPR 技术将 代替人工的管理方式实现无人自动管理的功能, 因此,对 LPR 技术的研究和系统的 开发具有重要的现实意义和和实用价值。 车牌定位、字符分割、字符识别是 LPR 系统的三大关键技术。同时也是车牌 本身的几何形状特征与图像处理技术[1]的很好结合,车牌定位与字符分割在 LPR 系统中用到的数学知识主要有数学形态学、神经网络、小波分析等。对车牌定位 与字符分割的研究主要包括:图像预处理、车牌定位、车牌倾斜校正、车牌字符 分割及字符分割结果输出等。如图 1.1 所示为系统的流程框图:
车牌识别设计与实现(毕业论文)
目录摘要 (Ⅰ)Abstract (II)1 绪论 (1)1。
1 课题的来源及意义 (1)1.2 课题主要研究的问题 (2)1。
3 系统设计的目标及基本思路 (2)1.3.1 设计目标 (2)1.3。
2 基本思路 (3)2 图像预处理 (4)2.1 汽车牌照的特征 (4)2。
2 灰度变换 (5)2.3 图像增强 (6)2.4 图像边缘提取及二值化 (7)2。
4。
1 图像边缘提取 (7)2。
4.2 灰度图像二值化 (14)2。
5 形态学滤波 (15)3 车牌定位方法研究 (19)3.1 车牌定位常用方法介绍 (19)3.1.1 基于纹理特征分析的定位方法 (19)3。
1。
2 基于数学形态学的定位方法 (19)3.1。
3 基于边缘检测的定位方法 (19)3.1。
4 基于小波分析的定位方法 (19)3.1。
5 基于图像彩色信息的定位方法 (20)3。
2 基于行扫描灰度跳变分析的车牌定位方法 (20)4 车牌识别方法研究 (22)4。
1 牌照区域的分割和图像进一步处理 (22)4.1.1牌照区域的分割 (22)4。
1.2车牌进一步处理 (22)4.2 字符的分割与归一化 (23)4.2。
1字符分割 (23)4。
2。
2字符归一化 (24)4.3 字符的识别 (24)5 总结与展望 (27)5。
1 总结 (27)5.2心得体会 (27)5。
3展望 (28)致谢 (29)参考文献 (30)附录一 (31)摘要车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位.车牌识别系统可分为图像预处理、车牌定位和字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。
车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。
针对车牌本身固有的特征,本文首先介绍了在车牌定位过程中常用的几种数字图像处理技术:图像的二值化处理、边缘检测和图像增强等。
车牌定位与分割方法研究cici
《数字图像处理》研究报告——车牌定位与分割方法研究(2008/2009学年第二学期)车牌定位与分割方法研究1、前言随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
汽车牌照的自动识别技术已经得到了广泛应用。
汽车牌照自动识别整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,其中字符识别过程主要由以下3个部分组成:①正确地分割文字图像区域;②正确的分离单个文字;③正确识别单个字符。
用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。
在研究的同时对其中出现的问题进行了具体分析,处理。
作为现代社会的主要交通工具之一的汽车, 在人们的生产、生活的各个领域得大量使用, 为快速、高效地进行车辆的管理和监控,实现交通管理的自动化、智能化,车牌识别技术在智能交通系统中成为核心技术之一,而图像处理技术能将输入的车辆图像通过处理和识别,转换为车牌号的字符串形式,为车牌识别的后续计算机处理奠定了基础,在其中起着关键性的作用。
数字图像处理已经成为一门独立的新学科,并有着广泛的应用,正在空间、时间和功能上的扩展人类视觉。
2、图像预处理先对视频采集的车牌图像进行必要的预处理,有助于进一步的识别。
图像预处理包括:图像的复原和图像的变换等。
2.1 图像的复原在一些场合输入的图像很有可能是模糊不清的, 也就是说存在噪声的影响,通常存在影响的因素是多方面的,如光线和天气条件的变化、角度不合适、同类型的车牌字符和车牌背景的细微差别等都有可能使图像模糊不清。
因此要对图像进行复原。
在不同的环境下对具体的图像的复原方法也不同, 例如由于均匀直线运动而引起的复原,几何畸变复原等等。
2.2 图像的变换原始图像的数据一般比较大,对其进行处理的时间一般也较长,而由于实时性的要求,车牌的提取需要一次处理性就能把绝大多数特征提取出来,而尽可能的不要利用后面的结果来调整这一步的工作。
车牌定位与车牌字符识别算法的研究与实现
车牌定位与车牌字符识别算法的研究与实现一、本文概述随着智能交通系统的快速发展,车牌识别技术作为其中的核心组成部分,已经得到了广泛的应用。
车牌定位与车牌字符识别作为车牌识别技术的两大关键环节,对于实现自动化、智能化的交通管理具有重要意义。
本文旨在探讨和研究车牌定位与车牌字符识别的相关算法,并通过实验验证其有效性和可行性。
本文首先对车牌定位算法进行研究,分析了基于颜色、纹理和边缘检测等特征的车牌定位方法,并对比了各自的优缺点。
随后,本文提出了一种基于深度学习的车牌定位算法,通过训练卷积神经网络模型实现对车牌区域的准确定位。
在车牌字符识别方面,本文介绍了传统的模板匹配、支持向量机(SVM)和深度学习等识别方法,并对各种方法的性能进行了比较。
在此基础上,本文提出了一种基于卷积神经网络的字符识别算法,通过训练模型实现对车牌字符的准确识别。
本文通过实验验证了所提出的车牌定位与车牌字符识别算法的有效性和可行性。
实验结果表明,本文提出的算法在车牌定位和字符识别方面均具有较高的准确率和鲁棒性,为车牌识别技术的实际应用提供了有力支持。
本文的研究不仅对车牌识别技术的发展具有重要意义,也为智能交通系统的进一步推广和应用提供了有益参考。
二、车牌定位算法的研究与实现车牌定位是车牌字符识别的前提和基础,其主要任务是在输入的图像中准确地找出车牌的位置。
车牌定位算法的研究与实现涉及图像处理、模式识别等多个领域的知识。
车牌定位算法的研究主要集中在两个方面:一是车牌区域的粗定位,即从输入的图像中大致找出可能包含车牌的区域;二是车牌区域的精定位,即在粗定位的基础上,通过更精细的处理,准确地确定车牌的位置。
在车牌粗定位阶段,常用的方法包括颜色分割、边缘检测、纹理分析等。
颜色分割主要利用车牌特有的颜色信息,如中国的车牌一般为蓝底白字,通过颜色空间的转换和阈值分割,可以大致找出可能包含车牌的区域。
边缘检测则主要利用车牌边缘的灰度变化信息,通过算子如Canny、Sobel等检测边缘,从而定位车牌。
车牌字符分割算法研究上课讲义
车牌字符分割算法研究1 绪论1.1 背景介绍为了实现车牌字符识别,通常要经过车牌位置检测、车牌字符分割和字符识别三个关键步骤。
车牌位置检测是根据车牌字符目标区域的特点,寻找出最符合车牌特征的区域。
车牌字符分割就是在车牌图像中找出所有字符的上下左右边界,进而分割出每个车牌字符。
在实际应用中,车牌字符分割的效果对车牌字符识别正确率会产生很大的影响,由于车牌图像亮度不均、尺度变化、透视失真、字符不完整等因素,使图像质量存在较大差异,进而影响图像分割的效果,因此车牌字符分割这一技术仍然具有很大的研究意义。
在实际的监控场景中,车牌图像的透视失真通常是由于拍摄视角的变化或车辆位置的移动,相机光轴偏离车牌平面的法线方向造成的。
由于车牌图像在整幅图像中占有较小的比例,所以车牌图像几何校正主要工作是校正车牌图像的旋转和剪切失真。
旋转投影法和直线拟合法是两种主要的偏斜校正方法。
旋转投影法是为了获取垂直倾斜角,即将车牌图像穷举逐个角度进行剪切变换,然后统计垂直投影数值为0的点数,得到最大值对应的角度。
这种方法受背景区域的干扰比较大。
另一种方法是直线拟合车牌字符的左边界点从而获得垂直倾斜角,该方法为直线拟合法。
该方法并没有逐个角度对车牌图像进行剪切变换,从左边界点拟合出的直线通常不能真正用来代表车牌的垂直倾斜方向,检测出的角度存在较大误差,且字符左侧噪声对角度检测干扰太大,鲁棒性较差。
因此找到一种更准确和迅速的车牌垂直倾斜矫正方法是十分重要的。
通过得到最小的字符投影点坐标方差,得到另一种车牌垂直矫正方法。
首先将车牌字符图像进行水平校正,根据字符的区域的上下边界,将车牌字符进行粗分割。
然后将剪切变换后的字符点进行垂直偷用。
当得到投影点最想左边方差时,便能导出两类剪切角闭合表达是,最后便是确定垂直投影的倾斜角并对此进行校正。
投影法是目前最常用的车牌分割算法之一,其算法简单并且计算复杂度低。
该方法的核心思想是将车牌图像进行水平投影和垂直投影,利用峰谷特征来定位车牌字符的上下左右边界。
车牌字符识别与分割
一、实验目的:使用matlab软件提取出给定图像中的字符区域,或分割出各个字符二、设计方案:一个完整的车牌识别系统闭应包括车辆检测、图像采集、图像预处理、车牌定位、字符分割、字符识别等单元。
当车辆到达触发图像采集单元时,系统采集当前的视频图像。
车辆识别单元对图像进行处理,定位出牌照位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
车牌识别系统原理如图l所示。
图1 车牌识别系统原理图(1)图像预处理:对汽车图像进行图像转换、图像增强和边缘检测等。
(2)车牌定位:从预处理后的汽车图像中分割出车牌图像。
即在一幅车辆图像中找到车牌所在的位置。
(3)字符分割:对车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像(4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
为了用于牌照的分割和牌照字符的识别,原始图象应具有适当的亮度,较大的对比度和清晰可辩的牌照图象。
但由于车辆牌照的整洁度、自然光照条件、拍摄时摄像机与牌照的矩离和角度以及车辆行驶速度等因素的影响,牌照图象可能出现模糊、歪斜和缺损等严重缺陷,因此需要对原始图象进行识别前的预处理。
牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。
由于拍摄时的光照条件、牌照的整洁程度的影响,和摄像机的焦距调整、镜头的光学畸变所产生的噪声都会不同程度地造成牌照字符的边界模糊、细节不清、笔划断开或粗细不均,加上牌照上的污斑等缺陷,致使字符提取困难,进而影响字符识别的准确性。
因此,需要对字符在识别之前再进行一次针对性的处理。
车牌识别的最终目的就是对车牌上的文字进行识别。
车牌字符分割与识别算法的研究与实现
D U Pe i2 m in g, CHEN L i ang, ZHAO Y u2gu i
( School of Electr ica l & I nforma tion, Anhu i Un iversity of Technology, M a ’ an shan 243002, Ch ina. ) Ab s tra c t: O n the ba s is o f the lice n se p la te lo ca tio n, the p ap e r fo cu 2 se s o n b ina riz ing the p la te i m a ge by u s ing ite ra tive m e tho d, the n ca r2 rying o u t re g io n s igna tu re o f the i m a ge by u s ing co nne c te d com po 2 ne n t la be ling a lgo rithm , se gm e n ting lice n se p la te cha ra c te r w ith the he lp o f fo r m e r know le dge; Extra c t th irte e n fe a tu re s o f the cha ra c te r, re co gn ize the cha ra c te r u s ing B P ne u ra l ne tw o rk. The re su lts show tha t cha ra c te r se gm e n ta tio n a nd re co gn itio n a lgo rithm in th is the s is ha s o b ta ine d goo d re su lts.
车牌识别系统中的字符分割技术研究
车牌识别系统中的字符分割技术研究作者:陈利来源:《电脑知识与技术》2008年第34期摘要:车牌字符分割是车牌识别系统的三大关键技术之一。
准确的字符分割,既能提高字符识别的准确率,又能提高识别的速度。
针对车牌图像背景复杂、光照多变、干扰较多的情况,文章在车牌区域预处理的基础上提出了一种基于先验知识的垂直投影字符分割方法。
实验结果表明该算法简洁、实时性好、处理正确率高,达到了实用的标准。
关键词:车牌识别系统;二值化;字符分割;先验知识;垂直投影中图分类号:TP391 文献标识码:A文章编号:1009-3044(2008)34-1693-02Research of Characters Segmentation Technology in VLPRSCHEN Li1,2(1.College of Computer Science and Techologe,Anhui University, Hefei 230039,China;2.Department of Computer Engineering,Wuhu Vocational College of Information and Technology, Wuhu 241003, China)Abstract: License plate character segmentation is one of the three key technologies of Vehicle License Plate Recognition System(VLPRS).A good method or algorithm,which segment characters accurately ,can improve the accuracy of character recognition and make the identification very fast.Vehicle license plate recognition have such characteristics as complex background,changeable lighting and a variety of interference.In view of this situation,the article proposes a method of vertical projection character segmentation,which is based on priori knowledge. The experimental results show that the algorithm, which achieves a good standard of practical,has lots of advantages such as simple and clean, better real-time features and high-accuracy of processing.Key words: VLPRS; binarization; characters segmentation; prior knowledge;vertical projection 1 引言车牌字符分割是车牌识别系统(Vehicle License Plate Recognition System,简称VLPRS)的三大关键技术之一。
车牌及其字符分割的方法研究
倒范围内有多个区域出现,则缩小高宽比的范围再搜索一次,如果所得区域仍大于一个,鉴于车牌一般处于整幅图的下方。
所以取底部最低的连通域作为车牌区域.图I厦图图2垂直边缘检测后图3分削出来的车牌三、车牌字符分割字符分割是车牌分割的后续步骤,它将提取出来的车牌区域分割成单一的字符区域.本文的字符分割算法包括车牌区域的二值化,水平边框去}j;}以及纵向字符分剖三个步骤.1.车牌区域的二值化在车牌二值化的过程中,需要确定二值化的明值.本文采用了判别分析法来确定最佳阚值.这种方法较好地解决了闭值自动选择的问题,有很好的二值化效果.算法用数学模型可以表示如下t设闻值选择函数,(五)定义如下t一(矗)[p・∞(量)一产(量)]。
/[∞(愚)・(1一∞(五))]其中弘为整体图像的灰度平均值,产(^)是阕值为k时的灰度平均值,m(k)是灰度值为1一k之间的总概率.若设各灰度值的概率为P。
总像棠数为N.则以上各值可以表示为。
I●●●产=∑i・P(i),卢(女)一∑f・P;,面(量)=∑P{,Ⅳ=∑他;,P;=协/Nl-lj-lf-l‘-I其中1~优是灰度图像的灰废级.斯是灰值为i的像摩敷.令,(^)值最大的灰度值^即为整幅灰度图像的最佳分割搠值T.rl,(f,j)≥T,“’J)2{o,(f,J)≤TL2.车牌水平框的去除在车牌区域二值化的基础上我们设计了一种去除水平边框的算法.它对于边框断袭、缺失。
或者二值化引起的边框边界不清等都有很好的消除效果.通过对牌照中心位置向上或者向下扫描可以发现,字符区域与上下水平边框之间有一定的空白.利用这一特性与边框比例知识相结合可以有效地去除车牌的水平边框.其步骤如下,(1)对现有的二值图像进行水平方向的投影,然后对投影图进行分析。
找出投影图的所有波峰和波谷,分别记录。
并消除波峰和波谷处呈现水平状态的影响.(2)计算相郐波峰波谷的高度差,因为字符和边框之问存在空隙.所以当这一高度差大于所有高度差的平均值较多,或者接近于零值时.就可以判定这就是边框和字符的分界处.(3)考虑到可能水平边框因为二值化或光照不均有所缺失,所以取高度差过滤后剩余部分的第一个波谷之后和具有最大高度差的波谷之前的区域作为去除边框后的字符区.3.纵向字符分割经过以上处理后。
复杂背景下的车牌定位和字符分割研究
—198— 复杂背景下的车牌定位和字符分割研究周开军,陈三宝,徐江陵(武汉理工大学自动化学院,武汉 430063)摘 要:提出了一种综合边缘检测、投影特征的车牌定位方法和基于垂直投影及模板匹配的字符分割方法,提取车牌灰度图像边缘,实验结果显示该算法检测边缘的速度快,车牌区域轮廓清晰,采用投影法确定车牌区域,用HOUGH 变换检测倾斜角度进而对倾斜的车牌进行矫正,通过字符分割算法对车牌字符进行切割,有效地解决了复杂环境的干扰、车牌尺寸变化等问题。
对不同背景下的光照车牌进行了大量实验,结果表明该算法能准确地进行车牌定位以及字符分割,具有较好的鲁棒性。
关键词:车牌定位;字符分割;边缘检测;车牌校正Research of Vehicle License Plate Location and CharacterSegmentation Under Complex ScenesZHOU Kaijun, CHEN Sanbao, XU Jiangling(School of Automation, Wuhan University of Technology, Wuhan 430063)【Abstract 】An edge detection-projection feature based algorithm to locate the LP and a vertical projection-template matching algorithm to segment the characters are proposed. The edges are detected in a gray-level vehicle image, the result of experiment shows that the speed of detecting license plate is high and the obtained contour is very legible. The LP region is located by projection method, the tilt angle of LP is corrected by Hough transform. The character is segmented by LP segmentation algorithm, and some problems are solved effectively under complex scenes. To demonstrate the effectiveness of the proposed algorithm, it conducts extensive experiments over a large number of real-world vehicle license plates.It reports that the proposed algorithms have high accuracy and robustness.【Key words 】LP location; Character segmentation; Edge detection; LP orientation correction计 算 机 工 程Computer Engineering 第33卷 第4期Vol.33 No.4 2007年2月February 2007·人工智能及识别技术·文章编号:1000—3428(2007)04—0198—03文献标识码:A中图分类号:TP39车牌照自动识别技术是智能交通系统(ITS)中的重要研究课题,在停车场和高速公路收费管理中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 ai1
M1
p n N1
pn
i0 nai
p(n))是车牌图像的垂直投影。
i0 nbi
(3)比较他们之间的最大差值Max=M1一Nl。如果当
模板左下角点在(x,y)时,Max最大,则由点(x,y)
和车牌的先验知识,就可以将7个字符的准确位置确
定下来,从而分割出全部的车牌字符。
LOGO
2021
车牌图像分割结果:
车牌灰度图像 车牌二值化图像
车牌膨胀或腐蚀处理后图像
2021
LOGO
四:车牌分割
本文所采用的车牌字符分割方法为:
车牌像素和模板匹配相结合的车牌字符分割方法
(1)通过车牌字符串的高度H,构建符合实际车牌的
模板。
(2)将车牌模板在字符串上从左向右滑动,同时分
别求取当前位置的M1和N1。其中
, 6 bi
车牌识别中字符分割 算法的研究与实现
LOGO
2021
论文的结构和主要内容
第一部分:车牌分割研究的背景意义 第二部分:车牌定位 第三部分:车牌图像预处理 第四部分:车牌字符分割
LOGO
2021
一:论文的背景意义
背景和意义:车牌识别是现代智能交通系统中的重要组成
部分之一,可用于公路电子收费、出入控制和交通监控等众多 场合。它以数字图像处理、模式识别、计算机视觉等技术为基 础,对摄像机所拍摄的车辆图像或视频序列进行分析,得到每 一辆汽车唯一的车牌号码,从而完成识别过程。它主要包括三 个关键部分:车牌区域定位、车牌字符分割、车牌字符识别, 其中车牌字符分割的好坏直接影响到车牌识别的正确率,因此 本文对字符分割的算法进行了深入的研究。
(1)在进行车牌定位之前,先对原始图像进行处理,提取出了车 牌图像的边缘,并将牌照区域从背景中进一步定位并提取出来。
(2)在预处理过程中,先将彩色图像进行灰度化,采用全局动态 阈值得到二值化图像,并进行均值滤波,使得车牌图像更有利于进 行字符分割。
(3)在字符分割过程中,给出了一种基于车牌像素和模板匹配相 结合的字符分割方法。通过使用这种方法对车牌字符进行了有效的 分割。本文采用的的车牌字符分割方法,较好地解决了车牌中存在 少量噪声的问题,以及去除了小对象的干扰。
本文所采用的分割方法对于质量太差的车牌图像还不能完全做 到正确分割。所以需要继续研究字符分割方法与其它技术相结合的 问题。
LOGO
2021
谢谢!!!
LOGO
2021
LOGO
2021
论文研究步骤:
车 牌 定 位
图 像 预 处 理
车 牌 分 割
LOGO
2021
二:车牌定位
车牌定位前图像处理流程:
车牌原图像
车牌灰度图像
2021
边缘检测图像
LOGO
车牌定位
腐蚀后的图像
平滑图像轮廓
从对象中移除小对象
定位剪切后的彩色车牌图像
2021
LOGO
三:车牌图像预处理
车牌图像 车牌均值滤波后图像
结果的例证续:
车牌原图像
车牌灰度图像
车牌边缘检测图像
2021
车牌腐蚀后图像
LOGO
车牌平滑图像的轮廓
从对象中移除小对象
车牌图像定位结果
2021
LOGO
车牌图像预处理结果
车牌图像分割结果
2021
LOGO
总结:
本文对其中的车牌分割技术做了深入的研究,主要探讨了车牌定位、预处理以 及字符分割的算法。