实验一信号与系统仿真实验

合集下载

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。

⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。

x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。

z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。

参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。

信号与系统

信号与系统

《信号与系统》仿真作业实验一:连续信号的表示及可视化:f(t)=δ(t); f(t)=ε(t); f(t)=e at(分别取a>0与a<0);f(t)=R(t); f(t)=Sa(wt); f(t)=sin(2πft);(分别画出不同周期个数的波形)解:(1)f(t)=δ(t)的matlab表示:程序清单如下:》t=-5:0.01:5;k=(0-(-5))/0.01+1;y=zeros(size(t));y(k)=1/(0.01-(-0.01));plot(t,y);title('冲击函数f(t)=δ(t)')画出冲击函数的图形如下:冲击函数f(t)=δ(t)t(2) f(t)=ε(t )的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5; y=heaviside(t) plot(t,y)画出阶跃函数的图形如下:(3) f(t)=e at 的matlab 表示及图形: 程序清单如下: 》t=-10:0.01:10;y1=exp(0.1*t); y2=exp(-0.1*t); plot(t,y1,'r',t,y2,'b') 画出指数函数的图形如下:tf (t )=ε(t )(4) f(t)=R(t)的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5;y=heaviside(t+2)-heaviside(t-2); plot(t,y,'b') 画出窗函数的图形如下:(5) f(t)=Sa(wt) 的matlab 表示及图形: 程序清单如下:》ezplot('sin(t)./t',[-20,20]) grid ontf (t )=e atty =R 9t )画出抽样函数的图形如下:sin(t)/tt(6)f(t)=sin(2πft)的matlab表示及图形:程序清单如下:》ezplot('sin(2*pi*50*t)',[-.02,.02])grid on画出正弦函数的图形如下:实验二:离散信号的表示及可视化:f(t)=δ(n ); f(t)=ε(n ); f(t)=e an (分别取a>0与a<0); f(t)=R N (n ); f(t)=Sa(nw); f(t)=sin(nw );(分别取不同的w 值) 解:(1) 冲击序列f(n)=δ(n )的matlab 实现: 程序清单如下: 》n0=0; ns=-10; nf=10; n=[ns:nf];y=[zeros(1,n0-ns),1,zeros(1,nf-n0)];-0.02-0.015-0.01-0.00500.0050.010.0150.02-1-0.50.51tsin(2 50 t)stem(n,y);title('冲击序列f(n)=δ(n)')画出冲击序列的图形如下:冲击序列f(n)=δ(n)n(2)阶跃序列f(n)=ε(n)的matlab实现:程序清单如下:》n0=0;ns=-10;nf=10;n=[ns:nf];y=[zeros(1,n0-ns),ones(1,nf-n0+1)];stem(n,y);title('阶跃序列f(n)=ε(n)')阶跃序列的图形如下:(3) 指数序列f(t)=e an (分别取a>0与a<0)的matlab 实现: 程序清单如下: 》n=-10:10; y1=exp(0.1*n); y2=exp(-0.1*n); plot(n,y1,'ro',n,y2,'bo') 指数序列的图形如下:(4) 门序列f(n)=R N (n )的matlab 实现:程序清单如下: 》n1=-3;n2=3;ns=-15;nf=15;阶跃序列f(n)=ε(n)nnf (t )=e a nn=[ns:nf];y=[zeros(1,n1-ns),ones(1,n2-n1+1),zeros(1,nf-n2)]; stem(n,y);title('窗序列f(n)=R N (n )') 窗序列的图形如下:(5) 抽样序列f(t)=Sa(nw)的matlab 实现: 》n=-20:0.5:20; y=sin(n)./n; plot(n,y,'o'); title('f(t)=Sa(nw)')窗函数f(n)=R N (n)n抽样序列的图形如下:(6) 正弦序列f(t)=sin(nw )(分别取不同的w 值)的matlab 实现: 》n=-0.1:0.002:0.1 w=100 y=sin(w*n) plot(n,y,'o') grid on正弦序列的图形如下:f (t)=Sa(nw)nny =s i n (w *n )实验三:系统的时域求解1、设h(n)=(0.9)n u(n),x(n)=u(n)-u(n-10),求:y(n)=x(n)*h(n),并画出x(n),h(n),y(n)波形。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

基于MATLAB的信号与系统仿真实验毕业设计

基于MATLAB的信号与系统仿真实验毕业设计

基于MATLAB的信号与系统仿真实验毕业设计信号与系统是电子信息类专业的一门重要课程,它是其他课程的基础和前提。

为了更好地理解信号与系统的理论知识,掌握信号的分析和处理方法,实验仿真是非常重要的手段之一、MATLAB作为一款强大的数学软件,被广泛应用于信号与系统的实验仿真中。

本文将基于MATLAB,介绍一个基于信号与系统的仿真实验的毕业设计。

该设计主要包括以下几个方面的内容:实验目的、实验原理、实验步骤和实验结果及分析。

实验目的:本次实验的主要目的是通过MATLAB软件,实现信号与系统的仿真分析,掌握信号与系统的基本概念和分析方法,培养学生对信号与系统的实际应用能力。

实验原理:本实验主要涉及信号的生成与采样、信号的查表和存储、信号的线性时不变系统等方面的内容。

通过对不同种类的信号进行分析,可以更好地理解信号的特性,并通过系统的分析,了解线性时不变系统对信号的作用及特性。

实验步骤:1.信号的生成与采样:在MATLAB中,通过给定信号的频率、振幅及采样率等参数,利用正弦函数或方波函数生成模拟信号,并对信号进行采样。

2.信号的查表和存储:将生成的信号通过查表和存储的方式保存为数据文件,并通过MATLAB读取这些数据文件,进行后续的处理和分析。

3.信号的线性时不变系统:通过设计不同的线性时不变系统,如低通滤波器或高通滤波器等,对信号进行滤波处理。

可以分析系统的频率响应、幅频响应等参数,并观察滤波后信号的变化。

实验结果及分析:通过对生成的信号进行采样、查表和存储,并对信号进行线性时不变系统的处理,在MATLAB中可以得到相应的结果。

根据实验结果,可以对信号的特性进行分析,比较不同信号和系统对信号的影响,进一步了解信号与系统的相关知识。

综上所述,本次基于MATLAB的信号与系统仿真实验毕业设计主要是通过对信号的生成、采样、查表和存储以及对信号进行线性时不变系统的处理,来掌握信号与系统的分析方法和应用能力。

通过实验结果的分析,可以进一步理解信号与系统的概念和特性,提高对信号与系统的理解和应用能力。

信号与系统仿真作业

信号与系统仿真作业

nGDOU-B-11-112广东海洋大学学生实验报告书(学生用表)课程名称课程号学院(系)信息学院专业班级学生姓名学号实验地点04002 实验日期实验一连时间信号的MATLAB表示和连续时间LTI系统的时域分析一、实验目的1.掌握MA TLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性;2.运用MATLAB符号求解连续系统的零输入响应和零状态响应;3.运用MATLAB数值求解连续系统的零状态响应;4.运用MATLAB求解连续系统的冲激响应和阶跃响应;5.运用MATLAB卷积积分法求解系统的零状态响应。

二、实验原理1. 连续信号MATLAB实现原理从严格意义上讲,MATLAB数值计算的方法并不能处理连续时间信号。

然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号。

MATLAB提供了大量生成基本信号的函数。

比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。

为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。

三、实验内容1.实例分析与验证根据以上典型信号的MA TLAB函数,分析与验证下列典型信号MA TLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot()。

(1) 正弦信号:用MA TLAB命令产生正弦信号2sin(2/4)ππ+,并会出时间0≤t≤3的波形图。

程序如下:K=2;w=2*pi ;phi=pi/4;t=0:0.01:3;ft=K*sin(w*t+phi);plot(t,ft),grid on;axis([0,3,-2.2,2.2])title('正弦信号')(2) 抽样信号:用MA TLAB 中的sinc(t)函数命令产生抽样信号Sa(t),并会出时间为66t ππ-≤≤的波形图。

信号实验报告 2

信号实验报告 2

信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。

二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。

“信号与系统”Matlab实验仿真教学系统设计

“信号与系统”Matlab实验仿真教学系统设计

“信号与系统”Matlab实验仿真教学系统设计作者:张尤赛,马国军,黄炜嘉,周稳兰来源:《现代电子技术》2010年第18期摘要:针对“信号与系统”课程硬件实验教学不够深入和灵活的缺点,在分析理论教学和工程实际需求的基础上,利用Matlab和Simulink,建立了“信号与系统”实验仿真教学系统,并从系统设计、内容设计、界面设计、开发工具、二次开发等五个方面对该系统进行了阐述。

实验教学表明,该系统可以克服硬件实验系统的局限性,加深和拓宽了实验内容和实验层次,增强了实验的灵活性,有利于培养学生的实验动手能力和创新能力。

关键词:信号与系统; Matlab; 实验仿真教学; Simulink中图分类号:TN911.7-34; G642.4文献标识码:A文章编号:1004-373X(2010)18-0057-03Design of Mtalab Experimental Simulation Teaching System in Signals and SystemsZHANG You-sai, MA Guo-jun, HUANG Wei-jia, ZHOU Wen-lan(School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China)Abstract: Aiming at the disadvantages of hardware experimental teaching in Signals and Systems, the experimental simulation teaching system of Signals and Systems based on Matlab and Simulink is established by emphasizing experimental teaching requirements of theoretical teaching and actual engineering. Thus, the system design, content design, interface design, development tools and repeatedly development are studied respectively. The effects of experimental teaching show that it overcomes the limitation of hardware experiment, expands experimental contents and level, improves students hands-on ability and comprehensive quality.Keywords: signals and systems; Matlab; experimental simulation teaching; Simulink0 引言信号与系统的基本概念、基本理论与分析方法在不同学科、专业之间有着广泛应用和交叉渗透[1]。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

基于LabVIEW的“信号与系统”仿真实验系统设计

基于LabVIEW的“信号与系统”仿真实验系统设计

基于LabVIEW的“信号与系统”仿真实验系统设计“信号与系统”是电子信息类专业的重要专业基础课,概念多,理论性强,比较抽象。

为便于学生理解和掌握,设计了基于LabVIEW的信号与系统仿真实验系统。

详细介绍了系统构架、设计方法及主要知识点的演示示例。

标签:LabVIEW;信号与系统;仿真;实验一引言“信号与系统”是高等院校电子信息类专业的一门非常重要的基础课,但由于概念多、推导多、理论抽象,所以学生学习起来普遍感到不能很好地理解和掌握其基本理论与分析方法。

如何让学生深刻理解课程中的基本概念、基本原理,牢固掌握基本分析方法以及学会灵活运用这一理论工具,是值得研究和探讨的一个问题。

在课堂教学中适时引入仿真实验,可以帮助学生很好地理解理论理念,建构知识,提高教学质量。

本研究以LabVIEW作为仿真软件构建了“信号与系统”仿真实验系统,该系统界面友好、功能齐全,紧密结合“信号与系统”课程[1,2],主要面向讲授和学习“信号与系统”课程的教师和同学,不仅便于教师在课堂上进行教学演示,而且还便于学生在课后进行自学或复习。

二系统构架及设计1 系统构架仿真实验系统与“信号与系统”课程内容基本对应,共分为四大模块,分别是“连续时间信号分析”、“傅里叶级数和傅里叶变换”、“调制,滤波器,离散时间信号分析”和“声音信号及其波形”。

四个模块在内容上依次递进,如图1所示。

模块1是基础,主要介绍基本信号及其时域性质;模块2是对基本信号的频域性质分析;模块3主要是信号与系统的基本知识在通信中的应用;模块4是关于声音的采集、播放及其波形,是扩展部分。

每个模块中又根据实验内容分为几个子程序。

各模块中的实验内容如表1所示。

整个系统采用模块化的设计思路,每个程序均由如下几个模块构成:(1)信号产生模块(2)信号处理模块(3)结果显示模块。

信号产生模块负责产生若干个特定信号,该信号经过信号处理模块进行处理,例如卷积、滤波、FFT等,最后经过结果显示模块显示信号波形,或使喇叭发音。

信号与系统仿真实验的研究

信号与系统仿真实验的研究
图 2 “ 周期 信号的卷积运算” 非 的程序框 图
从 图中可以看 出, 虚拟仪器的编程采用 了全新 的 G语言 , 与传统的编程语言( c语言) 如 有着极大 地 区别 。从 文本 编 程 转 变 为 图形 编 程 , 与此 时 正 在
8 6
电气电子教 学学报
第3 3卷
学 习的 电路 系统方 框 图非 常类 似 , 程序 关 系 非 常清
2 借 助 Lb IW 完成 仿真 研究 ) aVE
图1 S a函数 及 其 频 谱
借助 Lb IW 的信号分析处理能力 , aVE 可以生成 连续信号和离散时间信号 , 生成周期信号及非周期
信号 , 对信 号 进 行 频 谱 分 析 , 究 信 号 时 域 与 频 域 研
2 2 简 洁 的 系统 构成 .
际的频谱分析仪器价格昂贵, 一般 不可能做到学生 人手一台。但在虚拟实验中, 能轻而易举地获得 却 这些 虚拟 仪 器 , 建 实验平 台。 搭 图 1 非周期信号 的卷 积运 算及其频谱” 是“ 实 验项 目的前面板 图。该项 目可 以对 冲激信号 、 单脉 冲信号 、 斜坡信号 、 三角信号 、 单周期 正弦波 、a函 s
第3 3卷 第 6期 21 0 1年 l 2月
电气 电子 教 学 学 报
J 0URN EE AL OF E
V0 _ 3 No 6 l3 . DC . 01 e 2 1
信 号与 系统仿 真 实验 的研 究
刘舒 帆 ,张 小虹 ,石 琼
( 解放 军理 工大 学 理 学院 , 苏 南京 2 10 ) 江 111
运行… ; Lb IW 与其他设备 的互连能力强 , ⑤ aVE 具
有标 准化 的总线 或 通信 接 口 , 以方便 地 与 其 它 电 可 路连 接 , 成数 据 的采 集与 输入输 出 J 完 。

信号与系统Sinmulink仿真

信号与系统Sinmulink仿真

信号

系统
响应
3.5

信号与系统的Sinmulink仿真
Simulink提供了一个建立模型方块图的 图形用户接口(GUI) ,建模过程只需单 击和拖动鼠标操作就能完成,而且用户 可以立即看到系统的仿真结果。本次实 验掌握用Sinmulink建立仿真模型,并完 成系统响应的仿真。
信号

系统
响应
1.Simulink 基本操作
信号

系统
响应
例3:


(6)运行仿真 双击各模块可对系统中各模块参数进 行设置,各模块参数进行正确设置后, 单击系统模型编辑器上的Play图标(黑 色三角)或选择Simulation菜单下的 Start便可以对系统进行仿真分析。仿真 结束后双击Scope模块以显示系统仿真的 输出结果,如图所示。
信号

系统
响应
3.设置仿真参数

用鼠标双击指定模块图标,打开模块对 话框,根据对话框栏目中提供的信息进 行参数设置或修改。例如双击模型窗口 的传递函数模块,弹出对话框,在对话 框中分别输入分子、分母多项式的系数, 点击OK键,完成该模型的设置。
信号

系统
响应
4. 模块文件的取名和保存

模块文件的取名和保存选择模型窗口菜 单FileSave as后弹出一个“Save as”对话框,填入模型文件名,按保存 即可。


(1)启动Simulink 点击工具栏中的彩色图标 或在MATLAB环 境下输入simulink命令,会弹出一个名 “simulink library browser”的浏览 器窗口,如图所示,
信号

系统
响应

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

《信号与系统》实验报告

《信号与系统》实验报告

信号与系统实验报告班级:姓名:信息与通信工程学院实验一 系统的卷积响应实验性质:提高性 实验级别:必做 开课单位:信息与通信工程学院 学 时:2一、实验目的:深刻理解卷积运算,利用离散卷积实现连续卷积运算;深刻理解信号与系统的关系,学习MATLAB 语言实现信号通过系统的仿真方法。

二、实验设备: 计算机,MATLAB 软件 三、实验原理: 1、 离散卷积和: 调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和,其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。

但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。

为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。

则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。

2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。

)t)()(t h t P ∆∆→)()(lim )(lim )(0t h t h t P t =→=∆→∆∆→∆δ若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k得输出:∆∆-∆=∑∞-∞=∆∆)()()(k t hk f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim)(lim )(0⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t hk f t y t y k )()()()(lim)(lim )(0所以:∆∆-∆=-==∑⎰→∆)()(lim)()()(*)()(212121k t f k fd t f f t f t f t s τττ如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k fn f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。

信号与系统-实验1-无源和有源滤波器设计

信号与系统-实验1-无源和有源滤波器设计

哈尔滨理工大学实验报告课程名称:信号与系统实验实验名称:无源和有源滤波器设计班级学号姓名指导教师2020 年6 月7 日教务处印制一、实验预习(准备)报告1、实验目的1.了解 RC 无源和有源滤波器的种类、基本结构及其特性;2.分析和对比无源和有源滤波器的滤波特性;3.掌握滤波器的设计方法并完成设计和仿真。

2、实验相关原理及内容1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可以由RC 元件和有源器件构成的有源滤波器。

2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。

把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。

而通带与阻带的分界点的频率ωc 称为截止频率或称转折频率。

图1-1 中的|H(jω)|为通带的电压放大倍数,ω0为中心频率,ωcL和ωcH分别为低端和高端截止频率。

图1-1 各种滤波器的理想频幅特性3、图 1-2 所示,滤波器的频率特性 H(jω)(又称为传递函数),它用下式表示H(jω)=u2=A(ω)∠θ(ω)u1(3-1)式中 A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。

它们都可以通过实验的方法来测量图 1-2 滤波器。

图 1-2 滤波器模型图四种滤波器的实验线路如图 1-3 所示:图 1-3 各种滤波器的实验线路图3、实验方法及步骤设计1、滤波器的输入端接正弦信号发生器或扫频电源,滤波器的输出端接示波器或交流数字毫伏表,2、测试无源和有源低通滤波器的幅频特性。

3、无源和有源低通滤波器的仿真设计与幅频特性测试。

(1)测试RC 无源低通滤波器的幅频特性。

用图1-1(a)所示的电路,测试RC 无源低通滤波器的特性。

《信号与系统》MATLAB仿真实验讲义

《信号与系统》MATLAB仿真实验讲义

《信号与系统》MATLAB仿真实验讲义(第二版)肖尚辉编写宜宾学院电信系电子信息教研室《信号与系统》课程2004年3月 宜宾使用对象:电子专业02级3/4班(本科)实验一 产生信号波形的仿真实验一、实验目的:熟悉MATLAB软件的使用,并学会信号的表示和以及用MATLAB来产生信号并实现信号的可视化。

二、实验时数:3学时+3学时(即两次实验内容)三、实验内容:信号按照自变量的取值是否连续可分为连续时间信号和离散时间信号。

对信号进行时域分析,首先需要将信号随时间变化的规律用二维曲线表示出来。

对于简单信号可以通过手工绘制其波形,但对于复杂的信号,手工绘制信号波形显得十分困难,且难以绘制精确的曲线。

在MATLAB中通常用三种方法来产生并表示信号,即(1)用MATLAB软件的funtool符合计算方法(图示化函数计算器)来产生并表示信号;(2)用MATLAB软件的信号处理工具箱(Signal Processing Toolbox)来产生并表示信号;(3)用MATLAB软件的仿真工具箱Simulink中的信号源模块。

(一) 用MATLAB软件的funtool符合计算方法(图示化函数计算器)来产生并表示信号在MATLAB环境下输入指令funtool,则回产生三个视窗。

即figure No.1:可轮流激活,显示figure No.3的计算结果。

figure No.2:可轮流激活,显示figure No.3的计算结果。

figure No.3:函数运算器,其功能有:f,g可输入函数表达式;x是自变量,在缺省时在[-2pi,2pi]的范围内;自由参数是a;在分别输入完毕后,按下面四排的任一运算操作键,则可在figure No.1或figure No.2产生相应的波形。

学生实验内容:产生以下信号波形3sin(x)、5exp(-x)、sin(x)/x、1-2abs(x)/a、sqrt(a*x)(二) 用MATLAB软件的信号处理工具箱(Signal Processing Toolbox)来产生并表示信号一种是用向量来表示信号,另一种则是用符合运算的方法来表示信号。

系统仿真信号实验报告

系统仿真信号实验报告

系统仿真信号实验报告系统仿真信号实验报告1. 引言系统仿真是一种通过计算机模拟系统行为的方法,可以对系统进行预测和优化。

在工程领域中,系统仿真有着广泛的应用,可以用于电子电路设计、通信网络规划、交通流模拟等方面。

本实验旨在通过系统仿真,研究信号的传输和处理过程,探索信号的特性和优化方法。

2. 实验目的本实验的主要目的是通过系统仿真,研究信号的传输和处理过程。

具体包括以下几个方面:- 了解信号的基本概念和特性;- 研究不同信号的传输特性;- 探索信号处理方法和优化策略。

3. 实验方法本实验采用MATLAB软件进行系统仿真。

在仿真过程中,我们将使用不同的信号类型,如正弦信号、方波信号和脉冲信号,并对其进行传输和处理。

4. 实验过程4.1 生成信号首先,我们使用MATLAB生成不同类型的信号。

通过调整信号的频率、幅度和相位等参数,我们可以得到不同特性的信号。

4.2 信号传输在信号传输过程中,我们将模拟信号在传输介质中的衰减和失真情况。

通过改变传输介质的特性和信号的传输距离,我们可以观察到信号的变化。

4.3 信号处理在信号处理过程中,我们将对传输后的信号进行滤波、降噪和增强等操作。

通过选择不同的信号处理算法和参数,我们可以改善信号质量并提取出所需的信息。

5. 实验结果与分析在实验过程中,我们得到了不同类型信号的传输和处理结果。

通过分析实验数据,我们可以得出以下结论:- 正弦信号在传输过程中受到较小的衰减和失真,适合用于远距离传输;- 方波信号在传输过程中会出现较大的失真,需要采取补偿措施;- 脉冲信号在传输过程中容易受到噪声干扰,需要进行滤波处理。

6. 结论与展望通过本实验,我们深入了解了信号的传输和处理过程,并探索了信号的特性和优化方法。

系统仿真为我们提供了一种有效的研究手段,可以在实际操作之前进行模拟和预测。

未来,我们可以进一步研究不同类型信号的传输特性和处理方法,以应对不同场景下的需求。

7. 参考文献[1] Smith, S. W. (1997). The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing.[2] Proakis, J., & Manolakis, D. (2006). Digital Signal Processing: Principles, Algorithms, and Applications. Pearson Education.8. 致谢感谢实验指导老师的悉心指导和支持,感谢实验室的同学们的合作,使本次实验取得了圆满的结果。

信号与系统实验报告实验一 信号与系统的时域分析

信号与系统实验报告实验一 信号与系统的时域分析

实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。

在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

信号与系统仿真实验报告

信号与系统仿真实验报告

信号与系统仿真实验报告班级:学号:姓名:学院:实验一一、实验者姓名: 二、实验时间: 三、实验地点:四、实验题目:求三阶系统8106)65(5)(232+++++=s s s s s s H 的单位阶跃响应,并绘制响应波形图。

五、解题分析:要知道求单位阶跃响应需知道所用函数,以及产生波形图所需要用到的函数。

六、试验程序:num=[5 25 30]; den=[1 6 10 8]; step(num,den,10);title(‘Step response ’)七、实验结果:实验所得波形图如下:八、实验心得体会:通过本次试验了解学会了一些新的函数的应用。

了解到了N 阶系统的单位阶跃响应的计算方法,和系统的响应波形图的函数应用和绘制方法。

为后面的实验打下基础,并对信号仿真和《信号与系统》这门课程之间的联系有所增加,对《信号与系统》这门课里的问题也有了更加深入地了解。

九、实验改进想法:无。

0123456789100.511.522.533.544.5Step responseTime (sec)A m p l i t u d e实验二一、实验者姓名: 二、实验时间: 三、实验地点:四、实验题目:一个因果线性移不变系统)2()()2(81.0)(--+-=n x n x n y n y ,求:(1))(z H ;(2)冲激响应)(n h ;(3)单位阶跃响应)(n u ;(4))(ωj e H ,并绘出幅频和相频特性。

五、解题分析:离散卷积是数字信号处理中的一个基本运算,MTLAB 提供的计算两个离散序列卷积的函数是conv ,其调用方式为 y=conv(x,h) 。

其中调用参数x,h 为卷积运算所需的两个序列,返回值y 是卷积结果。

MATLAB 函数conv 的返回值y 中只有卷积的结果,没有y 的取值范围。

由离散序列卷积的性质可知,当序列x 和h 的起始点都为k=0时,y 的取值范围为k=0至length(x)+length(h)-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 信号与系统仿真实验
希望同学们根据实验任务要求事先做好预习,上机实验完成后应写出相应的实验报告(要求附程序与仿真结果)。

一、 实验目的
了解MA TLAB 的基本使用方法和编程技术,以及Simulink 平台的建模与动态仿真方法 ,进一步加深对课程所学内容的理解。

二、 实验项目
1.信号的分解与合成,观察Gibbs 现象。

2.信号与系统的时域分析,即卷积分、卷积和的运算与仿真。

3.信号的频谱分析,观察信号的频谱波形。

4.系统函数的形式转换。

5.用Simulink 平台对系统进行建模和动态仿真。

三、 实验仪器
计算机一人一台;安装Matlab/Simulink 数值仿真软件平台。

四、 实验内容
1、以周期为T ,脉冲宽度为12T 的周期性矩形脉冲为例研究Gibbs 现象。

提示:已知周期方波信号的傅里叶级数系数a k 的表达式如下:
π
ωπωωk T k a T T a T e a t x k m m k t jk k )sin(22)(101000====
∑-= 试画出x (t )的波形图(分别取m 等于1,3,7,19,79,T =4T 1),观察Gibbs 现象,通过对不同m 取值的合成波形观察,体会有限项合成信号与原信号的不同,同时,理解函数能量大部分集中在傅里叶级数系数a k 的第一对零点之内的道理
2、求卷积并画图
(1)已知:)2()1()(1---=t u t u t x ,)3()2()(2---=t u t u t x
求:)()()(21t x t x t y *==?并画出其波形。

(2)已知某离散系统的输入和冲激响应分别为:]5,3,2,1,5,3,4,1[][=n x ,]2,4,0,4,2,4[][=n h 。

求系统的零状态响应,并绘制出系统的响应图。

提示:求卷积可用),(21x x conv ;画图可用subplot 、plot 和stem 。

3、求频谱并画图
(1) 门函数脉冲信号)5
.0()5.0()(1--+=t u t u t x
(2) 三角脉冲信号⎪⎩⎪⎨⎧>≤-=10
11)(2t t t t x
(3) 单边指数函数)()(3t u e t x t -= (4) 高斯信号2
)(4t e t x -=
提示:求频谱可用fourier ,画图可用ezplot 4、求系统函数转换
(1) 零极点形式转换成多项式形式。

)
4)(3)(2()1(2)(++++=s s s s s H (2) 多项式形式转换成零极点形式。

12
198102)(23++++=s s s s s H (3) 用卷积法求多项式形式的系统函数。

)
1343)(32()52)(8()(22++++++=s s s s s s s H 提示:用zp tf 2,tf zp 2,num ,den ,sys pr int ,作系统的零极点图用roots 和zplane 函数。

5、用Simulink 仿真求系统的冲激响、阶跃响应和任意信号的零状态响应。

)()(2)(3)(t x t y t y t y
=++ ][]3[2]1[3][n x n y n y n y =-+-+。

相关文档
最新文档