平方根立方根练习题
人教版七年级下第六章实数“平方根、立方根"习题
人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.答案第1页,共1页参考答案:1. 6-0.2 2.54π- 1a-2. 2 2±3.4±4. 0任意数1y =5.214000 0.1463± 0.1289-2146.81或97.C 8.B 9.D 10.B 11.A 12.A 13.(1)558;(2)112-.14.(1)3;(2)4±15.72x =或12x =。
完整版)平方根立方根提高练习题
完整版)平方根立方根提高练习题平方根和立方根的练一、选择题(共8小题)1.4的平方根是±2,那么9的平方根是(B)。
2.若2m-4与3m-1是同一个数的平方根,则m的值是(C)。
3.一个数的立方根是它本身,则这个数是(A)。
4.数n的平方根是x,则n+1的算术平方根是(C)。
5.如果y=6+2,那么xy的算术平方根是(D)。
6.若a-b=3,则xy的值为(B)。
7.已知:a-b=2,那么xy的算术平方根是(C)。
8.若a<b<c,化简3a-b+c的结果为(B)。
二、填空题(共8小题)9.已知a、b为两个连续的整数,且a>b,则a+b=a+b。
10.若a的一个平方根是b,那么它的另一个平方根是-b,若a的一个平方根是b,则a的平方根是±b。
11.已知:a+b=3,ab=2,则a和b的值分别为1和2.12.设等式(x-1)(y-2)(z-3)=0在实数范围内成立,其中m,x,y是互不相同的值,则z=m+x+y-6.13.如图是一个按某种规律排列的数阵:根据数阵的规律,___第一个数是n(n-1)+1.14.已知有理数a,满足|2016-a|+|2017-a|=1,则a的值为2016或2017.15.若两个连续整数x、y满足x<y,则x+y的值是2x+1.16.一组按规律排列的式子:1,3,7,13,…则第n个式子是n²-n+1.三、解答题(共9小题)17.(1)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。
解:由2a-1的平方根是±3可得2a-1=9或2a-1=-9,解得a=5或a=-4.由3a+b-1的算术平方根是4可得3a+b-1=16,解得a=5,b=4.因此,a+2b=13.2)已知m是x²的整数部分,n是x的小数部分,求m-n的值。
解:由题意可得x²≤m<(x+1)²,即x≤√m<x+1.又因为n=x-√m,所以x=n+√m。
初二平方根立方根练习题100道
初二平方根立方根练习题100道1. 求下列数字的平方根:a) 25b) 64c) 100d) 144e) 2562. 求下列数字的立方根:a) 8b) 27c) 64d) 125e) 2163. 求下列数字的平方根和立方根:a) 81b) 121c) 169d) 729e) 10244. 求下列数字的平方根的结果保留两位小数:a) 5b) 15c) 23d) 36e) 485. 求下列数字的立方根的结果保留两位小数:a) 8b) 27c) 64d) 125e) 2166. 计算下列各式的值:a) √9 × √16b) ∛8 × √9c) √25 ÷ √5d) ∛64 ÷∛4e) ∛27 + ∛647. 当x = 16时,求以下各式的值:a) √xb) x^(1/3)c) ∛xd) x^(1/2)8. 当y = 0.04时,求以下各式的值:a) √yb) y^(2/3)c) ∛yd) y^(1/2)9. 已知a = √16 + ∛64,求a的值。
10. 如果x = √16,y = ∛27,z = √25,分别求x、y、z的平方根和立方根。
11. 如果a = √x,b = ∛y,c = √z,求a、b、c的平方根和立方根。
12. 判断下列各式是否成立:a) √16 + ∛27 = √9 + ∛64b) √25 - ∛8 = 5 - 2c) √100 + ∛125 = 12 + 5d) √36 - ∛64 = 6 - 4e) √81 + ∛125 = 9 + 513. 求下列式子的值:a) (√4 + ∛8)²b) (√9 - ∛27)³c) (√16 + ∛64)⁴d) (√25 - ∛125)⁵e) (√36 + ∛216)⁶14. 已知 x = 0.1,求 x²和 x³的值并保留三位小数。
15. 如果 a² + b² = 25,且 a = 3,b = 4,求 a³和 b³的值。
平方根立方根计算题50道计算题
平方根立方根计算题50道计算题一、平方根计算题(25道)1. √(4)- 解析:因为2^2 = 4,所以√(4)=2。
2. √(9)- 解析:由于3^2 = 9,所以√(9)=3。
3. √(16)- 解析:4^2 = 16,则√(16)=4。
4. √(25)- 解析:因为5^2 = 25,所以√(25)=5。
5. √(36)- 解析:6^2 = 36,故√(36)=6。
6. √(49)- 解析:7^2 = 49,所以√(49)=7。
7. √(64)- 解析:8^2 = 64,则√(64)=8。
8. √(81)- 解析:9^2 = 81,所以√(81)=9。
9. √(100)- 解析:10^2 = 100,故√(100)=10。
10. √(121)- 解析:11^2 = 121,所以√(121)=11。
11. √(144)- 解析:12^2 = 144,则√(144)=12。
12. √(169)- 解析:13^2 = 169,所以√(169)=13。
13. √(196)- 解析:14^2 = 196,故√(196)=14。
14. √(225)- 解析:15^2 = 225,所以√(225)=15。
15. √(0.04)- 解析:0.2^2 = 0.04,所以√(0.04)=0.2。
16. √(0.09)- 解析:0.3^2 = 0.09,则√(0.09)=0.3。
17. √(0.16)- 解析:0.4^2 = 0.16,所以√(0.16)=0.4。
18. √(0.25)- 解析:0.5^2 = 0.25,故√(0.25)=0.5。
19. √(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
20. √(2frac{1){4}}- 解析:把带分数化为假分数,2(1)/(4)=(9)/(4),由于((3)/(2))^2=(9)/(4),所以√(2frac{1){4}}=(3)/(2)。
平方根与立方根计算练习题
平方根与立方根计算练习题在数学中,平方根和立方根是常见的数学运算。
它们用于计算给定数的平方和立方根。
本文将为您提供一些关于平方根和立方根的计算练习题,帮助您巩固和提升这两个运算的能力。
一、平方根计算练习题1. 计算以下数的平方根:a) 25b) 36c) 81d) 1002. 请计算下列数的平方根,并保留两位小数:a) 2b) 5c) 10d) 133. 判断以下数是否是完全平方数(即存在整数的平方根):a) 16b) 17c) 254. 请计算下列数的平方根,并详细说明计算步骤:a) 64b) 121c) 196d) 289二、立方根计算练习题1. 计算以下数的立方根:a) 8b) 27c) 64d) 1252. 请计算下列数的立方根,并保留两位小数:a) 2b) 5c) 10d) 153. 判断以下数是否是完全立方数(即存在整数的立方根):a) 64c) 100d) 1204. 请计算下列数的立方根,并详细说明计算步骤:a) 216b) 343c) 512d) 729三、平方根与立方根混合计算练习题1. 计算以下数的平方根和立方根的乘积:a) 4b) 9c) 16d) 252. 计算以下数的平方根的立方:a) 2b) 3c) 5d) 73. 计算以下数的立方根的平方:a) 8b) 27c) 64d) 125四、实际问题求解练习题1. 根据以下信息,请计算一个正方形的边长:正方形的面积等于64平方厘米。
2. 根据以下信息,请计算一个立方体的边长:立方体的体积等于512立方厘米。
3. 根据以下信息,请计算一个球的半径:球的体积等于314立方厘米。
练习题答案:一、平方根计算练习题答案:1. a) 5 b) 6 c) 9 d) 102. a) 1.41 b) 2.24 c)3.16 d) 3.613. a) 是 b) 否 c) 是 d) 否4. a) 8 = √64 b) 11 = √121 c) 14 = √196 d) 17 = √289二、立方根计算练习题答案:1. a) 2 b) 3 c) 4 d) 52. a) 1.26 b) 1.71 c) 2.15 d) 2.473. a) 是 b) 是 c) 否 d) 否4. a) 6 = ∛216 b) 7 = ∛343 c) 8 = ∛512 d) 9 = ∛729三、平方根与立方根混合计算练习题答案:1. a) 8 b) 27 c) 64 d) 1252. a) 2^3 = 8 b) 3^3 = 27 c) 5^3 = 125 d) 7^3 = 3433. a) √8 = 2 b) √27 = 3 c) √64 = 8 d) √125 = 5四、实际问题求解练习题答案:1. 正方形的边长为8厘米。
七年级数学平方根立方根计算题
七年级数学平方根立方根计算题数学是一门令人头疼的科目,尤其是对于七年级的学生来说。
其中之一让学生感到困惑的内容是平方根和立方根的计算。
平方根和立方根是数学中的重要概念,对于解决实际问题和进行高阶计算具有重要作用。
本文将为您陈述七年级数学中关于平方根和立方根的计算题,帮助您更好地理解并掌握这一知识点。
1. 平方根计算题平方根是指一个数的平方等于该数的非负实数解。
计算平方根需要知道数值和运算符号的使用方法。
下面是一些七年级常见的平方根计算题:1. 求下列数的平方根:a) 9b) 16c) 25解答:a) √9 = 3b) √16 = 4c) √25 = 52. 求下列数的近似平方根(保留两位小数):b) 21c) 36解答:a) √7 ≈ 2.65 (近似)b) √21 ≈ 4.58 (近似)c) √36 = 62. 立方根计算题立方根是指一个数的立方等于该数的实数解。
下面是一些七年级常见的立方根计算题:1. 求下列数的立方根:a) 8b) 27c) 64解答:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 42. 求下列数的近似立方根(保留两位小数):b) 18c) 35解答:a) ∛10 ≈ 2.15 (近似)b) ∛18 ≈ 2.57 (近似)c) ∛35 ≈ 3.30 (近似)总结:通过以上的练习题,我们可以看到平方根和立方根的计算并不复杂,只需要熟练运用数值和运算法则即可。
对于更大的数值计算,我们可以使用近似值来简化计算过程。
在实际生活中,平方根和立方根的应用广泛,比如计算面积和体积、求解实际问题等。
因此,通过掌握平方根和立方根的计算方法,我们可以更好地应对数学中的各种挑战。
希望本文所提供的数学平方根和立方根计算题能够帮助到您,提升您对这一知识点的理解和运用能力。
继续加油,数学的世界等待着您的探索!。
平方根立方根练习题及答案
平方根立方根练习题及答案1. 计算下列各数的平方根:- √9- √16- √252. 计算下列各数的立方根:- ∛8- ∛27- ∛643. 判断下列说法是否正确,并给出理由:- √144 = 12- ∛-8 = -24. 计算下列表达式的值:- √(2^2)- ∛(3^3)5. 解下列方程:- √x = 4- ∛y = 56. 一个数的平方根是2,求这个数。
7. 一个数的立方根是3,求这个数。
8. 一个数的平方根是它本身,求这个数。
9. 一个数的立方根是它本身,求这个数。
10. 计算下列表达式的值:- √(√81)- ∛(∛125)答案1. √9 = 3√16 = 4√25 = 52. ∛8 = 2∛27 = 3∛64 = 43. √144 = 12 是错误的,因为√144 = 12 的平方根是√12,而不是 12。
∛-8 = -2 是错误的,因为负数没有实数立方根。
4. √(2^2) = √4 = 2∛(3^3) = ∛27 = 35. √x = 4 时,x = 4^2 = 16∛y = 5 时,y = 5^3 = 1256. 一个数的平方根是2,这个数是 2^2 = 4。
7. 一个数的立方根是3,这个数是 3^3 = 27。
8. 一个数的平方根是它本身,这个数是0或1。
9. 一个数的立方根是它本身,这个数是0,1,或-1。
10. √(√81) = √9 = 3∛(∛125) = ∛ 5 = 5请注意,这些练习题和答案仅供学习和练习之用,实际应用中可能需要更复杂的计算和理解。
平方根立方根解答题60题有答案ok
平方根立方根解答题专项练习60题(有答案)1.求下列各式中的x:①(x+1)2+8=72;②3(2x﹣1)2﹣27=0.2.求下列各式中x的值.(1)4x2=9(2)(x﹣1)2=25.3.求x的值:2(x+1)2=984.已知a﹣1与5﹣2a是m的平方根,求a和m的值.5.求正数x的值:3(2x﹣1)2=27.6.一个正数x的平方根是a﹣1和a+3,求x和a的值.7.已知(x+1)2﹣1=24,求x的值.8.已知a+3与2a﹣15是m的两个平方根,求m的值.9.已知x+3与2x﹣15是正数y的两个不同平方根,试求y的值.10.求下列各式中的x的值.(1)x2=25(2)(x﹣3)2=4(3)=3.11.已知x没有平方根,且|x﹣3|=6,求x的值.12.求下列各数的平方根:(2)(3).13.解下列关于x的方程:.14.已知(x﹣1)2+|y﹣5|=0,求的平方根.15.(4x﹣1)2=225.16.计算下列各式中x的值:(1)16x2﹣49=0;(2)(x﹣1)2=100.17.已知2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,求x+2y的平方根.18.﹣a是否有平方根?为什么?19.解方程:x2﹣=0.20.求下列各式中的x:(1)x2=16;(2);(3)x2=15;(4)4x2=18;(5)2x2=10;(6)3x2﹣75=0.21.某数的平方根为和.22.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.23.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.24.计算:25.小明家的客厅是用正方形地板砖铺成的,面积为21.6㎡,小明数了一下地面所铺的地板砖正好是60块,请你帮小明计算他家地板砖的边长是多少?26.研究下列算式,你会发现有什么规律?==2;==3;==4;==5;…请你找出规律,并用公式表示出来.27.小文房间的面积为10.8m2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?28.有一个正方体的集装箱,原体积为216m2,现准备将其扩容用以盛放更多的货物,若要使其体积达到343m2,则它的棱长需增加多少m?29.半径为R的圆的面积恰好是半径为5与半径为2的两个圆的面积之差,求R的值.30.我们来看下面的两个例子:,,和都是9×4的算术平方根,而9×4的算术平方根只有一个,所以.,和都是5×7的算术平方根,(2)运用以上结论,计算:的值.31.求下列各式中的x的值:(1)25x2=36(2)(x+1)3=832.(1)X2﹣7=0(2)X3+27=0(3)(x﹣3)2=64(4)(2x﹣1)3=﹣833.34.一个非零实数的平方根式3a+1和a+11,求这个数及它的立方根.35.求下列各式中的x(2)(x﹣2)3=3.36.求下列各式中的x:(1)4x2﹣24=25(2)(x﹣0.7)3=﹣0.027.37.已知,a是的平方根,b=,c是﹣8的立方根,试求a+b﹣c的值.38.已知M=是m+3的算术平方根,是n﹣2的立方根,试求M+N的算术平方根.39.(1)化简:+﹣(2)求x的值:x2+23=25.40.(1)﹣+;(2)﹣+.41.已知x、y都是实数,且,求:(1)3x﹣y的平方根(2)x+3y的立方根.42.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.43.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.44.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.45..46.已知立方根为x﹣,求x的平方根.47.小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)48.计算:+(﹣2)3×.49.已知A=是m+2n的立方根,B=是m+n+3的算术平方根、求m+11n的立方根.50.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?51.学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:_________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:_________.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:_________.因此59319的立方根是_________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是_________位数,②它的立方根的个位数是_________,③它的立方根的十位数是_________,④185193的立方根是_________.52.问题:(1);(2);(3).探究1,判断上面各式是否成立.(1)_________(2)_________(3)_________探究2:并猜想=_________.探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展,,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.53.若球的半径为R,则球的体积V与R的关系式为V=πR3.已知一个足球的体积为6280cm3,试计算足球的半径.(π取3.14,精确到0.1)54.若是一个正整数,则满足条件的最小正整数x=_________.55..56.一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.57.求下列各数的立方根:(1)(2)(3)﹣(4)58.计算(1)用计算器计算:(结果精确到0.01);(2)计算:;59.用计算器求下列各式的值:(结果精确到0.01)(1)﹣;(2).60.利用计算器计算,把答案填在横线上:(1)=_________;(2)=_________;(3)=_________;(4)=_________;(5)=_________;(6)猜想=_________.(用含n的式子表示)参考答案:1.①∵(x+1)2=64∴x+1=±8∴x=7或﹣9;②∵3(2x﹣1)2=27∴(2x﹣1)2=9∴2x﹣1=±∴x=2或x=﹣1.2.(1)x2=,∴x=±,x=±;(2)x﹣1=±,∴x﹣1=±5,∴x﹣1=5或x﹣1=﹣5,∴x1=6,x2=﹣4.3.原方程可化为:(x+1)2=49,∴x+1=±7,解得:x1=6,x2=﹣84.a﹣1与5﹣2a是同一个数的平方根,a﹣1+5﹣2a=0,解得a=4;∴a﹣1=4﹣1=3∴m=32=9 ∴a的值为4,m的值为95.方程的两边同除以3得:(2x﹣1)2=9,∴2x﹣1=3或2x﹣1=﹣3,∴x1=2,x2=﹣1(不符合题意,舍去),∴x=26.由题意,得:a﹣1+a+3=0,解得a=﹣1;所以正数x的平方根是:2和﹣2,故正数x的值是4 7.移项得:(x+1)2=25,∴x+1=±5,即x=4或﹣68.由题意得:a+3+(2a﹣15)=0,解得:a=4.所以m=(a+3)2=72=49.9.由题意,得x+3+2x﹣15=0,解得x=4,则y=(4+3)2=49.故y的值为4910.(1)x2=25,x=±5;(2)(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,故x=5或1;(3)=3,两边平方得:x=911.由题意得,x为负数,又∵|x﹣3|=6,∴x﹣3=±6,解得:x1=9(不合题意舍去),x2=﹣3.故x=﹣312.(1)∵(±0.7)2=0.49,∴0.49的平方根是±0.7;(2)∵=1,(±1)2=1,∴的平方根是±1;(3)∵(±)2=,∴的平方根是±.13.原方程即:(x﹣2)2=6,则(x﹣2)2=12,x﹣2=±2,则x=2+2或x﹣214.∵(x﹣1)2+|y﹣5|=0,∴x﹣1=0,y﹣5=0,x=1,y=5,∴x+y=1+×5=2,∴的平方根是±15.4x﹣1=±15,则4x﹣1=15,解得x=4;或4x﹣1=﹣15,解得x=﹣.16.(1)16x2﹣49=0,x2=,∵(±)2=,∴x=±;(2)∵(±10)2=100,∴x﹣1=10或x﹣1=﹣10,解得x=11或x=﹣9.故答案为:(1)±,(2)x=11或﹣917.∵2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,∴2x﹣1=9,3x+y﹣1=16,解得:x=5,y=2,∴x+2y=5+4=9,∴x+2y的平方根为±318.当a≤0时,﹣a有平方根;当a>0时,﹣a没有平方根.理由是:∵一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,19.移项得,x2=,所以,x=±20.(1)x2=16,x=±4;(2),x=±;(3)x2=15,x=±;(4)4x2=18,x2=,x=±;(5)2x2=10,x2=5,x=±;(6)3x2﹣75=0,x2=25,x=±521.(1)依题意得+=0,解得a=3;(2)==1,==﹣1.故答案为:(1)3,(2)1、﹣122.∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=23.∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.24.原式=7+5﹣15=﹣3.25.设他家地板砖的边长是a,∵地板砖是正方形,∴一块地板砖的面积是a2,∴60a2=21.6,得,a=0.6(m)26.第n项a n===n+1,即a n=n+127.设每块地砖的边长是x,则120x2=10.8,解得x=0.3,即每块地砖的边长是0.3m28.∵正方体的集装箱,原体积为216m2,∴棱长为=6m,要使其体积达到343m2,则棱长为=7m,∴正方体的棱长需增加=1(m).答:正方体的棱长需增加1m29.根据题意可知:πR2=π(25﹣4),解得R2=21,即R=30.根据题意,有=;(1)根据题意,有=;(2)=×=8×15=120.故答案为:=31.(1)25x2=36两边同时除以25得∴.(2)(x+1)3=8 开立方,得,∴x+1=2解得x=132.(1)∵x2=7,∴x=±;(2)∵x3=﹣27 ∴x=﹣3;(3)∵(x﹣3)2=64 ∴x﹣3=±8 ∴x=11或﹣5;(4)∵(2x﹣1)3=﹣8∴2x﹣1=﹣2 ∴x=﹣.33.原式=()2﹣3=5﹣2﹣3=2﹣.35.(1)由原方程,得2x﹣1=±,∴x=±,∴x1=,x2=;(2)由原方程,得(x﹣2)3=,∴x﹣2=,解得,x=36.(1)4x2﹣24=25,∴4x2=25+24,x2=,x=±;(2)(x﹣0.7)3=﹣0.027,∵(﹣0.3)3=﹣0.027,∴x﹣0.7=﹣0.3,∴x=0.437.∵a是的平方根,b=,c是﹣8的立方根,∴a=±2,b=3,c=﹣2,∴当a=2时,a+b﹣c=7,当a=﹣2时,a+b﹣c=338.解:根据题意,得:解得,所以,所以M+N=4,故M+N算术平方根是239.(1),=5﹣1﹣3,=1;(2)移项、合并得,x2=2,∴x=±40.解:(1)原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣41.∵,∴x﹣3=0,8﹣y=0,解得x=3,y=8,∴(1)3x﹣y=3×3﹣8=1,∵1的平方根=±1,∴±=±1;(2)∵x=3,y=8,∴x+3y=3+3×8=27,∵=3,∴=342.∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 把x的值代入解得:y=8,∴x2+y2的算术平方根为10.43.设新正方形的棱长为x cm,则新正方体体积为x3cm3,依题意得:x3=8×53=(2×5)3,∴x=10(cm).答:新正方体的棱长为10cm.44.(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣145.原式==046.∵立方根为x﹣,而的立方根为,∴x﹣=,解得x=4∴4的平方根为±2,∴x的平方根±247.设正方体的棱长为x,由题意知,2x3=50×40×30,解得x≈31,故这两个正方体纸箱的棱长31厘米48.原式=2+4+0.1+8×0.4=4+5.349.由题意,有,解得.∴m+11n=5+22=27,=3,∴m+11n的立方根是350.设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.51.(1)103=1000,1003=1000000,你能确定59319的立方根是2位数.故答案是:2;(2)由59319的个位数是9,你能确定59319的立方根的个位数是9.故答案是9.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,∵103=1000,1003=1000000,1000<185193<1000000,∴185193的立方根是一个两位数,∵185193的最后一位是3,∴它的立方根的个位数是7,185193去掉后3位,得到185,∵53<185<63,∴立方根的十位数是5,则立方根一定是:57.答:①它的立方根是2位数,②它的立方根的个位数是7,③它的立方根的十位数是5,④185193的立方根是57.故答案是:2,7,5,5752.探究1:(1)成立;(2)成立;(3)成立;探究2:5;探究3:=n(n≥2的整数).理由如下:===n;拓展:=n.理由如下:===n53.由已知6280=π•R3∴6280≈×3.14R3,∴R3=1500∴R≈11.3cm54.∵128=27,∴128x=29=27×4时,是一个正整数,即最小的正整数x=4.故答案为:455.﹣1=﹣,∵(﹣)3=﹣,∴=﹣.56.设书的高为xcm,由题意得:(4x)3=216,解得:x=1.5.答:这本书的高度为1.5cm.57.(1)=﹣2;(2)=0.4;(3)﹣=﹣;(4)=958.(1)解:原式=3×1.414213562+0.745355992﹣3.141592654+5×0.2=2.8446404026≈2.84;(2)解:原式=2+0﹣=59.(1)原式≈﹣8.59;(2)原式≈﹣1.66.60.用计算器计算并猜想:(1)=3,(2)=6,(3)=10,(4)=15,(5)=21,(6)1+2+3+…+n=n(n+1).故本题的答案是3,6,10,15,21,n(n+1)平方根立方根解答题60题---- 11。
平方根立方根实数练习题
平方根、立方根、实数练习题一、选择题1、化简(-3)2 的结果是( )A.3B.-3C.±3 D .92.已知正方形的边长为a ,面积为S ,则( )A.S =a = C.a =.a S =±3、算术平方根等于它本身的数( )A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个;4、下列说法正确的是( )A .a 的平方根是±a ;B .a 的算术平方根是a ;C .a 的算术立方根3a ;D .-a 的立方根是-3a .5、满足-2<x <3的整数x 共有( )A .4个;B .3个;C .2个;D .1个.6、如果a 、b 两数在数轴上的位置如图所示,则 ()2b a +的算术平方根是( );A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ;7、如果-()21x -有平方根,则x 的值是( )A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;8a 是正数,如果a 的值扩大100)A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008最接近的一个是( )A .43;B 、44;C 、45;D 、46;10.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A 、n+1;B 、2n +1;CD。
11. 以下四个命题①若a 是无理数,②若a 是有理数,③若a是整数,则是有理数;④若a)A.①④ B.②③ C.③ D.④12. 当01a <<,下列关系式成立的是( )A.a >,a >a <a <a . -1. 0b .. 1.C.a <a > a >a <13. 下列说法中,正确的是( )A.27的立方根是33= B.25-的算术平方根是5C.a 的三次立方根是D.正数a 14. 下列命题中正确的是( )(1)0.027的立方根是0.3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A.(1)(3)B.(2)(4)C.(1)(4)D.(3)(4)15. 下列各式中,不正确的是( )A.><C.>5=-16.若a<0,则a a 22等于( ) A 、21B 、21-C 、±21D 、018、若a x =2,则( )A 、x>0B 、x ≥0C 、a>0D 、a ≥019、一个数若有两个不同的平方根,则这两个平方根的和为( )A 、大于0B 、等于0C 、小于0D 、不能确定20、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =21、若a ≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a |22、若正数a 的算术平方根比它本身大,则( )A 、0<a<1B 、a>0C 、a<1D 、a>123、若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+124、若a<0,则a a 22等于( ) A 、21 B 、21- C 、±21 D 、025、若x-5能开偶次方,则x 的取值范围是( )A 、x ≥0B 、x>5C 、x ≥5D 、x ≤5二、填空题26、0.25的平方根是 ;125的立方根是 ;27.计算:412=___;3833-=___;1.4-的绝对值等于 .28.若x 的算术平方根是4,则x=___;若3x =1,则x=___;29.若2)1(+x -9=0,则x=___;若273x +125=0,则x=___;30.当x ___时,代数式2x+6的值没有平方根;31.381264273292531+-+= ;32.若0|2|1=-++y x ,则x+y= ;33.若642=x ,则3x =____.34.立方根是-8的数是___,64的立方根是____。
(完整版)平方根、算术平方根、立方根练习题
1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。
平方根立方根易错及重点题型练习题
《平方根立方根》练习题1.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数其中,不正确的有()A. 2个B. 3个C. 4个D. 5个2.5=,则x为()A. 5B. -5C. ±5D. 以上都不对3.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1B.a2+1C .+1 D .4.下列说法正确的是()A. 4的平方根是±2B. -a2一定没有平方根C. 0.9的平方根是±0.3D. a2-1一定有平方根5.若4a+1的算术平方根是5,则a²的算术平方根是______.81的算术平方根是。
6的平方根是()A.±8 B.±4 C.±2 D7_______;8.若2m-4与3m-1是同一个数的平方根,则m 的值是() A.-3 B.1 C.-3或1 D.-19.(-2)2的平方根是___,算术平方根是____64的平方根的立方根是_____.81的平方根是____,210-的算术平方根是;12、若一个数的平方根是8±,则这个数的立方根是13.若一个正数的平方根是12-a和2+-a,则____=a,这个正数是14、下列语句,写成式子正确的是()A,3是9的算术平方根,即39±=B,-3是-27的立方根,327-=±3 C,2是2的算术平方根,即2=2D,-8的立方根是-2,即38-=-2 15、若a=23-,b=-∣-2∣,c=33)2(--,则a、b、c的大小关系是().A.a>b>cB.c>a>bC.b>a>cD.c>b>a16、设x、y为实数,且554-+-+=xxy,则yx-的值是()A、1B、9C、4D、5。
平方根与立方根练习题
平方根与立方根练习题一、选择题1. 求下列各数的平方根:a) 16 b) 36 c) 49 d) 1212. 求下列各数的立方根:a) 8 b) 27 c) 64 d) 1253. 如果√a = b,那么a的值是多少?a) 9 b) b² c) b³ d) b² + b4. 如果∛a = b,那么a的值是多少?a) 8 b) b² c) b³ d) b² + b5. 下列哪个数是完全平方数?a) 12 b) 15 c) 25 d) 306. 下列哪个数是完全立方数?a) 8 b) 11 c) 27 d) 32二、填空题1. 5² = ______2. 7² = ______3. 10² = ______4. 2³ = ______5. 4³ = ______6. 6³ = ______三、计算题1. 求下列各数的平方根,并保留两位小数:a) 25b) 64c) 144d) 4002. 求下列各数的立方根,并保留两位小数:a) 125b) 216c) 343d) 10003. 判断下列各数是否为完全平方数:a) 49b) 81c) 100d) 1214. 判断下列各数是否为完全立方数:a) 8b) 27c) 64d) 125四、解答题1. 将完全平方数的概念进行解释,并举例说明。
2. 将完全立方数的概念进行解释,并举例说明。
3. 对于非完全平方数和非完全立方数,是否存在平方根与立方根的概念?请说明原因。
4. 使用平方根和立方根的概念,如何判断一个数是否为完全平方数和完全立方数?五、综合题小明的爸爸给他出了一个综合题:找出1到100之间的完全平方数和完全立方数,并将它们分别按照从小到大排列后,求出所有这些数的平均值。
请根据小明的要求,计算出这个平均值。
最终答案:(请在下方空白区域回答)以上为平方根与立方根练习题,希望能够帮助你巩固对平方根与立方根的理解和计算能力。
算术平方根--平方根--立方根测试题
算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。
人教版七年级数学下册《平方根和立方根》同步练习含答案
第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。
初二数学下册平方根与立方根计算练习题
初二数学下册平方根与立方根计算练习题1. 计算平方根:(1)√16 = ____(2)√25 = ____(3)√64 = ____(4)√100 = ____(5)√144 = ____2. 计算立方根:(1)³√8 = ____(2)³√27 = ____(3)³√64 = ____(4)³√125 = ____(5)³√216 = ____3. 混合计算:(1)√36 + ³√8 = ____(2)√49 - ³√27 = ____(3)√100 × ³√64 = ____(4)√121 ÷ ³√125 = ____(5)√144 + ³√216 = ____ 4. 简化根式:(1)√12 = ____(2)√20 = ____(3)√27 = ____(4)√48 = ____(5)√75 = ____5. 分数与根式转换:(1)2√8 = ____(2)3√18 = ____(3)4√32 = ____(4)5√50 = ____(5)6√72 = ____6. 求平方根的值:(1)(√2)² = ____(2)(√3)² = ____(3)(√5)² = ____(4)(√6)² = ____(5)(√10)² = ____7. 求立方根的值:(1)(³√2)³ = ____(2)(³√3)³ = ____(3)(³√5)³ = ____(4)(³√6)³ = ____(5)(³√10)³ = ____8. 完全立方数计算:(1)√64 = ____(2)³√216 = ____(3)√729 = ____(4)³√1000 = ____(5)√4096 = ____9. 应用题:小明购买一块正方形农田,其边长为a米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的化简与计算
【重难点提示】
1.最简二次根式
(1)最简二次根式要满足以下两个条件
①被开方数的因数是整数,因式是整式。
即被开方数不含有分母。
②被开方数中不含有能开尽方的因数或因式。
即被开方数中每个因数或因式的指数都小于根指数2。
(2)化简二次根式的方法
“一分解”:把被开方数的分子、分母尽量分解出一些平方数或平方式。
“二移出”:把这些平方数或平方式,用它的算术平方根代替移到根号外。
“三化去”:化去被开方数中的分母。
2.二次根式的加减法
(1)同类二次根式
几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫同类二次根式。
判断几个二次根式是否是同类二次根式:一化简,二判断。
(2)二次根式的加减法
先把各根式化成最简二次根式,再合并同类二次根式(类似合并同类项)。
3.分母有理化
前面学过分母是单项二次根式时,b a +与b a +互为有理化因式。
那么两项式的二次根式的有理化因式是b a +与b a -。
b a -与b a +互为有理化因式。
4.二次根式的混合运算
(1)运算顺序:二次根式的加、减、乘(乘方)、除的运算顺序与实数的运算顺序类似,
先算乘方,再算乘除,最后算加减,有括号的要先算括号里面的。
(2)在二次根式的混合运算中,整式和分式中的运算法则、定律、公式等仍然适用。
一、计算
()35384321x x x x -⎪⎭⎫ ⎝⎛-+ a
b y x b a a b ab a xy a b x 222÷⎪⎪⎭⎫ ⎝
⎛+-
()()632632+--+ ()()2
232233223+--
x
y y
x
()()()()
532532532532---++-++
()1471627527223+-⎪⎭
⎫ ⎝⎛+ ⎪⎪⎭
⎫ ⎝⎛-+-67.123256133223
()()
6233262332---+ 二、填空
1.下列二次根式中()
22217,54,40,21
230,45b a b a +中的最简二次根式有 。
2.若最简二次根式12+m 与m 273--是同类二次根式,则m= . 3.若最简二次根式152++a a 与b a 34+是同类二次根式,求a 、b 的值 。
4.a 的倒数是56-,则a= 。
5.已知-2<m <-1,化简=-+--+++2
2122414422m m m m m m 。
6.()()=+⋅-200019992323。
+328.把5的整数部分记为a ,小数部分记做b ,则=-
b a 1。
9.若()()811=-+++b a b a ,则=
+b a 。
三、选择题
1.化简()23a -(a ≤3)得( )
A .3-a
B .a -3
C .()a -±3
D .()3-±a 2.在()()223,20,2,75.05.0,11,331b a a x x ab ++-+中,最简二次根式的个数是( )
A .2个
B .3个
C .4个
D .5个。
3.若x >a ,则63
522x
a x a x -化成最简根式得( ) A .a x x -2 B .a x x
a -22 C .a x ax -2 D .a x x a -2 4.下面说法正确的是( )
A .被开方数相同的二次根式一定是同类二次根式;
B .8与80是同类二次根式
C .同类二次根式是根指数为2的根式
D .2和
50
1不是同类二次根式
四、化简 2-+b
a a
b (b >a >0) 4232
32a
b b b a -(b >1)
()n m n m n m
-+-22(m >n >0) ()
23518x y y x -(x >y )
立方根
【知识要点】
1.立方根的定义:如果一个数的立方等于a ,这个数就叫做a 的立方根(也称作a 的三次
方根)。
即:若3
x a =,则x 称为a a 是被开方数,3是根指数。
2.立方根的性质:(1)任何数都有立方根,且只有一个立方根(这与平方根的性质不同)。
(2)正数有一个正的立方根,负数有一个负的立方根,0的立方根是0。
(3)求一个数的立方根的运算叫做开立方。
开立方与立方互为逆运算。
3.开立方的小数点移动规律:被开方数的小数点向右或向左每移动三位,则立方根的小数
点就向右或向左移动一位。
4.n 次方根的定义:如果一个数的n 次方等于a ,这个数叫做a 的n 次方根。
5.n 次方根的性质:(1)正数的偶次方根有两个,它们是互为相反数;负数没有偶次方根;
(2)任何数a 的奇次方根只有一个,且与a 同正负;
(3)0的任何次方根为0。
1、下列各式中值为正数的是( )
A . C D
2 ) A .±4 B .±2 C .2 D .-2
3.若()225a =-,()3
35b =-,则a b +的值为( ) A .-10 B .0 C .0或-10 D .0,-10或10
44=,那么()3
67a -的值是( )
A .64
B .-27
C .-343
D .343
5. ) A .-2 B .2 C . D .2、计算
(1)⎛ ⎝ (2
(3
3、填空
(1)()20041-的六次方根为 。
(2)()20051-的999次方根为 。
(3)-32的五次方根为 。
(4)64的六次方根为 。
(5)()62.5-的六次方根为 。
(6)()9
10.13-的9次方根为 。
(7)()6
2-的平方根为 ,立方根为 ,六次方根为 。
4.计算下列各题
(1; (2(2)012⎛⎫-+ ⎪⎝⎭
(3)
5.已知a x =是m 的立方根()0,1,1m ≠-,而y =x 的相反数,且
37m a =-,求22x y + 的立方根。
621a =-0=
7.已知312
a b =+6x y =-+-
一次函数:。