几何光学综合实验·实验报告
几何光学综合实验报告
466.7
4
100.0
650.0
232.8
522.1
5
100.0
700.0
221.1
574.5
6
100.0
750.0
215.1
630.9
凸透镜焦距相关计算如下:
= 像屏位置 − 物屏位置
= 小像,透镜位置 − 大像透镜位置
由 =
2 −2
4
得:
表 2 凹透镜焦距
1 (mm)
97.384
2. 自组望远镜
表 3 望远镜数据表
1
物屏位置
(mm)
准直透镜位置
(mm)
物镜位置
(mm)
目镜位置
(mm)
100.0
200.0
811.9
1000.0
3. 自组望远镜并测量凹透镜焦距
表 4 自组望远镜并测量凹透镜焦距数据记录表
缩小实像位置 a(mm)
L2 位置 b(mm)
1
678.9
629.2
2
648.7
主光轴。其它通过透镜光心的直线皆为透镜的附光轴。
2.薄透镜成像公式:
在近轴光束的条件下,薄透镜成像公式为:
1
1
1
= +
…(1)
其中:
u:物距 v:像距 f:焦距
实物、实像时,u,v 为正;虚物、虚像时 u,v 为负。凸透镜 f 为正;凹透镜 f 为负。
3.位移法测凸透镜焦距:
当物体 AB 与像屏 M 的间距 > 4 时,透镜在 D 区间移动,可在屏上两次成像,一次成清晰放大的实像1 1,
同一高度,且连线(光轴)平行于导轨。
几何光学实验报告
几何光学实验报告实验目的:本实验旨在通过几何光学实验,探究光的反射、折射、色散、干涉等基本现象,加深对光学原理的理解,并通过实验验证光学理论。
实验器材:凸透镜、凹透镜、平凸镜、反射镜、光源、狭缝照明器、光屏、三棱镜、单色光源、白光源、透镜架、光路板等。
实验原理:1.光的反射当光线从一个介质到达另一个介质时,会发生反射。
反射定律表明,入射光线、反射光线和法线三者在同一平面内,且入射角等于反射角。
2.光的折射当光线从一种介质进入另一种介质时,会发生折射。
斯涅尔定律表明,入射角的正弦与折射角的正弦的比值是一个常数,即为介质的折射率。
3.光的色散光的色散是指光的折射率随着波长的变化而变化。
当光通过一个三棱镜时,会发生折射和反射,不同波长的光线会分离出来,形成一条光谱。
4.光的干涉光的干涉是指两束光线相遇时,由于光波的叠加而产生的互相干涉的现象。
干涉现象可以通过双缝干涉实验来观察。
实验步骤:1.反射实验将平凸镜放在光源前方,调整角度,观察反射现象。
2.折射实验将凸透镜或凹透镜放在光源前方,调整角度,观察折射现象。
3.色散实验将单色光源照射到三棱镜上,观察光谱的形成。
4.干涉实验将光源照射到狭缝照明器上,通过双缝干涉实验观察干涉现象。
实验结果:通过实验,我们观察到了光的反射、折射、色散和干涉现象。
在反射实验中,我们发现入射角等于反射角,验证了反射定律。
在折射实验中,我们观察到光线在不同介质中的折射角不同,验证了斯涅尔定律。
在色散实验中,我们观察到光线的色散现象,形成了一条光谱。
在干涉实验中,我们观察到了光的干涉现象,验证了干涉原理。
结论:通过几何光学实验,我们深入了解了光的基本现象,加深了对光学理论的理解。
实验结果验证了光学理论,同时也增强了我们对实验方法和仪器的掌握,为今后的学习和研究打下了基础。
几何光学实验报告
几何光学实验研究一、实验内容(一)仪器的组安装和调整1、安装矩形光盘安装:(1)在矩形光盘背面安好工形托架(2)将大支杆插入大三角支架(3)将安在矩形光盘上的工字型托架插入大支杆孔(4)调整矩形光盘于水平位置,旋紧各螺丝(5)将光源支杆插入小三角支架,旋紧螺丝2、调整光源筒在U型支架上可以灵活转动,改变射出光线的角度;调节支杆高度可以改变光源的高度;灯泡位置可在灯座筒里转动,使灯丝正好位于透镜的焦点上。
仪器使用前调整步骤如下:(1)将低压电源的输出电压调至2V,接通电路,逐次增大电源的输出电压(2)将光源靠近矩形光盘的缝屏板,并将缝屏板上的光拦插片第一、七条关闭,拉开其他的,使光屏上出现五条光带(3)将光源筒向光盘上倾斜,使光带落在矩形光盘上,仔细调整角度,使光带既能照满光盘,又使亮度最好(4)调整灯丝位置,前后移动和转动,使光盘上得到窄而亮并且近乎平行的五条光带(5)使矩形光盘与桌面平行,调整光源的投射角,使五条光带的中间一条正好透射在光盘中央的黑色标记上(二)分光小棱镜的使用实验方法:分光小棱镜的角度主要用来改变光的入镜角度,把小棱镜吸于光具盘上,分光交于主光轴一点。
实验现象:如右图所示(30°和11°小棱镜分光角度目测差别不大,故以右图示意即可)(三)透镜的光学作用将大双凸透镜吸使三条光线都通过光通过光心的光线,按原方向传播,发生偏转将大双凸透镜吸使主光轴通过透镜光再使二次反射光线于透镜前焦则折射通过主焦点的光线,跟主光轴平行将大双凸透镜吸使光平行主光轴的光线,后会聚在焦点上将小双凸透镜吸在小双凸透镜的焦点后放置一大双凸使光线通过从主光轴焦点外某一点发出的近轴光线,射后会聚在主光轴上一点将凹透镜吸附在使三条光平行主光轴的光线,后成发散光线(四)球面镜的光学性质将凹面镜吸附于光盘上,使平行于主光轴的五条光线经凹面镜反平行于主光轴的五条光线经凹面镜反射后都交汇于一点将凹面镜吸附于光盘上,使平行于主光轴的五条光线经凹面镜反平行于主光轴的五条光线经凹面镜反射后成发散光线,把发散光线反向延长后会聚于焦点将带有小箭头的棱镜放在一条光带上看作物体,在主光轴上放置光线经小棱镜分光成两条,两条光线射到凸面镜成发散光线,反向延长后会聚于一点将带有小箭头的棱镜放在一条光带上看作物体,在主光轴上放置光线经小棱镜分光成两条,两条光线射到凸面镜会聚在一点(黑线为主光轴)(五)凸透镜成像二缩像二等像焦距倒像焦理像在无限远焦实成像,的相侧,成正立放大像(六)光的反射把小平面镜吸附于圆盘上,线转到水平位置,只使光源中间的一条光线和圆盘零度线重合,转动可看到入射光线、线和法线的夹角总是相等,了光的反射定律使平面镜背面的漫反射镜对着入射漫反射光线是无规则的,所以不好观察到使两条光线经过凸透镜相交视为发光物体,过两入射光线反两反射光线的反向延长线交于镜面右侧一点,大致看出成像位置到镜面的距离相等,将半圆透镜吸中心重合。
几何光学实验报告
几何光学实验报告实验一显微镜与望远镜光学特性分析测量一、实验目的1.通过实验掌握显微镜、望远镜的基本原理;2.通过实际测量,了解显微镜、望远镜的主要光学参数;3.根据指示书提供的参考材料自己选择 2 套方案,测出水准仪的放大率并比较实验结果是否相符。
二、实验器材1.显微镜实验:测量显微镜、分辨率板、分辨率板放大图、透明刻线板、台灯,高倍(40×、45×)、中倍(8×或10×)、低倍(2.5×、3×或4 ×)显微物镜各一个,目镜若干(4×、5×、10×、15×等)。
2.望远镜实验:25×水准仪、平行光管、1×长工作距测量显微镜、视场仪、白炽灯、钢板尺、升降台、光学导轨、玻罗板、分辨率板。
双筒军用望远镜,方孔架(被观察物)。
三、实验原理(1)显微镜原理:显微镜是用来观察近处微小物体细节的重要目视光学仪器。
它对被观察物进行了两次放大:第一次是通过物镜将被观察物成像放大于目镜的分划板上,在很靠近物镜焦点的位置上成倒立放大实像;第二次是经过目镜将第一次所成实像再次放大为虚像供眼睛观察,目镜的作用相当于一个放大镜由于经过物镜和目镜的两次放大,显微镜总的放大率Γ应是物镜放大率β和目镜放大率Γ1 的乘积。
Γ=β×Γ1 绝大多数的显微镜,其物镜和目镜各有数个,组成一套,以便通过调换获得各种放大率。
显微镜取下物镜和目镜后,所剩下的镜筒长度,即物镜支承面到目镜支承面之间的距离称为机械筒长。
我国标准规定机械筒长为160 毫米。
显微镜的视场以在物平面上所能看到的圆直径来表示,其视场受安置在物镜像平面上的专设视场光阑所限制显微镜的分辨率即它所能分辨的两点间最小距离:δ=0.61λ式中:λ为观测时所用光线的波长;n sin U为物镜数值孔径(NA)。
从上式可见,在一定的波长下,显微镜的分辨率由物镜的数值孔径所决定,光学显微镜的分辨率,基本上与所使用光的波长是一个数量级。
几何光学 实验报告
几何光学实验报告几何光学实验报告引言:光学是研究光的传播和相互作用的科学,而几何光学则是光学中的一个重要分支。
几何光学研究光的传播和反射、折射等现象,通过几何方法描述光的行为。
本次实验旨在通过实际操作,验证几何光学的基本原理,并探究光在不同介质中的传播规律。
实验一:光的直线传播实验目的:通过实验验证光在均匀介质中的直线传播原理。
实验器材:光源、凸透镜、平凸镜、直尺、白纸、直尺、直角三角板等。
实验步骤:1. 将光源放置在实验桌上,并调整到适当位置。
2. 在光源的正前方放置一张白纸,作为屏幕。
3. 将凸透镜放置在光源的正前方,并调整到合适位置。
4. 用直尺在凸透镜的前方放置一根直线,作为光的传播路径。
5. 观察屏幕上的光线,确认光线是否呈直线传播。
实验结果与结论:经过实验观察,我们发现光线在均匀介质中呈直线传播。
这验证了几何光学中的直线传播原理,即光在均匀介质中沿着直线传播。
实验二:光的反射实验目的:通过实验验证光的反射定律。
实验器材:光源、平凸镜、直尺、白纸等。
实验步骤:1. 将光源放置在实验桌上,并调整到适当位置。
2. 在光源的正前方放置一张白纸,作为屏幕。
3. 将平凸镜放置在光源的正前方,并调整到合适位置。
4. 用直尺在平凸镜的前方放置一根直线,作为光的传播路径。
5. 观察屏幕上的光线,确认光线是否按照反射定律反射。
实验结果与结论:经过实验观察,我们发现光线在平凸镜上按照反射定律反射。
反射定律指出入射角等于反射角,实验结果与理论相符。
实验三:光的折射实验目的:通过实验验证光的折射定律。
实验器材:光源、透明介质(如玻璃板)、直尺、白纸等。
实验步骤:1. 将光源放置在实验桌上,并调整到适当位置。
2. 在光源的正前方放置一张白纸,作为屏幕。
3. 将透明介质(如玻璃板)放置在光源的正前方,并调整到合适位置。
4. 用直尺在透明介质的前方放置一根直线,作为光的传播路径。
5. 观察屏幕上的光线,确认光线是否按照折射定律折射。
大学物理实验几何光学综合
几何光学综合实验实验报告学院自动化班级自175 学号姓名一、实验目的与实验仪器理解透镜的成像规律,掌握测量薄透镜焦距的几种方法。
仪器:JGX-1型几何光学实验装置。
二、实验原理1.自准法测凸透镜:物体发出的光经透镜折射,平面镜反射,再由透镜汇聚形成一个倒立等大的实像,这时像的中心与透镜光心的距离就是焦距f。
2.贝塞尔法测凸透镜:物屏和像屏的距离为l(l > 4f),凸透镜在O1、O2两个位置分别在像屏上成放大和缩小的像,成放大的像时,有,成缩小的像时,有,又由于u+v=l,可得f= 。
3.物距-像距法测凹透镜:如图,物距u=O’B’,像距v=O’’B’’,带入成像公式,可计算出凹透镜焦距f2。
三、实验步骤1.自准法测薄凸透镜焦距:(1)按照原理图布置好各元件;(2)调节凸透镜L和平面镜M的位置,使物屏上的倒立实像最清晰且与物等大(充满同一圆面积);(3)记下物屏P和凸透镜L的位置;(4)重复实验三次。
2.贝塞尔法测薄凸透镜的焦距:(1)按照原理图布置好各装置,使物与像屏距离l>4f;(2)移动凸透镜L,使像屏H上形成清晰的放大像,记下L的位置a1;(3)再移动L,直至在H上形成一清晰的缩小像,记下L的位置a2;(4)重复实验。
3.物距像距法测凹透镜焦距:(1)按照原理图布置好实验装置;(2)先移动凸透镜L1,使物P1在像屏P2上形成清晰的像,记下L1和P2的位置读数;(3)在凸透镜和像屏之间加入待测薄凹透镜L2,向远处移动像屏,直至屏上又出现清晰的像,记下L2和像屏P2`的位置读数。
(4)对于凹透镜L2来说,物距u=|L2P2|,像距v=|L2P2`|;四、数据处理五、分析讨论本次实验学习了两种测量凸透镜焦距的方法和一种测量凹透镜焦距的方法,为了更好的观测效果,实验应当在光线阴暗的地方进行。
在自准法测凸透镜焦距实验中,利用镂空图案物与像充满整个圆面积可以很好地确定像是否倒立等大,减小了直观判断的误差;在贝塞尔法测凸透镜的焦距时,要是物与像屏的距离大于4倍焦距,否则无法观测到预期的实验现象;在物距-像距法测凹透镜焦距的实验中,也要注意像屏的合适位置,在插入凹透镜之后不要再移动凸透镜。
几何光学综合实验·实验报告
几何光学综合实验·实验报告【实验仪器】带有毛玻璃的白炽灯光源、物屏、1/10分划板、凸透镜2个、白屏、目镜、测微目镜、二维调整架2个、可变口径二维架、读数显微镜架、幻灯底片、干板架、滑座5个、导轨。
【实验内容(提纲)】一、测量透镜焦距1、自成像法测量凸透镜(标称f=190mm )的焦距。
测3次。
翻转透镜及物屏,再测3次。
求平均。
2、两次成像法测量凸透镜(标称f=190mm )的焦距。
测3次。
3、放大倍数法测量目镜焦距。
至少测5次,做直线拟合求焦距。
二、组装望远镜用第一部分测量的凸透镜和目镜组装望远镜。
调节透镜高低、方向以及水平位置,使能看清楚远处的标尺。
画出光路图,标明元件参数。
用照相法测量放大倍数。
三、组装显微镜、投影机:画出光路图,标明元件参数。
【注意事项】1、光学元件使用时要轻拿轻放。
2、注意保持光学元件表面清洁,不要用手触摸,用完后放回防尘袋。
3、光源点亮一段时间后温度很高,不要触摸,以防烫伤。
4、本实验光学元件比较多,实验前后注意清点,不要搞混【实验一·测量透镜焦距】·自成像法把凸透镜放在十字光阑前面,是两者等高共轴。
在凸透镜后放一平面反射镜,使通过透镜的光线反射回去。
仔细调节透镜与物间的距离,直到在物面上得到十字叉丝的清晰像为止。
这时物与透镜的距离即为透镜的焦距。
用该方法测量透镜的焦距十分简便。
光学实验中经常用这种方法调节出平行光。
例如平行光管射出的平行光就是用此方法产生的。
·两次成像法这种方法也称为共轭法或贝塞尔法这种方法使用的测量器具与前面相同。
其特点是物与屏的距离L保持一固定的值,且使f L '>4。
通过移动透镜,可在屏上得到两次清晰的像。
如左图,透镜在位置I 得到放大的像;在位置II 得到缩小的像。
由左图可知s s d s s L '--='+-=,d 为透镜两次成像所移动的距离。
由此可得:2,2d L s d L s -='+=- 又f '='+1s 1s 1,则L d L f 422-=' 由此可见,只要测出物与屏的距离L 及透镜的位移d ,即可算出f '。
几何光学实验报告
几何光学实验报告几何光学实验报告引言光学是一门研究光的传播、反射、折射和干涉等现象的学科。
而几何光学则是光学中的一个重要分支,主要研究光线的传播和反射规律。
在本次实验中,我们将通过一系列几何光学实验来探索光的性质和行为。
实验一:光的直线传播在这个实验中,我们使用了一束激光器作为光源,通过调整光线的传播路径,观察光线是否呈直线传播。
实验结果显示,光线在均匀介质中传播时,确实呈直线传播。
这与几何光学的基本假设相符,即光线在均匀介质中传播时沿着直线传播。
实验二:反射定律的验证在这个实验中,我们使用了一面平面镜,将光线照射到镜面上,观察光线的反射现象。
实验结果表明,入射光线和反射光线之间的角度满足反射定律,即入射角等于反射角。
这一结果进一步验证了几何光学中的反射定律。
实验三:折射定律的验证在这个实验中,我们使用了一个玻璃棱镜,将光线照射到棱镜上,观察光线的折射现象。
实验结果显示,入射光线和折射光线之间的角度满足折射定律,即入射角、折射角和介质折射率之间存在一定的关系。
这一结果进一步验证了几何光学中的折射定律。
实验四:透镜成像在这个实验中,我们使用了凸透镜和凹透镜,将光线通过透镜,观察光线的成像效果。
实验结果表明,凸透镜使光线经过折射后会聚到一点,形成实像;而凹透镜使光线经过折射后发散,形成虚像。
这一实验进一步验证了几何光学中的透镜成像原理。
实验五:光的干涉在这个实验中,我们使用了一对狭缝和一束单色光源,观察光的干涉现象。
实验结果显示,当光线通过狭缝后,形成了明暗相间的干涉条纹。
这一结果说明了光的波动性质,进一步支持了光学中的干涉理论。
结论通过以上实验,我们对几何光学的基本原理和现象有了更深入的了解。
光的直线传播、反射定律、折射定律、透镜成像和光的干涉等实验结果都与几何光学的理论相符。
这些实验不仅加深了我们对光学的认识,也为今后的光学研究提供了基础。
展望虽然几何光学提供了对光线传播和反射的简化描述,但它并不能解释光的波动性质和量子效应。
几何光学实验报告
几何光学实验报告实验目的:本实验旨在通过几何光学的基本原理和方法,探究光的反射、折射、色散等现象。
实验仪器和材料:1. 凸透镜2. 凹透镜3. 平面镜4. 空心三棱镜5. 可调直尺6. 物体7. 白色平行光源8. 平头尺9. 亮度计实验原理:1. 凸透镜的成像规律:当物距与像距远小于透镜的焦距时,凸透镜是会产生放大实像的。
2. 凹透镜的成像规律:凹透镜不论物象位置关系如何,总是会产生缩小虚像。
3. 球面镜的成像规律:平面镜是通过反射来形成像的,当物体与像距远小于镜的焦距时,平面镜近似看成理想的晶境平面,作它的焦点。
4. 空心三棱镜的工作原理:空心三棱镜的作用是将白光折射成七种不同颜色的光,这是因为不同颜色的光有不同折射率的缘故。
实验步骤:1. 将凸透镜放在光源前方,调整物体到离透镜非常远的位置,观察透镜的成像。
2. 将凹透镜放在光源前方,调整物体到凹透镜的焦距位置,观察透镜的成像。
3. 将平面镜放在光源前方,调整物体到离平面镜非常远的位置,观察镜的成像。
4. 将平面镜放置水平台上,倾斜平台,调整物体到焦平面上,观察镜的成像。
5. 将空心三棱镜放在光源前方,调整光源和空心三棱镜的位置,观察七色光的成像。
6. 记录实验数据,并根据数据进行分析和总结。
实验结果和分析:通过实验观察和数据记录,我们可以得出以下结论:1. 凸透镜成像:当物体距离凸透镜远小于其焦距时,透镜会形成放大实像。
2. 凹透镜成像:凹透镜无论物体位置如何,总是会形成缩小虚像。
3. 平面镜成像:平面镜不论物体位置如何,总是会形成与物体相等的实像。
4. 空心三棱镜成像:空心三棱镜可以将白光分解成七种不同颜色的光。
5. 实验数据可用于验证和计算光的折射定律、成像公式等。
结论:通过本次几何光学实验,我们探索了光的反射、折射、色散等现象,学习了透镜、平面镜、空心三棱镜的成像规律和工作原理。
实验结果与理论预测一致,验证了几何光学的基本原理和方法。
几何光学实验报告
几何光学实验报告
实验目的:
1. 了解几何光学的基本原理;
2. 掌握几何光学的实验操作方法;
3. 验证几何光学的基本定律。
实验仪器:
凸透镜、凹透镜、白色光源、屏幕、尺子等实验器材。
实验原理:
凸透镜的成像规律:
根据凸透镜成像规律,凸透镜的成像位置与物距、像距、焦距等参数有关系式,分别为:
1/f = 1/v + 1/u(物距u、像距v、焦距f);
M = -v/u(放大率M)。
凹透镜的成像规律:
同理,凹透镜的成像位置与物距、像距、焦距等参数有关系式,分别为:
1/f = 1/u + 1/v
M = -v/u
实验步骤:
1. 用透镜架组装实验仪器;
2. 将凸透镜放置在光源处,调整距离,使光线通过凸透镜后射
向屏幕,观察成像情况;
3. 测量实验数据,根据数据计算出实验结果;
4. 用同样的方法,将凹透镜放置在光源处,观察成像情况,测量实验数据,计算出实验结果。
实验结果:
用凸透镜的焦距测量法,得到凸透镜的焦距f = 100mm;
用凸透镜法成像法,将物体放在聚焦点前(u = -90mm),得到成像位置v = 180mm,计算得放大率M = -2。
用凹透镜法成像法,将物体放在凹透镜内(u = -130mm),得到成像位置v = 156mm,计算得放大率M = -1.2。
实验结论:
1. 通过实验验证了凸透镜的成像规律,得到凸透镜的焦距和放大率;
2. 通过实验验证了凹透镜的成像规律,得到凹透镜的焦距和放大率。
参考文献:
《高等物理实验教程》、《The Feynman Lectures on Physics》等相关教材。
几何光学综合实验
几何光学实验一、实验目的:1、了解透镜的成像规律。
2、学习调节光学系统共轴。
3、掌握利用焦距仪测量薄透镜焦距的方法。
二、实验原理:透镜两折射面在其光轴上的间隔称为透镜的厚度d ,若d 很小则称为薄透镜。
对于薄透镜,其物距s 、像距s ′和焦距f 都是物、像、焦点到透镜中心的距离。
(一)测量凸透镜焦距1、薄透镜成像基本公式fs s 111='- (1) 2、位移法测透镜焦距如图1所示,设物屏和像屏相距适当距离A ,并保持不变。
移动透镜,会有两个位置使物体成像在屏上,其中一个位置s 1′得到放大的实像,另一个位置s 2′得到一个缩小的实像。
根据光线可逆性原理,这两个位置应该是21s s '= 21s s =' 则212122s s s s l A '=='+=- , 221l A s s -='= 而 2211l A l A A s A s +=--=-=' 将此结果代入(1)式有Al A f 422-= (2) 这个方法的优点是把焦距的测量归结为透镜位移量的测量,避免了在测量s 及s ′时,由于估计透镜中心位置不准带来的误差。
3、自准直法图2 如图2所示,当物处在凸透镜前焦面时,它发出的光线通过透镜L 后成不同方向的平行光束,若用垂直于光轴的平面反射镜将此光束发射回去,反射光再次通过透镜会聚,将在物平面(即透镜前焦面上)上得到与原物大小相同的倒立实像,分别读出物与透镜的位置x0及xL,即得待测透镜的焦距:xxfL-=(二)负透镜焦距的测量1、物距、像距法图3如图3所示,物A经凸透镜L1成像于D点,在D点和L1之间的适当位置放入待测凹透镜L2,就L2而言D是虚物,它成像于D′点,分别测出s和s′,由公式(1)可算出f值来(应用公式(1)时,s、s′是代数值,要注意+ 、-号)。
2、自准直法测凹透镜焦距在图3中,凹透镜的后边放置一垂直系统光轴的平面反射镜,改变凹透镜L2的位置,就会在原物屏上出现一倒立对称的实像,测量凹透镜与虚物之间的距离,即为待测凹透镜的焦距。
几何光学设计实验,实验报告
几何光学设计实验,实验报告
本次实验是关于几何光学设计的,通过实验可以更好地理解光学原理,学习光学设计
的基础知识与方法,提高对光学系统的认识能力。
本次实验通过设计一组透镜系统来达到
给定的光学效果,同时用光学软件进行光线追迹分析和计算光学参数,是一次较为综合性
的光学实验。
首先,实验过程中需要使用的软件是ZEMAX,在电脑上运行软件并且学习其操作方法,可以通过学习光学设计的基本知识去参照软件的使用方法和实践,尽量使实践和理论相结合。
其次,实验中的主要目的是设计一组透镜组来实现给定的光学效果,因此,在设计之
前要清楚的了解所需要达到的光学效果,确定设计的目标。
设计一组透镜系统时,需要首先推导出所需的理论公式,计算每一个透镜的参数,如
半径、焦距、厚度、表面曲率等,并且注意透镜的透光面朝向和面间距等参数的选择,保
证整个系统的光学效果。
最后,在通过软件模拟展示整个系统实现的结果,并进行光线追迹计算,对结果进行
评估和修正,通过结果的验证确定系统的设计是否合理。
总之,在实验中需要将理论和实践相结合,兼顾光学原理与光学设计,才能在实验中
获得较为理想的结果,加深对光学的理解,提高光学设计的能力。
几何光学实验报告
几何光学实验报告几何光学实验研究一、实验内容(一)仪器的组安装和调整1、安装矩形光盘安装:(1)在矩形光盘背面安好工形托架(2)将大支杆插入大三角支架(3)将安在矩形光盘上的工字型托架插入大支杆孔(4)调整矩形光盘于水平位置,旋紧各螺丝(5)将光源支杆插入小三角支架,旋紧螺丝2、调整光源筒在U型支架上可以灵活转动,改变射出光线的角度;调节支杆高度可以改变光源的高度;灯泡位置可在灯座筒里转动,使灯丝正好位于透镜的焦点上。
仪器使用前调整步骤如下:(1)将低压电源的输出电压调至2V,接通电路,逐次增大电源的输出电压(2)将光源靠近矩形光盘的缝屏板,并将缝屏板上的光拦插片第一、七条关闭,拉开其他的,使光屏上出现五条光带(3)将光源筒向光盘上倾斜,使光带落在矩形光盘上,仔细调整角度,使光带既能照满光盘,又使亮度最好(4)调整灯丝位置,前后移动和转动,使光盘上得到窄而亮并且近乎平行的五条光(5)使矩形光盘与桌面平行,调整光源的投射角,使五条光带的中间一条正好透射在光盘中央的黑色标记上(二)分光小棱镜的使用实验方法:分光小棱镜的角度主要用来改变光的入镜角度,把小棱镜吸于光具盘上,分光交于主光轴一点。
实验现象:如右图所示(30和11小棱镜分光角度目测差别不大,故以右图示意即可)(三)透镜的光学作用(四)球面镜的光学性质(五)凸透镜成像(六)光的反射(七)平行透明板光路实验方法:将玻璃砖吸附在圆盘上实验现象:光线通过两相互平行的玻璃面发生偏折,如右图所示(八)光通过三棱镜的色散与合成(九)近视眼和远视眼的矫正(十)光学仪器光路的实验1、显微镜光路2、开普勒望远镜光路3、伽利略望远镜光路【注意事项】4.不要用手接触光学元件抛光表面,只可接触棱边。
使用平行光源时,灯泡的位置要装合适,灯丝要居中,光源的高度和角度都要调好。
打开电源之前应保证电压最低,在逐次提高,使用电压要与灯泡电压相符。
光源灯泡中电流较大,灯口耐热能力有限,其连续使用最好不要超过15分钟,可适当降低额定电压,以延长光源寿命。
光学综合试验实验报告
实验名称:光学综合试验实验日期:2023年3月15日实验地点:光学实验室一、实验目的1. 熟悉光学实验的基本操作和仪器使用。
2. 深入理解光学原理,验证光学定律。
3. 提高实验操作技能和数据分析能力。
二、实验原理本实验主要涉及光学的基本原理,包括光的直线传播、光的反射、光的折射、光的干涉、光的衍射等。
通过实验验证这些原理,加深对光学知识的理解。
三、实验仪器1. 平面镜2. 三棱镜3. 凸透镜4. 凹透镜5. 白光光源6. 光屏7. 光具座8. 光具盒9. 米尺10. 计算器四、实验步骤1. 光的直线传播实验(1)将平面镜放置在光具座上,调整至水平。
(2)用白光光源照射平面镜,观察光线的传播情况。
(3)用米尺测量入射光线与反射光线的距离,记录数据。
2. 光的反射实验(1)将平面镜放置在光具座上,调整至水平。
(2)用白光光源照射平面镜,观察光线的反射情况。
(3)用米尺测量入射光线与反射光线的距离,记录数据。
3. 光的折射实验(1)将凸透镜和凹透镜分别放置在光具座上,调整至水平。
(2)用白光光源照射凸透镜和凹透镜,观察光线的折射情况。
(3)用米尺测量入射光线与折射光线的距离,记录数据。
4. 光的干涉实验(1)将光具盒放置在光具座上,调整至水平。
(2)用白光光源照射光具盒,观察光线的干涉情况。
(3)用米尺测量干涉条纹的间距,记录数据。
5. 光的衍射实验(1)将三棱镜放置在光具座上,调整至水平。
(2)用白光光源照射三棱镜,观察光线的衍射情况。
(3)用米尺测量衍射条纹的间距,记录数据。
五、实验数据及处理1. 光的直线传播实验入射光线与反射光线的距离:L1 = 20cm2. 光的反射实验入射光线与反射光线的距离:L2 = 20cm3. 光的折射实验入射光线与折射光线的距离:L3 = 15cm4. 光的干涉实验干涉条纹间距:ΔL4 = 0.5cm5. 光的衍射实验衍射条纹间距:ΔL5 = 0.3cm六、实验结果与分析1. 光的直线传播实验实验结果显示,入射光线与反射光线在同一平面内,符合光的直线传播原理。
实验报告-几何光学
测量次数
透镜位置X1(mm)
第一次成像
透镜位置X2(mm)
第二次成像
d=|X2-X1|
(mm)
1
2
3
结果
平均d= mm f=(L2-d2)/4L= mm
3.放大倍数法
测微目镜位置
Xk(mm)
物宽
s(mm)
像宽(mm)
S=z2-z1
放大倍数
Mk= S/s
利用(Xk,Mk)做直线拟和,相关系数r2=
焦距f=
第二部分望远镜组装
光路图(标明元件参数)
放大倍数测量:M=
第三部分(选做)
1.显微镜组装(画处光路图,标明参数)
2.投影机组装(画处光路图,标明参数)
【结论与讨论】
成绩(满分30分):指导教师签名:日期:
姓名
学号
院系
时间
地点
【实验题目】几何光学综合实验
【实验记录】
第一部分:凸透镜(组)焦距测量
1.自成像法
透镜焦距标称值:________mm
测量次数
透镜到接收屏距离(mm)
X1-X2=Δ
翻转透镜与接收屏,重测距离(mm)
X1-X结果
f=(Δ+Δ’)/2=
2.两次成像法
透镜焦距标称值:________mm
几何光学(北京科技大学物理实验报告)
实验报告实验名称:几何光学实验时间:2015年11月20日班级:物理1402学生姓名:XXX同组人:XXX实验目的:1、学会测量透镜焦距的几种方法。
2、较全面地了解透镜成像的原理及相差的原因。
实验仪器:导轨、白炽灯、品字屏、平面反射镜、凹透镜、凸透镜、滤色片、球差屏、可变光阑、标尺屏、白屏、导轨滑块实验原理:A 凸透镜焦距的测量a通过透镜成像公式求透镜的焦距以s表示物距,s’表示像距,f表示透镜的焦距,成像公式为:1 s +1 s′=1f那么焦距公式为:f=ss′s+s′b 由透镜两次成像的方法测凸透镜的焦距如右图所示:则对于放大像可得:f=(A−e−X)(e+X)A对于缩小像可得:f=A−X XA所以:X=A−e 2f=A2−e2 4Ac 用自准法测凸透镜的焦距(光路图如下):如果物在透镜的一个焦点上,那么它发出的光线通过透镜后是平行光线,反射后的光线将原路返回,即像点和物点重合。
所以只要调整物点和透镜的位置,使像点与物点重合,此时物到凹透镜的距离便是焦距。
B 凹透镜焦距的测量a 通过透镜成像公式测凹透镜的焦距(光路图如下)图中凸透镜的焦距已知,连续利用两次:1 s −1 s′=1f即可求出凹透镜的焦距。
b 采用自准法测量凸透镜的焦距在S0处的发光物经凸透镜L1后成像于S(屏)处,使凸透镜L1的光心到S的距离大于f将凹待测凹透镜L2和平面反射镜置于凸透镜L1和S之间。
移动凹透镜L2,当凹透镜L2的光时,将在S0处发光物的附近S,处形成一个清晰的实像。
此时凹透镜到心到S的距离等于f凹屏的距离为凹透镜的焦距。
C 透镜的相差相差分为:色差球面像差彗形像差像散D 几何光学仪器a 景深b 照相机c 投影仪d 望远镜e 显微镜实验内容和数据处理及分析:A测量透镜的焦距(1)通过透镜成像公式求凸透镜的焦距。
将一凸透镜置于品字屏和白屏之间,反复移动透镜和白屏,直到得到一个清晰的实像。
实验中光学元件的位置:白光源“品”字屏凸透镜白屏所以:f=ss′s+s′=(50.00−25.00)(58.00−50.00)50.00−25.00+(58.00−50.00)=6.06cm(2)通过透镜成像公式凹透镜焦距。
几何光学实验报告
精品文档在线编辑优质范文精品文档在线编辑实验一显微镜与望远镜光学特性分析测量一、实验目的1.通过实验掌握显微镜、望远镜的基本原理;2.通过实际测量,了解显微镜、望远镜的主要光学参数;3.根据指示书提供的参考材料自己选择2 套方案,测出水准仪的放大率并比较实验结果是否相符。
二、实验器材1.显微镜实验:测量显微镜、分辨率板、分辨率板放大图、透明刻线板、台灯,高倍(40×、45×)、中倍(8×或10×)、低倍(2.5×、3×或4 ×)显微物镜各一个,目镜若干(4×、5×、10×、15×等)。
2.望远镜实验:25×水准仪、平行光管、1×长工作距测量显微镜、视场仪、白炽灯、钢板尺、升降台、光学导轨、玻罗板、分辨率板。
双筒军用望远镜,方孔架(被观察物)。
三、实验原理(1)显微镜原理:显微镜是用来观察近处微小物体细节的重要目视光学仪器。
它对被观察物进行了两次放大:第一次是通过物镜将被观察物成像放大于目镜的分划板上,在很靠近物镜焦点的位置上成倒立放大实像;第二次是经过目镜将第一次所成实像再次放大为虚像供眼睛观察,目镜的作用相当于一个放大镜。
由于经过物镜和目镜的两次放大,显微镜总的放大率Γ应是物镜放大率β和目镜放大率Γ1 的乘积。
Γ=β×Γ1绝大多数的显微镜,其物镜和目镜各有数个,组成一套,以便通过调换获得各种放大率。
显微镜取下物镜和目镜后,所剩下的镜筒长度,即物镜支承面到目镜支承面之间的距离称为机械筒长。
我国标准规定机械筒长为160 毫米。
显微镜的视场以在物平面上所能看到的圆直径来表示,其视场受安置在物镜像平面上的专设视场光阑所限制。
显微镜的分辨率即它所能分辨的两点间最小距离:δ=0.61λ式中:λ为观测时所用光线的波长;n sin U为物镜数值孔径(NA)。
从上式可见,在一定的波长下,显微镜的分辨率由物镜的数值孔径所决定,光学显微镜的分辨率,基本上与所使用光的波长是一个数量级。
几何光学基础实验报告
几何光学基础实验报告实验题目:几何光学基础实验报告一、实验目的:1. 掌握几何光学中的基本概念和原理;2. 了解和熟悉常用光学元件的特性和使用方法;3. 学会使用光学实验装置进行实验观察和测量。
二、实验仪器与材料:1. 光学实验台;2. 透镜(凸透镜和凹透镜);3. 光源(如白炽灯或激光器等);4. 平面镜、凹面镜和凸面镜等。
三、实验原理:1. 焦距:凸透镜和凹透镜的焦点与物距和像距的关系;2. 倍率:透镜成像的放大率;3. 光的反射:平面镜和曲面镜的光的反射特性;4. 平行光经透镜成像:透镜产生的实际和虚拟的像;5. 光的折射:透过凸透镜和凹透镜的光的折射变化;6. 球面镜成像:凸面镜和凹面镜成像特性;7. 光谱分光:利用光的色散特性进行分光实验。
四、实验步骤:1. 实验1:测量凸透镜的焦距。
a. 在光学实验台上放置一个凸透镜。
b. 调整透镜和光源的距离,使得透镜上出现清晰的焦点。
c. 使用一根刻度尺测量透镜和物距之间的距离,即为凸透镜的焦距。
2. 实验2:测量凹透镜的焦距。
a. 类似实验1的方法进行测量,将光源放置在凹透镜的一侧,调整使得出现清晰的焦点。
b. 使用刻度尺测量凹透镜与物距之间的距离,即为凹透镜的焦距。
3. 实验3:测量透镜的倍率。
a. 将一条直线放置在凸透镜前方,调整光源和透镜的位置使得光线通过透镜成像。
b. 使用刻度尺测量透镜和物体之间的距离,并测量透镜和像之间的距离。
c. 计算得出透镜的倍率。
4. 实验4:观察平面镜和曲面镜的反射特性。
a. 将平面镜放置在光源前方,观察光线经过反射后的方向。
b. 类似地,观察凹面镜和凸面镜的反射特性。
5. 实验5:观察透镜成像。
a. 调整光源和凸透镜的位置,观察产生的实际像。
b. 类似地,对凹透镜进行观察。
6. 实验6:观察球面镜成像。
a. 放置一个凸面镜在光源前方,观察产生的实际像。
b. 类似地,对凹面镜进行观察。
7. 实验7:光谱分光实验。
几何光学实验报告
几何光学实验报告引言:几何光学是光学中的一个重要分支,它运用几何学的原理研究光的传播和反射、折射等现象。
本次实验旨在通过一系列具体的实验,探索几何光学的基本原理与应用。
实验一:平面镜的成像平面镜是几何光学中最常见的光学元件之一,它可以产生镜像。
实验中,我们将在平面镜上施加一束光,并观察其成像特点。
实验表明,平面镜成像会保持物体的左右关系不变,但却改变了物体的上下关系。
实验二:凸透镜的成像凸透镜是另一种常见的光学元件,具有集光、聚光的作用。
在这个实验中,我们将一束光通过凸透镜,观察并测量成像距离与物距之间的关系。
实验结果显示,凸透镜成像具有放大或缩小物体的特点,且成像距离与物距成反比关系。
实验三:光的折射现象光的折射是光线从一种介质进入另一种介质后改变方向的现象。
我们通过实验探究了光在不同介质之间传播时的折射规律。
实验结果显示,当光线从光疏介质(如空气)射入光密介质(如玻璃)时,折射角小于入射角;反之,当光线从光密介质射入光疏介质时,折射角大于入射角。
实验四:棱镜的色散效应棱镜是另一种常用的光学器件,具有分离光谱的特性。
实验中,我们将白光通过棱镜,观察并记录光在不同频率下的折射角和折射率。
实验结果显示,不同颜色的光在通过棱镜后会发生弯曲,并产生色散效果,形成连续的光谱。
实验五:反射与折射的联合效应在实际应用中,光线的传播通常不仅仅涉及反射,还包含折射。
通过实验,我们研究了当光线从一个介质射入另一个介质时,反射光与折射光的相对大小和角度变化。
实验结果表明,当折射光与反射光的角度差越大时,反射光的强度会减小,而折射光的强度会增加。
结论:通过本次实验,我们深入探讨了几何光学的基本原理与应用。
在平面镜、凸透镜、棱镜以及光的折射和反射等实验中,我们观察到了光线的成像、色散以及反射与折射的联合效应。
这些实验结果为我们理解光的行为提供了实际的证据和感性的认识。
几何光学作为光学学科的重要组成部分,广泛应用于光学仪器、光通信、成像技术等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何光学综合实验·实验报告【实验仪器】带有毛玻璃的白炽灯光源、物屏、1/10分划板、凸透镜2个、白屏、目镜、测微目镜、二维调整架2个、可变口径二维架、读数显微镜架、幻灯底片、干板架、滑座5个、导轨。
【实验内容(提纲)】一、测量透镜焦距1、自成像法测量凸透镜(标称f=190mm )的焦距。
测3次。
翻转透镜及物屏,再测3次。
求平均。
2、两次成像法测量凸透镜(标称f=190mm )的焦距。
测3次。
3、放大倍数法测量目镜焦距。
至少测5次,做直线拟合求焦距。
二、组装望远镜用第一部分测量的凸透镜和目镜组装望远镜。
调节透镜高低、方向以及水平位置,使能看清楚远处的标尺。
画出光路图,标明元件参数。
用照相法测量放大倍数。
三、组装显微镜、投影机:画出光路图,标明元件参数。
【注意事项】1、光学元件使用时要轻拿轻放。
2、注意保持光学元件表面清洁,不要用手触摸,用完后放回防尘袋。
3、光源点亮一段时间后温度很高,不要触摸,以防烫伤。
4、本实验光学元件比较多,实验前后注意清点,不要搞混【实验一·测量透镜焦距】·自成像法把凸透镜放在十字光阑前面,是两者等高共轴。
在凸透镜后放一平面反射镜,使通过透镜的光线反射回去。
仔细调节透镜与物间的距离,直到在物面上得到十字叉丝的清晰像为止。
这时物与透镜的距离即为透镜的焦距。
用该方法测量透镜的焦距十分简便。
光学实验中经常用这种方法调节出平行光。
例如平行光管射出的平行光就是用此方法产生的。
·两次成像法这种方法也称为共轭法或贝塞尔法这种方法使用的测量器具与前面相同。
其特点是物与屏的距离L保持一固定的值,且使f L '>4。
通过移动透镜,可在屏上得到两次清晰的像。
如左图,透镜在位置I 得到放大的像;在位置II 得到缩小的像。
由左图可知s s d s s L '--='+-=,d 为透镜两次成像所移动的距离。
由此可得:2,2d L s d L s -='+=- 又f '='+1s 1s 1,则L d L f 422-=' 由此可见,只要测出物与屏的距离L 及透镜的位移d ,即可算出f '。
用这种方法测量凸透镜的焦距通常比较准确。
因为在这个方法中无须测量物距、像距,从而排除了测量物、像距时,以镜心为准而非以主点为准所带来的误差。
·放大倍数法测透镜焦距如果凸透镜很厚或焦距很短,或者对于凸透镜组,可以通过测量放大倍数来计算焦距。
线放大率定义为:yy m '= (1)由左图可见:s s y y m ''==(2)将高斯公式fs s 1'11=+代入公式(2)得: 01')'11(''m fx f s s f s s s m -=-=-==。
(3) 其中x 是像的位置(原点任意)。
由(3)可见,放大倍数m 与像的位置x 成线性关系,其斜率为透镜焦距的倒数。
对于透镜组,成像与放大倍数的公式与单个透镜的没有区别,但是物距与像距分别是相对第一和第二主平面计算的,这两个主平面一般并不重合。
实验方法:本实验中,待测目镜Le 是由两个凸透镜构成的透镜组,物是1/10mm 分划板F ,观察和测量像的工具是测微目镜L 。
把全部器件摆放在导轨上,靠拢后目测调至共轴。
在F 、Le 、L 底座距离很小的情况下,前后移动Le ,直至在测微目镜L 中看到清晰的1/10mm 的刻线,并使之与测微目镜中的标尺无视差。
测出1/10mm 刻线像的宽度,求出其放大倍数m ,记下测微目镜的位置x 。
固定Le ,把L 向后移动30-40mm ,调节F,形成清晰的像,测量放大倍数m 与L 的位置x 。
改变测微目镜L 的位置5次,重复以上操作和测量。
画m -x 图,求目镜Le 的焦距。
【实验二·望远镜组装及其放大率的测量】望远镜是用途极为广泛的助视光学仪器,望远镜主要是帮助人们观察远处的目标,它的作用在于增大被观测物体对人眼的张角,起着视角放大的作用,它常被组合在其他光学仪器中。
为适应不同用途和性能的要求,望远镜的种类很多,构造也各有差异,但是它的基本光学系统都由一个物镜和一个目镜组成。
望远镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
·实验目的1、熟悉望远镜的构造及其放大原理;2、掌握光学系统的共轴调节方法;3、学会望远镜放大率的测量。
·实验仪器光学平台、凸透镜若干、标尺、二维调节架、二维平移底座。
·实验原理1、望远镜构造及其放大原理望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。
图1所示为开普勒望远镜的光路示意图,图中L 0为物镜,Le 为目镜。
远处物体经物镜后在物镜的像方焦距上成一倒立的实像,像的大小决定于物镜焦距及物体与物镜间的距离,此像一般是缩小的,近乎位于目镜的物方焦平面上,经目镜放大后成一虚像于观察者眼睛的明视距离与无穷远之间。
物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。
用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
图1 图2望远镜可分为两类:若物镜和目镜的像方焦距均为正(既两个都为会聚透镜),则为开普勒望远镜,此系统成倒立的像;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜,此系统成正立的像。
2、望远镜的视角放大率望远镜主要是帮助人们观察远处的目标,它的作用在于增大被观测物体对人眼的张角,起着视角放大的作用。
望远镜的视角放大率M 定义为:eM αα=0用仪器时虚像所张的视角不用仪器时物体所张的视角 (1) 用望远镜观察物体时,一般视角均甚小,因此视角之比可以用正切之比代替,于是,光学仪器的放大率近似可以写为:0etg M tg αα= (2) 在实验中,为了把放大的虚像l 与l 0直接比较,常用目测法来进行测量。
如图2所示。
设长为0l 的标尺(目的物PQ )直接置于观察者的明视距离处(约3米),其视角为e α,用一只眼睛直接观察标尺(物PQ ),另一只眼睛通过望远镜观看标尺的虚像(""P Q )亦在明视距离处,其长度为l -,视角为0α-,调节望远镜的目镜,使标尺和标尺的像重合且没有视差,读出标尺和标尺像重合区段内相对应的长度,即可得到望远镜的放大率: 00e tg l M tg l αα== (3) 因此只要测出目标物的长度0l 及其像长l ,即可算出望远镜的放大率。
3、望远镜的计算放大率 0ef M f =- (4) 由上式见,视放大率(绝对值)等于物镜与目镜的焦距之比,欲增大视放大率,必须增大物镜的焦距或减小目镜的焦距。
同时,随着物镜和目镜的焦距的符号不同,视放大率可正可负。
如果M 为正值,像是正立的,为伽利略望远镜,如果M 为负值,像是倒立的,为开普勒望远镜。
·实验内容图31、根据已知透镜的焦距确定一个为物镜、另一个为目镜,并将标尺直接置于观察者的明视距离处(约3米)。
2、将物镜、目镜放在一起,调节高低、左右方位,使其中心大致在一条与光学平台平行的直线上,同时,各光学元件互相平行,垂直于光学平台。
3、按照图3的光路组成开普勒望远镜,向约3米远处的标尺调焦,使标尺刻度成清晰的像。
4、用数码照相机拍摄目镜中的像;保持相机位置及镜头焦距不变,直接对着标尺拍照。
5、将两张照片导入计算机,测量标尺上相同刻度对应的像素宽度,它们之比即为望远镜放大倍数。
6、求出望远镜的测量放大率0l M l ,并与计算放大率0ef f 作比较。
【实验三·显微镜组装】·实验目的1.了解显微镜的结构、原理及放大率等概念。
2.设计组装显微镜,进一步熟悉透镜成像规律。
·实验原理1.显微镜简介最简单的显微镜由两个凸透镜构成。
其中,物镜的焦距很短,目镜的焦距较长。
它的光路如图所示。
图中的Lo 为物镜(焦点在Fo 和Fo ′),其焦距为fo ;Le 为目镜,其焦距为fe 。
将长度为y1 的被测物AB 放在Lo 的焦距外且接近焦点Fo 处,物体通过物镜成一放大的倒立实像A ′B ′(其长度为y2),此实像在目镜的焦点以内,经目镜放大后,在明视距离D 上得到一个放大的虚像A ″B ″(其长度为y3)。
虚像A ″B ″对于观测物AB 来说是倒立的。
由图中可见,显微镜的放大率为:。
(1)Δ为显微镜物镜像方焦点F0′和目镜的物方焦点Fe 之间的距离,称为物镜和目镜的光学间隔(显微镜的光学间隔一般是一个确定值,通常在17-19cm )。
因而式(1)可改写成, (2)由式(2)可见,显微镜的放大率等于物镜放大率和目镜放大率的乘积。
在fo 、fe 、Δ和D 为已知的情况下,可利用上式算出显微镜的放大率。
·实验内容根据提供的元件,装配一台视放大率为20 倍的简单显微镜,并测定其放大率。
【附录1:光学系统的基点和基面】·主点与主平面若将物体垂直于系统的光轴放置在第一主点处,则必成一个与物体同样大小的正立像于第二主点处,即主点是横向放大率1+=β的一对共轭点。
过主点垂直于光轴的平面,分别称为第一、第二主平面。
·节点与节面节点是角放大率1+=γ的一对共轭点。
入射光线(或其延长线)通过第一节点N 时,出射光线(或其延长线)必通过第二节点N ',并与N 的入射光线平行。
过节点垂直于光轴的平面分别称为第一、第二节面。
当共轭球面系统处于同一媒质时,两主点分别与两节点重合。
·焦点与焦面平行于系统主轴的平行光束,经系统折射后与主轴的交点F '称为像方焦点;过F '垂直于主轴的面称为像方焦面。
第二主点到像方焦点的距离,称为系统的像方焦距f '。
【附录2:消视差及共轴调节】·视差及其消除光学实验中经常要测量像的位置和大小。
经验告诉我们,要测准物体的大小,必须将量度标尺和被测物体贴在一起。
如果标尺远离被测物体,读数将随眼睛的不同将有所变化,难以测准。
可以说在光学测量中被测物体往往是一个看得见摸不着的像,怎样才能确定标尺和被测物体是贴在一起的呢?利用“视差”现象可以帮助我们解决这个问题。
为了认识“视差”现象,我们可以作一简单的实验,双手伸出一只手指,并使一指在前一指在后相隔一定距离,且两指互相平行。
用一只眼睛观察,当左右(或上下)晃动眼睛时(眼睛移动方向应与被观察手指垂直),就会发现两指间有相对移动,这种现象称为“视差”。