中考分式方程应用题真题训练(含答案)
中考复习分式方程应用题专题(含答案)
![中考复习分式方程应用题专题(含答案)](https://img.taocdn.com/s3/m/01006551bf1e650e52ea551810a6f524ccbfcb42.png)
分式方程应用题专题1、我国“八纵八横〞铁路骨干网的第八纵通道——温〔州〕福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,假设2007年每天的污水处理率比2006年每天的污水处理率提高40%〔污水处理率 污水处理量〕.污水排放量〔1〕求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?〔结果保存整数〕〔2〕预计我市2021年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2021年省会城市的污水处理率不低于...70%〞,那么我市2021年每天污水处理量在2007年每天污还需要增加多少万吨,才能符合国家规定的要求?水处理量的根底上至少..4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 〕A.6天B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是千米/时.。
2022年中考复习《列方程解应用题(分式方程)》专项练习附答案
![2022年中考复习《列方程解应用题(分式方程)》专项练习附答案](https://img.taocdn.com/s3/m/456240fe6c175f0e7dd137da.png)
列方程解应用题〔分式方程〕1、〔2021泰安〕某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也参加该电子元件的生产,假设乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程.解答:解:设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,根据题意可得:+=33,应选:B.点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.2、〔2021•铁岭〕某工厂生产一种零件,方案在20天内完成,假设每天多生产4个,那么15天完成且还多生产10个.设原方案每天生产x个,根据题意可列分式方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意可得等量关系:〔原方案20天生产的零件个数+10个〕÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意得:=15,应选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3、〔2021•钦州〕甲、乙两个工程队共同承包某一城市美化工程,甲队单独完成这项工程需要30天,假设由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?假设设乙队单独完成这项工程需要x天.那么可列方程为〔〕A.+=1 B.10+8+x=30 C.+8〔+〕=1D.〔1﹣〕+x=8考点:由实际问题抽象出分式方程.分析:设乙工程队单独完成这项工程需要x 天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+〔+〕×8=1即可. 解答:解:设乙工程队单独完成这项工程需要x 天,由题意得: 10×+〔+〕×8=1.应选:C .点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.4、(2021年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
中考数学复习分式方程应用题(含答案)
![中考数学复习分式方程应用题(含答案)](https://img.taocdn.com/s3/m/757c40a6ba0d4a7302763ae1.png)
13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。
中考数学分式方程专题训练100题(含参考答案)
![中考数学分式方程专题训练100题(含参考答案)](https://img.taocdn.com/s3/m/d2cfb91c591b6bd97f192279168884868762b86a.png)
30.养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法()
A.有道理,池中大概有1200尾鱼B.无道理
C.有道理,池中大概有7200尾鱼D.有道理,池中大概有1280尾鱼
45.某市计划对道路进行维护.已知甲工程队每天维护道路的长度比乙工程队每天维护道路的长度多50%,甲工程队单独维护30千米道路的时间比乙工程队单独维护24千米道路的时间少用1天.
(1)求甲、乙两工程队每天维护道路的长度是多少千米?
(2)若某市计划对200千米的道路进行维护,每天需付给甲工程队的费用为25万元,每天需付给乙工程队的费用为15万元,考虑到要不超过26天完成整个工程,因工程的需要,两队均需参与,该市安排乙工程队先单独完成一部分,剩下的部分两个工程队再合作完成.问乙工程队先单独做多少天,该市需付的整个工程费用最低?整个工程费用最低是多少万元?
A.甲、丁B.乙、丙C.甲、乙D.甲、乙、丙
37.若关于x的一元一次不等式组 有解,且关于y的分式方程 = 的解是正整数,则所有满足条件的整数a的值之和是()
A.﹣14B.﹣15C.﹣16D.﹣17
38.已知关于x的方程 有增根,则a的值为( )
A.4B.5C.6D.﹣5
39.若关于x的分式方程 +1= 有整数解,且关于y的不等式组 恰有2个整数解,则所有满足条件的整数a的值之积是( )
34.美是一种感觉,当人体下半身长与身高的比值越接近黄金分割比时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高L的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().
2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)
![2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)](https://img.taocdn.com/s3/m/ce47d9624b73f242336c5f80.png)
《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?16.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:=,解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:﹣=2,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤220,解得:m≥10.答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:﹣=10,经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元, 根据题意得:=2×,解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天, 依题意,得:+=, 整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m+)+2.4×≤127,解得:m≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B台灯每盏的进价为x元,则A台灯每盏的进价为(x+30)元,依题意,得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=80.答:A台灯每盏的进价为80元,B台灯每盏的进价为50元.(2)设购进A台灯m台,则购进B台灯(100﹣m)台,依题意,得:(120﹣80)m+(80﹣50)(100﹣m)≥3400,解得:m≥40.答:至少需购进A台灯40台.8.解:(1)设第一批饮料进货单价为x元,则第一批饮料进货单价为(x+2)元,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y元,依题意,得:(300+900)y﹣(1200+5400)≥5400,解得:y≥10.答:销售单价至少为10元.9.解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,依题意,得:1.2(x+10)+x≤34,解得:x≤10.答:购入的B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,依题意,得:=,解得:a=50,经检验,a=50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据题意得:×2=,解得:x=2,经检验:x=2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m元,根据题意得:×(3﹣2)+×(m﹣2.5)≥1500,解得:m≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据题意得:=,解得:x=1.2,经检验,x=1.2是原分式方程的解,∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m件,购买乙种配件n件,根据题意得:0.8m+1.2n=80,∴m=100﹣1.5n.∵甲种配件要比乙种配件至少要多22件,∴m﹣n≥22,即100﹣1.5n﹣n≥22,解得:n≤31.2,∵m,n均为非负整数,∴n的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm2,则乙队每天可绿化面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是所列分式方程的解,∴2x=100.答:甲队每天可绿化面积为50m2,乙队每天可绿化面积为100m2.(2)设应安排乙队绿化m天,则安排甲队绿化天,根据题意得:0.25×+0.4m≤8,解得:m≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:=,解得:m=18,经检验,m=18是原方程的解,且符合题意.∴m=值为18.(2)设购买A型污水处理设备x台,则购买B型污水处理设备(10﹣x)台,依题意得:18x+15(10﹣x)≤156,解得:x≤2,∵x是整数,∴有3种方案.当x=0时,y=10,月处理污水量为180×10=1800吨,当x=1时,y=9,月处理污水量为220+180×9=1840吨,当x=2时,y=8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≥200×120,解得:y≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,依题意,得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,依题意,得:﹣=50,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×=,解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,依题意,得:﹣=4,解得:x=40,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作天,依题意,得:3m+2.4×≤66,解得:m≥10.答:至少安排甲队工作10天.。
2021年中考数学专项训练--二元一次方程分式方程应用题---不等式类利润最大问题(含解析)
![2021年中考数学专项训练--二元一次方程分式方程应用题---不等式类利润最大问题(含解析)](https://img.taocdn.com/s3/m/30e8720f76a20029bc642d43.png)
二元一次方程分式方程应用题---不等式类利润最大问题一、解答题(共18题;共175分)1.某文具店经销甲、乙两种不同的笔记本,已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,小玲同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时文具店获利最大?2.茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了、两种不同的茶具.若购进种茶具1套和种茶具2套,需要250元;若购进种茶具3套和种茶具4套则需要600元.(1)、两种茶具每套进价分别为多少元?(2)由于茶具畅销,老板决定再次购进、两种茶具共80套,茶具工厂对两种类型的茶具进行了价格调整,种茶具的进价比第一次购进时提高了,种茶具的进价按第一次购进时进价的八折;如果茶具店老板此次用于购进、两种茶具的总费用不超过6240元,则最多可购进种茶具多少套?(3)若销售一套种茶具,可获利30元,销售一套种茶具可获利20元,在(2)的条件下,如何进货可使再次购进的茶具获得最大的利润?最大的利润是多少?3.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?4.深圳某居民小区计划对小区内的绿化进行升级改造,计划种植A,B两种观赏盆栽植物700盆.其中A种盆栽每盆16元,B种盆栽每盆20元.相关资料表明:A,B两种盆栽的成活率分别为93%和98%.(1)若购买这两种盆栽共用11600元,则A,B两种盆栽各购买了多少盆?(2)要使这批盆栽的成活率不低于95%,则A种盆栽最多可购买多少盆?(3)在(2)的条件下,应如何选购A,B两种盆栽,使购买盆栽的费用最低,此时最低费用为多少?5.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?6.某学校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.7.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?8.深圳市某校对初三综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100 分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80 分时,该生综合评价为A 等.(1)小明同学的测试成绩和平时成绩两项得分之和为185 分,而综合评价得分为91 分,则小明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70 分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?9.某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元;购进A种机器人3个和B种机器人2个共需14万元.请解答下列问题:(1)求A,B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种种机器人的总个数不少于28个,且该公司购买的A、B两种种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?10.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?11.某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价进价)×销售量)(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?12.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?13.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.14.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?15.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?16.甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?17.惠好商场用24000元购进某种玩具进行销售,由于深受顾客喜爱,很快脱销,惠好商场又用50000元购进这种玩具,所购数量是第一次购进数量的2倍,但每套进价比第一次多了10元.(Ⅰ)惠好商场第一次购进这种玩具多少套?(Ⅱ)惠好商场以每套300元的价格销售这种玩具,当第二次购进的玩具售出时,出现了滞销,商场决定降价促销,若要使第二次购进的玩具销售利润率不低于12%,剩余的玩具每套售价至少要多少元?18.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.答案解析部分一、解答题1.【答案】(1)解:设甲种笔记本的进价为m元,乙种笔记本的进价为n元..由题意得,解得,答:甲种笔记本的进价是6元/本,乙种笔记本的进价是4元/本.(2)解:设购入甲种笔记本x本,则购入乙种笔记本(60﹣x)本,根据题意得6x+4(60﹣x)≤296,解得n≤28,设利润为y元,则y=2x+(60﹣x),即y=x+60,∵k=1>0,∴y随x的增大而增大,∴当x=28时文具店获利最大.答:购入甲种笔记本最多28本,此时获利最大.【解析】【分析】(1)设甲种笔记本的进价为m元,乙种笔记本的进价为n元.根据王同学买4本甲种笔记本和3本乙种笔记本共用了47元,列出方程组即可解决问题;(2)设购入甲种笔记本x本,根据购入这两种笔记本共60本,花费不超过296元,列出不等式求出x的取值范围;设利润为y元,根据题意得出y与x的函数关系式,再根据一次函数的性质解答即可.2.【答案】(1)解:设种茶具每套进价为元,种茶具每套进价为元,解之得:.∴种茶具每套进价为100元,种茶具每套进价为75元.(2)解:设再次购进种茶具套,则购进种茶具套,,,,,∴最多可购进种茶具30套.(3)解:设总利润为元,则.∵,随的增大而增大,又∵,∴当时最大(元),∴当购进种茶具30套时,种茶具的数量:(套),∴再次购进种茶具30套,种茶具50套可使利润最大,最大利润为1900元.【解析】【分析】(1)设种茶具每套进价为元,种茶具每套进价为元,根据题目中的等量关系列出方程进而求解即可.(2)设再次购进种茶具套,则购进种茶具套,此次用于购进、两种茶具的总费用不超过6240元,列出不等式,即可求解.(3)设总利润为元,则.根据一次函数的性质即可求解.3.【答案】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤ ,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【解析】【分析】(1)根据两种情况下购买的总价列出二元一次方程组并求解;(2)设出A种奖品购买a件,则B种奖品购买(100﹣a)件。
中考数学分式方程集中专题训练100题(含参考答案)
![中考数学分式方程集中专题训练100题(含参考答案)](https://img.taocdn.com/s3/m/9d29dd5268eae009581b6bd97f1922791688be6a.png)
(2)该商场打算在进阶的基础上,每件衬衫加价50%进行销售.由于接近年底,可能会出现滞销,因此会有20%的衬衫需要打5折降价出售,该商场要想获得不低于20000元的利润,应至少再购进衬衫多少件?
21.(1)先化简,再求值:(a+1)2﹣(a﹣3)(3+a),其中a=1;
31.某地区以移动互联和大数据技术支持智慧课堂,实现学生的自主、个性和多元学习,全区学生逐步实现上课全部使用平板电脑.某公司根据市场需求代理甲,乙两种型号的平板,每台甲型平板比每台乙型平板进价多600元,用6万元购进甲型平板与用4.5万元购进乙型平板的数量相等.
(1)求每台甲型、乙型平板的进价各是多少元?
(2)若乙商品每件的进价是甲商品的2倍,求x的值;
(3)若购进甲商品的总钱数不超过购进乙商品的总钱数,求小超市购进这两种商品的最少花费.
39.计算:
(1)
(2)解方程:
40.神舟十三号飞船即将荣耀归来,为激发同学们对航天事业的兴趣,学校组织进行了一场以“飞天”为主题的文艺晚会,学校打算购买一些“飞天”装饰挂件与专属航天印章送给学生留作纪念.已知每盒挂件有30个,每盒印章有20个,且都只能整盒购买,每盒挂件的价钱比每盒印章的价钱多10元;用200元购买挂件的盒数与用150元购买印章的盒数相同.
C.每天比原计划少铺设10米,结果提前15天完成
D.每天比原计划多铺设10米,结果提前15天完成
12.若整数a使关于x的分式方程 ﹣2= 有整数解,则符合条件的所有a之和为( )
A.7B.11C.12D.13
13.将分式方程 去分母化为整式方程,所得结果正确的是()
A. B. C. D.
14.如果关于x的不等式组 有且只有四个整数解,且关于y的分式方程 的解为非负数,则符合条件的所有整数a的个数为().
2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)
![2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)](https://img.taocdn.com/s3/m/03f6dfb96429647d27284b73f242336c1fb93061.png)
2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
②设未知数——根据问题与等量关系直接或间接设未知数。
③列方程:根据等量关系与未知数列出分式方程。
④解方程——按照解分式方程的步骤解方程。
④答——检验方程的解是否满足实际情况,然后作答。
练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。
初中数学分式方程的应用基础训练3(附答案详解)
![初中数学分式方程的应用基础训练3(附答案详解)](https://img.taocdn.com/s3/m/bd6a3c6e0508763230121278.png)
初中数学分式方程的应用基础训练3(附答案详解)1.今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.2.某店准备购进A,B 两种口罩,A 种口罩毎盒的进价比B 种口罩每盒的进价多10 元,用2000 元购进A种口罩和用1500 元购进B 种口罩的数量相同.(1)A 种口罩每盒的进价和B 种口罩每盒的进价各是多少元?(2)商店计划用不超过1770 元的资金购进A,B 两种口罩共50 盒,其中A 种口罩的数量应多于B 种口罩数量,该商店有几种进货方案?3.在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息:①甲班共捐款300元,乙班共捐232元;②甲班比乙班多2人;③乙班平均每人捐款数是甲班平均每人捐款数的45;请你根据以上信息,求出甲班平均每人捐款多少元?4.李叔叔和张阿姨栽树.李叔叔栽6棵树所用的时间与张阿姨栽5棵树所用的时间相同,已知李叔叔比张阿姨平均每天多栽20棵树.(1)求李叔叔平均每天栽树的棵数;(2)由李叔叔和张阿姨同时栽树1540棵,要几天完成?5.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工300个零件所用的时间与乙加工250个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?6.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,•服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?7.在渡江战役胜利70周年之际,合肥市某中学组织九年级学生参观位于市郊的渡江战役纪念馆,全年级从学校同时出发,男生步行,女生骑车,已知骑行的平均速度是步行平均速度的2.5倍,该中学到纪念馆的路程为8千米,结果女生比男生提前40分钟到达,求男生步行的速度.8.某学校举行“青春心向党建功新时代”演讲比赛活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.(1)求甲、乙两种奖品的单价各是多少元?(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍,问购买多少个甲种奖品,才使得总购买费用最少?9.文昌西路改建工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.⑴求购进一件甲种礼品、一件乙种礼品各需多少元;⑵元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了20%,一件乙种礼品价格比第一次购进时降低了5元.如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最少可购进多少件甲种礼品?12.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?13.“村村通公路政策,是近年来国家构建和谐社会,支持新农村建设的一项重大公共决策,是一项民心工程,惠民工程某镇政府准备向甲、乙两个工程队发包一段“村村通”工程建设项目,经调查:甲、乙两队单独完成该工程,乙队所需时间是甲队的2倍;甲、乙两队共同完成该工程需30天;若甲队每天所需劳务费用为2400元,乙队每天所需劳务费用为1500元,从节约资金的角度考虑,应选择哪个工程队更合算?14.某市为了美化环境,计划在一定的时间内完成绿化面积40万亩的任务.后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前2年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多3万亩,求原计划平均每年的绿化面积.15.在创建文明城市的进程中.某市为美化城市环境,计划种植树木6000棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前5天完成任务,求原计划每天植树的棵数.16.为迎接2019年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为22400m 运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面400m的改造时,甲队比乙积是乙队每天能改造面积的2倍,并且在独立完成面积为2队少用4天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成改造任务,求y与x的函数解析式;(3)若甲队每天改造费用是0.55万元,乙队每天改造费用是0.2万元,且甲、乙两队施工的总天数不超过30天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.17.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?18.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐徐州号高铁A与复兴号高铁B前往北京.已知A车的平均速度比B车的平均速度慢70km/n,A车的行驶时间比B车的行驶时间多25%,两车的行驶时间分别为多少?19.某服装厂接到一份加工3000件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的1.2倍,结果提前5天完工,求原计划每天加工校服的件数.20.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.21.2018年,某县为改善环境,方便居民出行,进行了路面硬化,计划经过几个月使城区路面硬化面积新增400万平方米.工程开始后,实际每个月路面硬化面积是原计划的2倍,这样可提前5个月完成任务.(1) 求实际每个月路面硬化面积为多少万平方米?(2) 工程开始2个月后,随着冬季来临,气温下降,县委、县政府决定继续加快路面硬化速度,要求余下工程不超过2个月完成,那么实际平均每个月路面硬化面积至少还要增加多少万平方米?22.为了加快城镇化建设,某镇对一条道路进行改造,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作施工y天,完成此项工程,试用含a的代数式表示y;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?23.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?24.某商厦进货员预测一种应季衬衫能畅销市场,试用10000元购进这种衬衫,面市后果然供不应求.于是,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元.求这种衬衫原进价为每件多少元?25.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?26.列方程解应用题.2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达.已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?27.书店老板去图书批发市场购买某种图书,第一次用1200 元购买若干本,按每本10 元出售,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500 元所购买的数量比第一次多10 本.(1)求第一次购买的图书,每本进价多少元?(2)第二次购买的图书,按每本10 元售出200 本时,出现滞销,剩下的图书降价后全部售出,要使这两次销售的总利润不低于2100 元,每本至多降价多少元?(利润=销售收入一进价)28.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?29.六•一前夕某幼儿园园长到厂家选购A、B两种品牌的儿童服装每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍,求A、B两种品牌服装每套进价分别为多少元?30.为支援困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?31.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?32.学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?33.某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?34.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)35.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B种图书25本,共花费多少元?36.(列分式方程解应用题)为加快西部大开发,某自治区决定新修一条公路,甲.乙两工程队承包此项工程,若甲工程队单独施工,则刚好如期完成;若乙工程队单独施工就要超过3个月才能完成,现甲乙两队先共同施工2个月,剩下的由乙队单独施工,则刚好如期完成.问:原来规定修好这条公路需多长时间?解:设原来规定修好这条公路需要x个月,设工程总量为1.37.某中学为了创建书香校园,去年购买了一批图书,其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书数量相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,这所中学今年计划再购买文学书和科普书共200本,且购买文学书和科普书的总费用不超过2135元,这所中学今年至少要购买多少本文学书?38.为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发23小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?39.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?40.制文中学2019年秋季在政大商场购进了A、B两种品牌的冰鞋,购买A品牌冰鞋花费了8000元,购买B品牌冰鞋花费了6000元,且购买A品牌冰鞋的数量是购买B品牌冰鞋数量的2倍,已知购买一双B品牌冰鞋比购买一双A品牌冰鞋多花100元.(1)求购买一双A品牌,一双B品牌的冰鞋各需多少元?(2)为开展好“冰雪进校园”活动,制文中学决定再次购买两种品牌冰鞋共50双,如果这所中学这次购买A、B两种品牌冰鞋的总费用不超过13100元,那么制文中学最多购买多少双B品牌冰鞋?参考答案1.环卫局每个月实际改造类垃圾箱房2250个.【解析】【分析】设原计划每个月改造垃圾房x 万个,然后根据题意列出分式方程,解方程即可得出答案.【详解】设原计划每个月改造垃圾房x 万个,则实际每月改造()0.025x +万个.1.8 1.810.025x x -=+. 化简得:2200590x x +-=. 解得:115x =,2940x =-. 经检验:115x =,2940x =-是原方程的解. 其中115x =符合题意,2940x =-不符合题意舍去. 10.0250.2255+=万个,即2250个. 答:环卫局每个月实际改造类垃圾箱房2250个.【点睛】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.2.(1)A 种口罩每盒的进价为40元,B 种口罩每盒的进价是30元;(2)该商店有2种进货方案【解析】【分析】(1)设A 种口罩每盒的进价为x 元,则B 种口罩每盒的进价是(10x -)元,由题意得出关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种口罩a 盒,则购进B 种口罩(50a -)盒,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】 (1)设A 种口罩每盒的进价为x 元,则B 种口罩每盒的进价是(10x -)元,由题意得:2000150010x x =-, 解得:40x =,经检验,40x =是原方程的解,且符合实际意义,401030-=(元),答:A 种口罩每盒的进价为40元,B 种口罩每盒的进价是30元;(2)设购进A 种口罩a 盒,则购进B 种口罩(50a -)盒,由题意得:()403050177050a a a a ⎧+-≤⎨>-⎩, 解得:2527a <≤,∵a 取整数,∴a 可为26,27,答:该商店有2种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.3.甲班平均每人捐款5元.【解析】【分析】设甲班有x 人,根据乙班平均每人捐款数是甲班平均每人捐款数的45列出方程求解. 【详解】解:设甲班有x 人,由题意得,,解得,x =60, 经检验x =60是原方程的解,∴x =60.∴甲班平均每人捐款数为元.答:甲班平均每人捐款5元.【点睛】本题考查了分式方程的应用,仔细审题,找出列方程所需的等量关系是解答本题的关键,解分式方程要注意验根.4.(1)李叔叔平均每天栽树120棵;(2)由李叔叔和张阿姨同时栽树1540棵,要7天完成.【解析】【分析】(1)设李叔叔平均每天栽树x 棵,则张阿姨平均每天栽树(20x -)棵,根据题意列出方程,求出方程的解即可得到结果;(2)由第一问求出的李叔叔平均每天栽树的棵数,得到张阿姨平均每天栽树的棵数,根据工作总量除以工作效率=工作时间,求出即可.【详解】(1)设李叔叔平均每天栽树x 棵,则张阿姨平均每天栽树(20x ﹣)棵, 根据题意得:6520x x =-, 解得:x =120,经检验,x =120是原分式方程的解.答:李叔叔平均每天栽树120棵;(2)1540÷(120+100)=7(天).答:由李叔叔和张阿姨同时栽树1540棵,要7天完成.【点睛】本题考查了分式方程的应用,弄清题意是解本题的关键.5.甲每小时加工60个零件,乙每小时加工50个零件.【解析】【分析】甲加工300个零件所用的时间与乙加工250个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.【详解】解:设乙每小时加工机器零件x 个,则甲每小时加工机器零件()10x +个, 根据题意得:30025010x x=+, 解得50x =,经检验,50x=是原方程的解.10501060x+=+=.答:甲每小时加工60个零件,乙每小时加工50个零件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系列出方程是解决问题的关键.6.(1)该服装店第一次购买了此种服装30件;(2)868元【解析】【分析】(1)设该服装店第一次购买了此种服装x件,根据“第二次比第一次进价多5元的价格购进服装”列出分式方程即可求出结论;(2)根据“总利润=总售价-总成本”即可求出结论.【详解】解:(1)设该服装店第一次购买了此种服装x件,则第二次购买了此种服装2x件根据题意可得22209605 2-= x x解得:x=30经检验:x=30是原方程的解答:该服装店第一次购买了此种服装30件.(2)第二次购买了此种服装30×2=60件46×(30+60-20)+46×90%×20-960-2220=868(元)答:两次出售服装共盈利868元.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.7.男生步行的平均速度为7.2千米/小时.【解析】【分析】设男生步行的速度为x千米/小时,则女生骑车的速度为2.5x千米/小时,根据时间=路程÷速度结合女生比男生提前40分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设男生步行的平均速度为x 千米/小时,则女生骑行的平均速度为2.5x 千米/小时 由题意得,8822.53x x -= 解得,7.2x =经检验,7.2x =是原方程的根,并且符合题意答:男生步行的平均速度为7.2千米/小时【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8.(1) 甲种奖品的单价为40元,乙种奖品的单价为30元;(2)购买甲种奖品67个时,总费用最少【解析】【分析】(1)设甲种奖品的单价为x 元,则乙种奖品的单价为()10x -元,利用“480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等”为等量关系列方程求解即可;(2)设购买甲种奖品m 个,则购买乙种奖品()100m -个,购买奖品的总费用为w 元,由甲种奖品的数目不低于乙种奖品数目的2倍可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,根据总价=单价×数量可得出w 关于m 的一次函数关系式,再利用一次函数的性质即可解决最值问题.【详解】(1)设甲种奖品的单价为x 元,则乙种奖品的单价为()10x -元. 由题意得48036010x x =-, 解得40x =,经检验得40x =是原方程的解,∴1030x -=,答:甲种奖品的单价为40元,乙种奖品的单价为30元;(2)设购买甲种奖品m 个,则购买乙种奖品()100m -个,。
中考数学分式方程专题训练有答案解析
![中考数学分式方程专题训练有答案解析](https://img.taocdn.com/s3/m/79d1f6f36e1aff00bed5b9f3f90f76c661374cba.png)
分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。
中考专题----一元一次分式方程的应用题(90题附答案)
![中考专题----一元一次分式方程的应用题(90题附答案)](https://img.taocdn.com/s3/m/cbe21abd52d380eb63946d32.png)
中考专题------一元一次分式方程的应用题(90题)附答案1. 一辆快客车和一辆中巴车同在公路上行驶。
已知快客车每小时比中巴车多行驶20千米,快客车行驶80千米所需的时间与中巴车行驶60千米所需的时间相同,求快客车的速度。
2.轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相等,已知水流的速度是每小时3千米,求轮船在静水中的速度。
3.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.求江水的流速为多少km/h?4.重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求出这两种商品每千克的价值。
5.甲乙两人同时开始工作,当乙加工56个机器零件时,甲只加工42个机器零件.已知两人每小时共做28个机器零件,每人每小时各做多少个机器零件?6.A市与甲乙两地的距离分别为400千米和350千米,从A市开往甲地的列车速度比从A 市开往乙地的速度快15千米/小时,结果从A市到甲乙两地所需要的时间相同,求A市开往甲乙两地的列车的速度。
7.甲做180个机器零件所用的时间与乙做240个所用的时间相等。
已知两人每小时共做70个,两人每小时各做多少个机器零件?8某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需要时间和原计划采23100吨煤的时间相等,问现在平均每天采煤多少吨?9某休闲品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成。
(1)按此计划,该公司平均每天该生产帐篷_________顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原来提高了25%,结果提前2天完成任务。
求该公司原计划安排多少名工人生产帐篷?10.便民服装店的老板在北京看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快销售完,又用17600购进同种衬衫,数量是第一次的2倍,每一件比第一次多了4元,服装店扔按每件58元出售,全部售完。
(10)列分式方程解应用题专项练习60题(有答案)ok
![(10)列分式方程解应用题专项练习60题(有答案)ok](https://img.taocdn.com/s3/m/46113aed05a1b0717fd5360cba1aa81145318f40.png)
列分式方程解应用题60题(有答案)1.A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.2.轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.3.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程.已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?4.甲,乙两组学生去距学校4.5km的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少.5.甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、乙两队单独完成此项工程各需多少天?6.某校师生为爱心基金捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天多50人,且两天人均捐款数相等.问这两天共有多少人捐款?人均捐款额是多少?7.甲做90个零件所用的时间和乙做120个零件所用的时间相同,又知每小时甲、乙两人共做35个机器零件.求甲、乙每小时各做多少个零件.8.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务.甲、乙两队独做各需几天才能完成任务?9.甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.10.甲乙两地相距360km,新修的高速公路开通后,在甲乙两地行驶的汽车的平均速度提高了50%,而从甲地到乙地的时间缩短了2h.求汽车提速后的平均车速?11.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,问原来每天装配机器有多少台?12.一个工人生产奥运会吉祥物“福娃欢欢”,计划30天完成,若每天多生产5个,则在26天完成且多生产了14个.则这个工人原计划每天生产多少个福娃欢欢?13.孙明与李丽共同帮助校图书馆清点图书,李丽平均每分钟比孙明多清点10本.已知孙明清点完200本图书所用的时间与李丽清点完300本所用的时间相同,求孙明平均每分钟清点图书多少本.14.某人骑自行车的速度比步行的速度每小时多走8千米,已知步行12千米所用的时间和骑自行车36千米所用的时间相等,这个人步行每小时走多少千米?15.甲、乙两班同学参加“绿化祖国”植树活动,已知乙班每小时比甲班多种2棵,甲班种60棵树所用的时间与乙班种66棵所用的时间相等,问:甲、乙两班每小时各种多少棵树?16.甲、乙合打一份稿件,4小时后,甲有事离去,由乙继续打6小时完成.已知甲打4小时的稿件乙需5小时完成.求甲、乙独打这份稿件各需多少小时?17.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?18.甲乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙两人的速度.19.一项工程要在限期内完成,如果第一组单独做,恰好按规定日期完成,如果第二组单独做,超过规定日期4天才能完成,如果两组合做3天后剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?20.某货车在发生交通事故后,沿一条小路向高速公路逃离,交警巡逻车立即沿另一公路向高速追击,在货车刚进入高速公路路口时,将它截住.已知警车的速度比货车快40千米/时,警车驶到高速公路行驶的路程是货车的2倍,求警车的速度.21.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤所需的时间相同.问现在平均每天采煤多少吨?22.甲、乙两人从学校出发,前往距学校12千米的新华书店.甲每小时比乙多走2千米,乙比甲提前1小时出发,结果两人同时到达.求甲、乙两人每小时各走多少千米?23.甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?25.某工程要在规定日期内完成.若由甲单独做,则刚好如期完成;若由乙单独做,则要超过3天完成,现在先由甲、乙合做2天,剩下的工程由乙单独做,结果刚好按时完成.求规定的天数.26.“要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?27.2010年春季我国西南五省持续干旱,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划生产1500桶纯净水支援灾区人民,在生产了300桶纯净水后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天生产多少桶纯净水?28.小颖和几位同学去文具店购买练习本,该文具店规定,如果购买达到一定的数量,则可以按批发价购买,于是他们凑到60元钱以批发价购买,这样购得的练习本数量比用零售价购得的练习本数量多30本,若每本练习本的批发价是零售价的,问每本练习本的零售价是多少元?29.某工厂引进新技术后,平均每小时比原来多生产30个零件.若现在生产900个零件所需时间与原来生产600个零件所需时间相等,现在平均每小时生产多少个零件?30.为了帮助灾区重建家园,学校号召同学们自愿捐款.已知第一次捐款总数为4 800元,第二次捐款总数为5 000元,第二次捐款人数比第一次捐款人数多20人,且恰好相等.问第一次捐款人数是多少?31.某公园在2008年北京奥运花坛的设计中,有一个造型需要摆放1800盆鲜花,为奥运作奉献的精神促使公园园林队的工人们以原计划1.2倍的速度,提前一小时完成了任务,工人们实际每小时摆放多少盆鲜花?32.某顾客第一次在商店买若干件小商品花去4元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,购买一打以上可以拆零买,这样,第二次花去4元买同样小商品的件数量是第一次的1.5倍.问他第一次买的小商品是多少件?33.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?34.某工厂加工495件产品,在加工了90件后进行了技术改造,使每天生产的产品数量是原来的1.5倍,结果共用了12天圆满完成了任务,问原来每天加工多少件产品?35.阅读下面一段文字:高圆带了9元去商店买笔记本,她想买一种软面抄,正好需付9元,但售货员建议她买另一种质量更好的硬面抄,只是这种笔记本的价格比软面抄要高出一半,因此她只能少买一本笔记本.请你根据以上信息确定:这种软面抄和硬面抄的价格各是多少?高圆原来打算买多少本笔记本?36.为加强防汛工作,市工程队准备对长江堤岸一段长为2500米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加固的长度是多少米?37.甲、乙两名志愿者为灾后重建搬运物资.已知甲、乙两人每小时共搬运1500 kg物资,且甲搬运300 kg物资的时间与乙搬运200 kg物资所用的时间相同.求甲每小时比乙多搬运多少物资?38.今年全国“助残日”期间,某中学学生踊跃捐款,奉献自己的一份爱心、其中八年级一班学生共捐款450元,二班学生共捐款390元.已知一班平均每人捐款金额是二班平均每人捐款金额的1.2倍,且二班比一班多2人,那么这两个班各有多少人?39.一件工程甲单独做15天可以完成,乙单独做12天可以完成,甲,乙,丙三人合作4天可以完成,那么丙单独做,几天可以完成?40.2009年12月,相距1050公里的A、B两市的高速铁路建成通车,高速铁路上的旅客列车时速是原普通铁路的3.5倍,运行在两市间的旅客列车运行时间因此缩短7.5小时,求高速铁路的时速.41.应用题:已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?42.某市教育局向一贫困山区县赠送3600个学生用的科学记算器以满足学生学习的需要、现用A,B两种不同的包装箱进行包装,单独用B型包装箱比单独用A型包装箱少用15个,已知每个B型包装箱装计算器的个数是A型包装箱的1.5倍,求A,B两种包装箱每个各能装计算器多少个?43.某市为处理污水需要铺设一条长为3000米的管道、为了尽量减少施工对交通所造成的影响,实际施工时每天铺设管道的长度为原计划的1.5倍,结果提前25天完成任务,求实际施工时每天铺设管道的长度.44.今年我国西南地区遭受严重旱灾,受灾人口达6130多万.为了帮助灾区重建家园,某学校号召师生自愿捐款,第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数.45.甲乙两站相距480千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车的2.5倍,结果客车比货车早6小时到达乙站,求两种车的速度各是多少?46.某养鱼专业户要想估计鱼塘里大概有多少条鱼,他进行了如下操作:先从鱼塘里捞上来200条鱼,分别做上记号后,又放回鱼塘,一段时间后,他又从鱼塘捞上来200条鱼,发现有4条是做了记号的,由此他就知道了鱼塘大概有多少条鱼,请你说明其中的道理,并求出该鱼塘里大概多少条?47.1罐咖啡甲、乙两人一起喝10天喝完,甲单独喝则需12天喝完,1包茶叶甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完,假如甲在有茶叶的情况下决不喝咖啡,而乙在有咖啡的情况下决不喝茶,问两人一起喝完1包茶叶和1罐咖啡需要多少天?48.西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等.试求七、八年级捐款的人数.49.某商店销售一种书包,七月份的销售额为6000元.为了让附近的孩子们在新学期能背上新书包,店主决定让利销售,在八月份将每个书包按原价的8折销售,结果销售量比七月份增加了50个,销售额比七月份增加了800元.求七月份每个书包的售价.50.“我国水资源形势非常严峻”,为了节约用水.某市今年3月1日起调整居民用水价格,每立方水费上涨25%.已51.某小组学生准备外出春游,预计共需费用120元,临出发时,有2人因故不能参加,但总费用不变,这样春游的学生人均费用增加,问原计划每人付费多少元?52.某厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合,其平均价值比甲种原料每斤少3元,比乙种原料每斤多1元,问混合后的单价每斤多少元?53.先锋中学九年级学生由距江南10km的学校出发前往参观,一部分同学骑自行车先走,过了20min后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(1)设骑车同学的速度为xkm/h,利用速度,时间,路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程,并求出问题的解.速度(千米/时)所用时间(时)所走的路程(千米)骑自行车x 10乘汽车1054.阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.55.2008年初,我国南方地区遭受雪灾,为保持道路畅通,市政府决定用铲雪机铲去扬威大道上的积雪.如果只用﹣台A型铲雪机单独工作,需要10小时才能全部铲完,在该铲雪机工作2小时后,一台B型铲雪机加入合作,然后一起工作了3小时将扬威大道上的积雪全部铲完,求B型铲雪机单独工作需要多少小时铲完?56.北京时间2010年4月14日7时49分,青海玉树发生7.1级地震,灾情牵动着全国各族人民的心.无为县某中心校组织了捐款活动.小华对八年级(1)(2)班捐款的情况进行了统计,得到如下三条信息:信息一:(1)班共捐款540元,(2)班共捐款480元.请你根据以上三条信息,求出八(1)班平均每人捐款多少元?57.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系;(2)原计划若干天卸载完这批货物,但由于后一批货物要提前2天到达,则实际每天卸货数量比原计划每天多20%,恰好按时卸载完毕,求原计划每天卸载多少货物?58.2008年夏季奥运会的主办国于2001年7月13日揭晓.当时,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000千米处会合,并同时向北京进发,绿队走完2000千米时,红队走完1800千米,随后红队的速度比原来提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两队的速度比.(2)问红绿两支车队能否同时到达北京并说明理由.(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京求出第一支车队到达北京时,两支车队的距离.(单位:千米)59.列方程或方程组解应用题:某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元商场第二个月共销售多少件?60.阅读并解答:先阅读下列计算方法:某商店将甲乙两种糖果混合销售,并按以下公式确定混合糖果的单价:单价=(元/千克),其中m1、m2分别为甲乙两种糖果的重量(千克),a1、a2分别为甲乙两种糖果的单价(元/千克).再解答下列问题:已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克.(1)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,已知混合糖果的单价为18.4元/千克,问:这箱甲种糖果有多少千克?(2)现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再出售时,混合糖果的单价为17.5元/千克.问:这箱甲种糖果有多少千克?参考答案:1.解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时2.解:设船在静水中的速度是x千米/时.由题意得:.解得:x=21.经检验:x=21是原方程的解.答:船在静水中的速度是21千米/时3.解:设乙队单独完成所需天数x 天,则甲队单独完成需x天,由题意,得即=1 解得x=6 经检验,x=6是原方程的根x=6时,x=4答:甲、乙两队单独完成分别需4天、6天4.解:设甲组速度为xkm/小时,则乙组速度为3xKm/小时.列方程:.解得:x=6.经检验:x=6是方程的解.∴3x=18.答:步行速度为6km/小时,骑自行车的速度为18km/小时5.解:设甲队单独完成此项工程需2x天,则乙队需要3x天.由题意得:.解之得:x=2.经检验;x=2是所列分式方程的根.∴2x=2×2=4,3x=3×2=6.答:甲队单独完成需4天,乙队需6天6.解:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程.解得x=200.检验:当x=200时,x(x+50)≠0,∴x=200是原方程的解.两天捐款人数x+(x+50)=450,人均捐款=24(元).答:两天共参加捐款的有450人,人均捐款24元7.解:设甲每小时做x个零件,则乙每小时做(35﹣x)个零件.根据题意列方程得:.解得:x=15.经检验,x=15是原方程的解.答:甲每小时做15个零件,乙每小时做20个零件8.解:设甲独做需要x天完成任务,根据题意得:×9+(﹣)×(9+21)=1,解得:x=24,经检验:x=24是方程的解,∴1÷(﹣)=48,答:甲、乙两队独做分别需要24天和48天完成任务9.解:设步行速度为x千米/时,那么骑车速度是4x千米/时,10.解:设提速前的平均车速为x km/h,根据题意得:﹣=2 解得:x=60 经检验:x=60是原方程的解,所以,(1+50%)x=90(km/h)答:汽车提速后的平均车速为90km/h.11.解:设原来每天装配机器x台,依题意得:,解这个方程得:x=6,经检验:x=6是原方程的解,答:原来每天装配机器6台12.解:设原计划每天生产x个零件.依题意可列:,解得x=29.经检验,x=29是原方程的根.答:这个工人原计划每天生产29个福娃欢欢13.解:设孙明平均每分钟清点图书x本.根据题意得:.解这个方程得:x=20.经检验:x=20是原方程的解.答:孙明平均每分钟清点图书20本14.解:设这个人步行每小时走x千米.依题意得:=.方程两边同乘以x(x+8)得:12(x+8)=36x.解得:x=4.经检验:x=4是原分式方程的解.(6分)答:这个人步行每小时走4千米.15.解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵,根据题意得:,解这个方程得:x=20,经检验:x=20是原方程的根.所以当x=20时,x+2=20+2=22.所以甲班每小时种20棵树,乙班每小时种22棵树16.解:设甲单独打这份稿件需要4x小时,则乙单独打这份稿件需要5x小时.依题意,列方程:()×=1.解方程得:x=3.经检验:x=3符合题意.∴4x=12,5x=15.答:独打这份稿件,甲需12小时,乙需15小时.17.解:设大队的速度是x千米/时,先遣队的速度是1.2x千米/时,由题意得,解得x=5,经检验,x=5是原方程的解,∴1.2x=6,答:先遣队和大队的速度分别是6千米/时,5千米/时18.解:设甲的速度为3x千米/时,则乙的速度为4x千米/时.根据题意,得,解得x=1.5.经检验,x=1.5是原方程的根.所以甲的速度为3x=4.5千米/时,乙的速度为4x=6千米/时.答:甲的速度为4.5千米/时,乙的速度为6千米/时19.解:设规定日期是x天.根据题意得:+=1.解这个分式方程得:x=12.经检验:x=12是原方程的解,并且符合题意.由题意得:=.解之得:x=80.经检验:x=80是原方程的解.答:警车的速度为80千米/时21.解:设现在平均每天采煤x吨,依题意得,解得x=1100经检验,x=1100是方程的解.答:现在平均每天采煤1100吨22.解:设甲每小时走x千米,根据题意列方程得:=﹣1 整理得:x2﹣2x﹣24=0(3分)解这个方程得:x1=6x2=﹣4 经检验,x1x2是原方程的解,但x2<0不符合题意舍去,取x=6∴x﹣2=4(1分)答:甲每小时走6千米,乙每小时走4千米.(1分)23.解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解 1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时24.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件25.解:设规定天数为x天,依题意得,2×(+)+(x﹣2)×=1,解得:x=6,经检验x=6是原方程的解,答:规定的天数是6天26.解:设原来车辆的平均速度为x千米/小时.由题意可得:.解这个方程得:x=60.经检验:x=60是原方程的解.答:原来车辆的平均速度为60千米/小时27.解:设原来每天生产x桶纯净水,依题意得:,解这个方程,得x=100,经检验,x=100是原方程的解.答:原来每天生产100桶纯净水.28.解:设每本练习本的零售价是x元,则每本练习本的批发价是x,根据题意得:,解得x=0.5.将x=0.5代入检验得是方程的解.答:每本练习本的零售价是0.5元.29.解:设现在平均每小时生产x个零件,依题意得:解得:x=90 经检验,x=90是方程的解且符合题意.答:现在平均每小时生产90个零件.30.解:设第一次捐款人数是x,则第二次捐款人数是(x+20).依题意得:.解方程得:x=480.经检验:x=480是原方程的解.答:第一次捐款人数是48031.解:设工人原计划每小时摆放x盆鲜花,则实际每小时摆放1.2x盆鲜花.依题意得:=+1,解这个方程得:x=300.经检验:x=300是原方程的解.∴1.2x=360.答:工人们实际每小时摆放360盆鲜花32.解:设他第一次买的小商品是x 件.﹣=,解得:x=20,经检验x=20是原方程的解.答:他第一次买的小商品是20件33.解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.答:现在平均每天生产200台机器.34.解:设:原来每天加工x件,则进行技术改造后,每天生产的产品数量为1.5x件.依题意列出方程:=12,解得:x=30,经检验,x=30是原分式方程的解.答:原来每天加工30件产品35.解:设每本软面抄的价格为x元,则每本硬面抄的价格为1.5x元.由题意得:.解之得:x=3.∴1.5×3=4.5(元),9÷3=3(本).答:软面抄单价3元/本,硬面抄单价4.5元/本,高原原计划买3本笔记本36.解:设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=米列方程:∴x=100 经检验:x=100是原方程的解.所以x(1+50%)==150米答:现在每天加固的长度是150米37.解:设甲、乙每小时搬运物资分别为xkg和(1500﹣x)kg,由题意得,解得x=900,经检验x=900是原方程的解,也符合实际意义.由900﹣(1500﹣900)=300(千克∕小时),知甲比乙每小时多搬运300kg物资38.解:设一班有x 人,根据题意得,解得:x=50,经检验,x=50是原分式方程的解,答:一班有50人,二班有52人39.解:设丙单独做x天可以完成.依题意列方程得:4(++)=1.解得:x=10.经检验,x=10是方程的根,也符合题意.答:丙单独做10天可以完成40.解:设普通列车时速为x公里/时,则,解之得:x=100,经检验:x=100是原方程的解,∴3.5x=350.答:高速铁路的时速为350公里/时41.解:设江水每小时的流速是x千米.根据题意,得,解得x=4.经检验,x=4是原方程的根.则江水每小时的流速是4千米42.解:设每个A型包装箱能够装x个计算器,则B型包装箱能装1.5x个计算器,依题意有:解这个方程,得x=80,经检验x=80是原方程的根,∴1.5x=120,答:每个A型包装箱能装80个计算器,每个B型包装箱能装120个计算器.43.解:设原计划施工时每天铺设管道xm,则实际施工时每天铺设管道1.5xm.据题意得:=25 解得x=40.经检验x=40是原方程的解. 1.5x=60答:实际施工时每天铺设管道60m.44.解:设第一次捐款人数为x,则解得x=400 经检验x=400是方程的解,答:第一次捐款人数为40045.解:设货车的速度为x千米/时,则客车的速度为2.5x千米/时,根据题意可列关于时间的方程式:﹣=6,解得:x=48(千米/时)故可知,货车的速度为48千米/时,客车的速度是120千米/时46.解:设该鱼塘里大概有x条鱼,依题意得,解之得:x=10000,经检验x=10000是方程的解,答:该鱼塘里大概有10000条鱼47.解:设甲单独喝茶叶的时间为x天,乙单独喝咖啡的时间为y天,根据题意列方程得,,解得y=60;,解得x=30.因此30天后甲喝完茶叶而乙只喝完咖啡的一半(),故剩下的咖啡变成两人合喝,由题意可知,他们两人还能喝÷()=5天.所以两人用30+5=35天才全部喝完.答:两人一起喝完1包茶叶和1罐咖啡需要35天48.解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人由题意得:解这个方程,得x=480 经检验,x=480是原方程的解∴x+20=500(人)答:七年级捐款的人数为480人,则八年级捐款的人数为500人49.解:设7月份每个书包售价为x元,则8月份每个书包售价为0.8x元,根据题意得﹣=50,解得x=50(元),经检验:x=50是所列方程的根且符合题意,答;7月份每个书包售价为50元。
中考数学分式方程行程、工程类应用题
![中考数学分式方程行程、工程类应用题](https://img.taocdn.com/s3/m/dc0ea8f1856a561252d36f44.png)
分式方程行程、工程类应用题一.选择题(共2小题)1.一项工程,甲单独做a h完成,乙单独做b h完成,甲、乙两人一起完成这项工程所需的时间为()A.h B.(a+b)h C.h D.h2.轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为()A.小时B.小时C.小时D.小时二.解答题(共8小题)3.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.4.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?找家教,去师大中南湖大家教中心QQ 1357491979 15.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完全任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?6.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?7.一项工程,甲,乙两公司合作,6天可以完成,共需付工费51000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?8.某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.9.某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.10.一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成.从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.分式方程行程、工程类应用题参考答案与试题解析一.选择题(共2小题)1.(2016春•东港市期末)一项工程,甲单独做a h完成,乙单独做b h完成,甲、乙两人一起完成这项工程所需的时间为()A.h B.(a+b)h C.h D.h【分析】本题先根据题意列出方程即,解出即可.【解答】解:设甲、乙两人一起完成这项工程所需的时间为xh,则有,解得x=,∴甲、乙两人一起完成这项工程所需的时间为h.【点评】本题主要考查一元一次方程的应用.解题的关键是由题意得出列出方程的等量关系即工作总量为1.2.(2010春•桃源县校级期末)轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为()A.小时B.小时C.小时D.小时【分析】设轮船在静水中的速度为每小时x千米,根据轮船顺流航行40千米由A地到达B 地,然后又返回A地,已知水流速度为每小时2千米,可求出轮船往返共用的时间.【解答】解:设轮船在静水中的速度为每小时x千米,根据题意得:+=.故选D.【点评】本题考查分式方程的应用,这是个行程问题,关键知道时间=,从而可列式求解.二.解答题(共8小题)3.(2016•长春)A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.(2016•娄底)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.【点评】此题主要考查了一元一次方程的应用,分式方程的应用,根据题意得到乙的运动速度是解题关键.5.(2016•广东)某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完全任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【分析】(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.【解答】解:(1)设原计划每天修建道路x米,可得:,解得:x=100,经检验x=100是原方程的解,答:原计划每天修建道路100米;(2)设际平均每天修建道路的工效比原计划增加y%,可得:,解得:y=20,经检验y=20是原方程的解,答:实际平均每天修建道路的工效比原计划增加百分之二十.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.(2016•湖北襄阳)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.7.(2016•宜春模拟)一项工程,甲,乙两公司合作,6天可以完成,共需付工费51000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司施工费较少?【分析】(1)设甲公司单独完成需x天,则乙单独完成需要1.5x天,接下来,依据甲,乙两公司合作,6天可以完成列方程求解即可;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,然后根据甲、乙两公司合作6天的施工费为51000元列出方程,从而可求得甲、乙两公司单独施工每天的施工费,然后再求得各自需要的总费用即可.【解答】解:(1)设甲公司单独完成需x天,则乙单独完成需要1.5x天.根据题意得:+=,解得:x=10经检验x=10是原方程的解∴甲需10天,乙公司需15天.(2)设甲公司每天的施工费为y元,可得方程:6y+6(y﹣1500)=51000解得y=5000.则y﹣1500=3500∴甲公司费用:5000×10=50000元乙公司费用:3500×15=52500元∴甲公司施工费较少.【点评】本题主要考查的是分式方程和一元一次方程的应用,找出题目的相等关系,并列出方程是解题的关键.8.(2016•福建模拟)某乡镇道路该修工程预算施工费为500万元,工程指挥部从甲、乙两个工程队的投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项所需天数的;甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.(1)若由甲队先做30天,剩下的工程由乙队做45天可完成,求甲、乙两队单独完成这项工程各需的天数;(2)为了缩短工期,工程指挥部决定由甲、乙两队合作完成此项工程,则预算的施工费用是否够用?若不够用,需增加预算多少万元.【分析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,根据“由甲队先做30天,剩下的工程由乙队做45天可完成”列方程求解.(2)求出甲、乙两队施工天数得出需要施工费用,再与500万元进行比较,即可得出答案.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,根据题意得:30×+45×=1解得:x=90,经检验x=90分式方程的解,则甲队单独完成这项工程需要的天数是:90×=60(天).答:甲需要60天,乙需要90天.(2)设甲、乙两队合作,完成这项工程需y天,则:y(+)=1,解得y=36,需要施工费用(8.4+5.6)×36=504(万元).∵504>500,∴工程预算的费用不够用,需增加预算4万元.【点评】此题主要考查了分式方程的应用,列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系,列出方程.9.(2016春•靖江市期末)某公司在工程招标时,接到甲、乙两个工程队的投标书.每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工;(1)求甲、乙两队单独完成此项工程各需多少天?(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得哪一种施工方案划算,并说明理由.【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.求得规定天数的等量关系为:甲乙合作4天的工作总量+乙做(规定天数﹣4)天的工作量=1,据此列出方程并解答;(2)根据(1)的结论可以得到三种施工方案,分别求得每一施工方案的费用,然后比较,取其费用最少的方案即可.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得:++=1,解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天;(2)由(1)得到:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天.这三种施工方案需要的工程款为:方案1:1.5×20=30(万元);方案2:1.1×(20+5)+5×0.3=29(万元);方案3:1.5×4+1.1×20=28(万元).∵3027.5>30>28,∴第三种施工方案最节省工程款.【点评】本题考查了列分式方程解实际问题的运用,列一元一次方程解实际问题的运用,有理数大小比较的运用,解答时求出工程的施工规定天数是关键.10.(2016春•长沙校级期中)一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成.从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.【分析】(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.【解答】解:(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,可得:,解得:x=15,经检验x=15是原方程的解,答:甲15天,乙30天;(2)设甲车每天租金为a元,乙车每天租金为b元,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:,解得:,①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.【点评】此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.考点卡片1.二元一次方程组的应用(一)、列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)、设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.2.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.第11页(共11页)。
中考数学历年各地市真题 分式(分式方程,分式应用题)
![中考数学历年各地市真题 分式(分式方程,分式应用题)](https://img.taocdn.com/s3/m/4647037ff242336c1eb95e7e.png)
中考数学历年各地市真题分式(分式方程,分式应用题)(2010哈尔滨)1。
函数y =2x 1x ++的自变量x 的取值范围是 .x ≠-2 (2010哈尔滨)2。
方程x3x x 5-+=0的解是 .-2(2010哈尔滨)3.先化简,再求值21a 3a 1a +÷++其中a =2sin60°-3.3323a 2=+ (2010珠海)4为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得105.112001200=-xx 解得:x=40经检验:x=40是原方程的根,所以1.5x=60答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.(2010红河自治州)16. (本小题满分7分)先化简再求值:.25624322+-+-÷+-a a a a a 选一个使原代数式有意义的数带入求值. 解:原式=.25)3(2)2)(2(32+-+-+÷+-a a a a a a =.25)2)(2()3(232+--++⋅+-a a a a a a =2522+-+a a =23+-a当即可)、的取值不唯一,只要时,(321-≠=a a a原式=1213-=+-(2010年镇江市)18.计算化简(2).31962++-x x原式31)3)(3(6-+-+=x x x (1分) )3)(3(36-+-+=x x x (3分))3)(3(3-++=x x x (4分).31-=x (2010年镇江市)19.运算求解(本小题满分10分)解方程或不等式组;(2).231-=x xx 223x x =-,(1分) 0232=+-x x , (2分) 0)1)(2(=--x x , (3分) .1,221==∴x x (4分)经检验,1,221==x x 中原方程的解. (5分)(2010年镇江市)25.描述证明(本小题满分6分)海宝在研究数学问题时发现了一个有趣的现象:答案:(1);2ab abb a =++(1分).ab b a =+(2分) (2)证明:,2,222ab ab abb a ab a b b a =++∴=++ (3分))6.(,0,0,0,0)5(,)()()4(,)(222222分分分ab b a ab b a b a ab b a ab ab b a =+∴>>+>>=+∴=++∴(2010遵义市) 解方程:xx x -=+--23123 答案:解:方程两边同乘以()2-x ,得:()323-=-+-x x合并:2x -5=-3 ∴ x =1经检验,x =1是原方程的解.(2010台州市)解方程:123-=x x答案:解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分所以原方程的解是3=x .(玉溪市2010)2. 若分式221-2b-3b b -的值为0,则b 的值为(A )A. 1B. -1C.〒1D. 2(玉溪市2010)…………3分…………4分…………5分a )1)(1(1)1)(1(12-+⋅⎥⎦⎤⎢⎣⎡++--+=a a a a a a a 解:原式.211,111.1622代入求值的值作为数中选一个你认为合适的和,再从)先化简(a a a a a a --÷+-+a )1)(1(1122-+⋅++-=a a a a a .a1-=a .212-==时,原式当a…………7分(桂林2010)17.已知13xx+=,则代数式221xx+的值为_________.7(桂林2010)20.(本题满分6分)先化简,再求值:222 11()x y x y x y x y+÷-+-,其中1,1x y==2222222:=()x y x y x yx y x y x y+-+÷---20.(本题 6分)解原式………………1分=22222x y x y x yx y x y++--⨯-………………………3分=22xx y=2xy…………………………………4分=2131=-……………………………………6分(2010年无锡)18.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了▲.【注:销售利润率=(售价—进价)〔进价】答案40%(2010年无锡)19.计算:(2)221(2).1a aaa-+---(2)原式=2(1)(2)1aaa----=12a a--+=1(2010年无锡)20.1,,2=yxy==当时原式(1) 解方程:233x x =+; 答案解:(1)由原方程,得2(x+3)=3x,……(1分) ∴x=6.……………………………(3分) 经检验,x=6是原方程的解,∴原方程的解是x=6………………(4分)(2010年连云港)14.化简:(a -2)〃a 2-4a 2-4a +4=___________.答案 2a +(2010宁波市)19.先化简,再求值:a -2a 2-4 +1a +2,其中a =3.12. (2010年金华) 分式方程112x =-的解是 ▲ . 答案:x =32.(2010年长沙)函数11y x =+的自变量x 的取值范围是 C A .x >-1B .x <-1C .x ≠-1D .x ≠118.(2010年长沙)先化简,再求值:2291()333x x x x x ---+ 其中13x =. 解:原式=(3)(3)13(3)x x x x x +--+ ……………………………………………2分=1x……………………………………………………………4分当13x =时,原式=3 …………………………………………………6分(2010年湖南郴州市)18.先化简再求值:2111x x x---, 其中x =2. 答案:18.解:原式=1(1)(1)x x x x x --- ……………………………………………3分 =1(1)x x x -- ………………………………………………4分=1x………………………………………………5分 当x =2时,原式=1x =12………………………………………………6分(2010湖北省荆门市)17.观察下列计算:111122=-⨯1112323=-⨯ 1113434=-⨯1114545=-⨯ … …从计算结果中找规律,利用规律性计算111111223344520092010++++⨯⨯⨯⨯⨯ =___▲___. 答案:200920104.(2010湖北省咸宁市)分式方程131x x x x +=--的解为 A .1x = B .1x =- C .3x =D .3x =-答案:D17.(2010湖北省咸宁市)先化简,再求值:21(1)11aa a +÷--,其中3a =-. 解:原式21(1)(1)a a a a a -=⨯+-1a a =+.当3a =-时,原式33312-==-+.19.(2010年济宁市)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 19.(1)111n n -+ 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . 〃〃〃〃〃 3分 (3)原式=1-12+12-31+31-41+…+20091-20101 =12009120102010-=. (2010年成都)14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________. 答案:6(2010年眉山)20.解方程:2111x x x x++=+答案:20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解. ∴原方程的解为12x =-.……………………(6分)北京14. 解分式方程423-x -2-x x=21。
《分式方程》专项练习和中考真题(含答案解析及点睛)
![《分式方程》专项练习和中考真题(含答案解析及点睛)](https://img.taocdn.com/s3/m/f8f7363703020740be1e650e52ea551811a6c95d.png)
《分式方程》专项练习1.下列关于x 的方程:①153x -=,②121x x =-,③()111x x x -+=,④31x a b =-中,是分式方程的有 ( ) A .4个 B .3个 C .2个D .1个 2.关于x 的分式方程2503x x -=-的解为( ) A .3-B .2-C .2D .3【答案】B 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解析】解:去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选B .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x =-D .2403006x x=+ 【答案】B【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.【解析】解:根据题意得:2403006x x =+,故选B . 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键. 4.关于x 的方程1242k x x x -=--的解为正数,则k 的取值范围是( ) A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠- 【答案】C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【解析】解:分式方程去分母得:(24)2k x x --=,解得:44k x +=, 根据题意得:404k +>,且424k +≠,解得:4k >-,且4k ≠.故选C . 【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.5.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .6.甲、乙两地相距600km ,提速前动车的速度为/vkm h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( )A .60016003 1.2-=v vB .60060011.23v v =-C .60060020 1.2v v -=D .600600201.2v v=- 【答案】A 【分析】行驶路程都是600千米;提速前后行驶时间分别是:600600,1.2v v ;因为提速后行车时间比提速前减少20min ,所以,提速前的时间-提速后的时间=20min .【解析】根据提速前的时间-提速后的时间=20min ,可得60060011.23-=v v 即60016003 1.2-=v v故选:A 【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x 的方程201m x x -=+的解为正数,则m 的取值范围是( ) A .2m <B .2m <且0m ≠C .2m >D .2m >且4m ≠ 【答案】C【分析】先将分式方程化为整式方程,再根据方程的解为正数得出不等式,且不等于增根,再求解.【解析】解:∵解方程201m x x-=+,去分母得:()210mx x -+=,整理得:()22m x -=, ∵方程有解,∴22x m =-,∵分式方程的解为正数,∴202m >-,解得:m >2, 而x≠-1且x≠0,则22m -≠-1,22m -≠0,解得:m≠0,综上:m 的取值范围是:m >2.故选C. 【点睛】本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.8.随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x 万件,依据题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 【答案】B【分析】设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x 的分式方程.【解析】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:40050030x x =+.故选:B . 【点睛】本题考查了由实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.9.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-56【答案】A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可. 【解析】解:解不等式3132x x -≤+,解得x≤7,∴不等式组整理的7x x a ≤⎧⎨≤⎩,由解集为x≤a ,得到a≤7, 分式方程去分母得:y−a +3y−4=y−2,即3y−2=a ,解得:y =+23a , 由y 为正整数解且y≠2,得到a =1,7,1×7=7,故选:A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10. 已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 【答案】A【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【解析】213x m x -=-,方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-, Q 分式方程213x m x -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩,解得,3m ≤,故选A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值11.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000420080x x =-B .3000420080x x +=C .4200300080x x =-D .3000420080x x =+ 【答案】D【分析】设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】解:设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x =+,故选:D . 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.若数a 使关于x 的不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩…有且仅有三个整数解,且使关于y 的分式方程12311y a y y --=---的解为正数,则所有满足条件的整数a 的值之和是( )A .﹣3B .﹣2C .﹣1D .1【答案】A 【分析】先解不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩…根据其有三个整数解,得a 的一个范围;再解关于y 的分式方程12311y a y y--=---,根据其解为正数,并考虑增根的情况,再得a 的一个范围,两个范围综合考虑,则所有满足条件的整数a 的值可求,从而得其和.【解析】解:由关于x 的不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩…,得32511x a x ⎧⎪⎨+>⎪⎩… ∵有且仅有三个整数解,∴25311a x +<…,1x =,2,或3.∴250111a +<…,∴532a -<<; 由关于y 的分式方程12311y a y y--=---得1 2 31y a y -+=--(),∴2y a =-, ∵解为正数,且1y =为增根,∴2a <,且1a ≠,∴522a -<<,且1a ≠, ∴所有满足条件的整数a 的值为:﹣2,﹣1,0,其和为﹣3.故选A .【点睛】本题属于含一元一次不等式组和含分式方程的综合计算题,比较容易错,属于易错题.13.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .62103(1)-=x x B .621031=-x C .621031-=x x D .62103=x 【答案】A【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.【解析】解:由题意得:62103(1)-=x x,故选A. 【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.14.甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240280130x x=- B .240280130x x =- C .240280130x x += D .240280130x x -= 【答案】A【分析】设甲每天做x 个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.【解析】解:设甲每天做x 个零件,根据题意得:240280130x x=-,故选:A . 【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.15.方程111x x x x -+=-的解是______. 【答案】13x = 【分析】方程两边都乘以(1)x x -化分式方程为整式方程,解整式方程得出x 的值,再检验即可得出方程的解.【解析】方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+,解得:13x =, 检验:13x =时,2(1)09x x -=-≠,所以分式方程的解为13x =,故答案为:13x =.【点睛】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.16.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【解析】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.关于x 的分式方程11222k x x-+=--的解为正实数,则k 的取值范围是________. 【答案】2k >-且2k ≠【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解析】解:11222k x x -+=--方程两边同乘(x-2)得,1+2x-4=k-1,解得22k x += 222k +≠Q ,022k +>2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.18.方程981x x =-的解为_______. 【答案】9.x =【分析】去分母,把分式方程转化为整式方程,解整式方程,并检验即可得到答案.【解析】解:981x x =-Q ()918,x x ∴-= 998,x x ∴-= 9,x ∴= 经检验:9x =是原方程的根,所以原方程的根是:9.x = 故答案为:9.x =【点睛】本题考查的是分式方程的解法,掌握去分母解分式方程是解题的关键.19.方程121x +=12x -的解是x =_____. 【答案】-3【分析】根据解分式方程的步骤解答即可,注意求出x 的值后记得要代入原方程进行检验,看是否有意义.【解析】解:方程的两边同乘(2x +1)×(x ﹣2),得:x ﹣2=2x +1,解这个方程,得:x =﹣3,经检验,x =﹣3是原方程的解,∴原方程的解是x =﹣3.故答案为:﹣3.【点睛】本题主要考查了分式的求解,首先需要注意要给等式两边同时乘以最简公分母,其次计算结束后要对方程的解进行检验,要求熟练掌握分式方程的解题规则.20.分式方程3122x x x x-+=--的解是_____. 【答案】x =53【分析】根据分式方程的解题步骤解出即可. 【解析】3122x x x x-+=-- 方程左右两边同乘x -2,得 3-x -x =x -2. 移项合并同类项,得 x =53.经检验, x =53是方程的解.故答案为: x =53. 【点睛】本题考查分式方程的解法,关键在于熟练掌握解法步骤注意检验.21.若关于x 的方程22222x a a x x -+=--的解为非负数,则a 的取值范围是__________ 【答案】a≤1且1a 2≠ 【分析】先求出分式方程的解,然后结合方程的解为非负数,即可求出a 的取值范围.【解析】解:∵22222x a a x x-+=--,∴222(2)x a a x --=-,∴424x a x -=-,∴44x a =-;∵0x ≥,20x -≠,∴440a -≥,442a -≠,∴1a ≤,12a ≠,故答案为:1a ≤且12a ≠; 【点睛】本题考查解分式方程,由分式方程的解求参数的取值范围,解题的关键是正确求出分式方程的解. 22.已知关于x 的分式方程233x k x x -=--有正数解,则k 的取值范围为________. 【答案】k <6且k≠3分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 【解析】233x k x x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3, 关于x 的方程程233x k x x -=--有正数解,∴x=6-k >0,k <6,且k≠3, ∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.23.解方程:24111x x x -=-- 【答案】3【分析】去分母化成整式方程,求出x 后需要验证,才能得出结果; 【解析】24111x x x -=--,去分母得:214x x -+=,解得:3x =. 检验:把3x =代入1x -中,得-=-=≠13120x ,∴3x =是分式方程的根.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.24.解分式方程:2312x x x --=-. 【答案】x =45. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解析】解:方程2312x x x --=-,去分母得:x 2﹣4x +4﹣3x =x 2﹣2x ,移项得:-5x=-4, 系数化为1得:x =45,经检验x =45是分式方程的解. 【点睛】本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.25.近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.【答案】75km/h【分析】根据题意,设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,由等量关系列出方程,解方程即可得到答案.【解析】解:设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,则2563060 1.5x x-=,解得:50x =,检验∴50x =是原分式方程的解;∴走路线【点睛】本题考查分式方程的应用,以及理26.某工程队准备修建一条长3000的盲道结果提前2天完成这一任务,原计划每天修【答案】原计划每天修建盲道300米【分析】可设原计划每天修建盲道x 米,(125%)x +米,表示出原计划和实际修建x 的分式方程,求解即可.【解析】解:设原计划每天修建盲道米解这个方程,得300x =.经检验:答:原计划每天修建盲道300米【点睛】本题主要考查了分式方程的实际应27.如图,某公司会计欲查询乙商品的进价进货单商品进价(元/件) 数量(件)甲乙 商品采购员李阿姨和仓库保管员王师傅对采李阿姨:我记得甲商品进价比乙商品进价每王师傅:甲商品比乙商品的数量多40件请你求出乙商品的进价,并帮助他们补全进【答案】乙商品的进价40元/件;补全进货【分析】设出乙的进货价为x ,表示出乙的价等于甲的总金额列出方程,解出方程即可【解析】解:设乙的进货价为x ,则乙的进所以甲的数量为(3200x+40)件,甲的进可列方程为:x (1+50%)(3200x+404800+60x=7200 60x=2400 解得:x=4检验:当50x =时,1.50x ≠, 路线B 的平均速度为:50 1.575⨯=(km/h );以及理解题意的能力,解题的关键是以时间做为等量m 的盲道,由于采用新的施工方式,实际每天修建盲道的每天修建盲道多少米?,由“实际每天修建盲道的长度比原计划增加25%际修建3000m 的盲道所用的时间,根据“提前2天完x 米,根据题意,得300030002(125%)x x-=+. 300x =是所列方程的根.实际应用,正确理解题意,找准题中等量关系列出方的进价,发现进货单已被墨水污染.) 总金额(元) 7200 3200傅对采购情况回忆如下:进价每件高50%.件. 补全进货单.全进货单见详解出乙的进货数量,表示出甲的进货数量与进货价,程即可.乙的进货数量为3200x 件, 甲的进货价为x (1+50%) )=7200 x=40.为等量关系列方程求解. 盲道的长度比原计划增加25%,”可知实际每天修建天完成这一任务”可列出关于列出方程是解题的关键. ,根据假的进货数量乘以进货经检验:x=40是原方程的解,所以乙的进价为40元/件.答:乙商品的进价为40元/件.3200320080x 40==,3200x+40=120,x (1+50%)=60, 补全进货单如下表: 商品进价(元/件) 数量(件) 总金额(元) 甲60 120 7200 乙 40 80 3200【点睛】本题考查的是分式方程的应用,通过题目给的条件,设出乙的进货价,表示出甲的数量与进货价,通过甲的进货价×甲的数量=甲的总金额,列出分式方程,解出答案,解答本题的关键在于表示出相关量,找出等量关系,列出方程.29.在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?【答案】2万斤【分析】由题意设该村企去年黑木耳的年销量为x 万斤,则今年黑木耳的年销量为3x 万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】解:设该村企去年黑木耳的年销量为x 万斤 依题意得80360203x x+=解得:2x = 经检验2x =是原方程的根,且符合题意.答:该村企去年黑木耳的年销量为2万斤.【点睛】本题考查分式方程的应用,根据题意找准等量关系,正确列出分式方程是解题的关键.30.为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?【答案】八年级捐书人数是450人.【分析】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据七年级人均捐书数量是八年级人均捐书数量的1.5倍,列出方程求解并检验即可.【解析】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据题意得,180018001.5150x x=⨯+,解得,300x =,经检验,300x =是原方程的解, ∴ x+150=400+150=450,答:八年级捐书人数是450人.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程求解并检验.《分式方程》中考真题1.分式方程312x =-的解是( )A .1x =-B .1x =C .5x =D .2x =【答案】C 【分析】先去分母化成整式方程,然后解整式方程即可.【解析】解:312x =- 3=x-2 x=5 经检验x=5是分式方程的解 所以该分式方程的解为x=5. 故选:C .【点睛】本题考查了分式方程的解法,掌握解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1和检验是解答本题的关键,而且检验也是这类题的易错点.2.方程2152x x =+-的解是( ) A .1x =-B .5x =C .7x =D .9x = 【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解.【解析】解:方程可化简为()225x x -=+ 245x x -=+ 9x = 经检验9x =是原方程的解 故选D【点睛】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键.3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---【答案】D 【分析】先对分式方程乘以()2x -,即可得到答案.【解析】去分母得:()1122x x -=---,故选:D .【点睛】本题考查去分母,解题的关键是掌握通分.4.已知关于x 的分式方程422x k x x-=--的解为正数,则x 的取值范围是( ) A .80k -<< B .8k >-且2k ≠- C .8k >- D .4k <且2k ≠-【答案】B【分析】先解分式方程利用k 表示出x 的值,再由x 为正数求出k 的取值范围即可.【解析】方程两边同时乘以2x -得,()420x x k --+=,解得:83k x +=. ∵x 为正数,∴803k +>,解得8k >-,∵2x ≠,∴823k +≠,即2k ≠-, ∴k 的取值范围是8k >-且2k ≠-.故选:B .【点睛】本题考查了解分式方程及不等式的解法,解题的关键是熟练运用分式方程的解法,5.已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3B .4C .5D .6 【答案】B 【分析】将2x =代入原方程,即可求出k 值.【解析】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.6.若整数a 使关于x 的不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y +++=++的解为非正数,则a 的值为( )A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-【答案】B【分析】先解不等式组,根据不等式组的整数解确定a 的范围,结合a 为整数,再确定a 的值,再解分式方程,根据分式方程的解为非正数,得到a 的范围,注意结合分式方程有意义的条件,从而可得答案. 【解析】解:1112341x x x a x -+⎧≤⎪⎨⎪->+⎩Q ①②由①得:25,x ≤ 由②得:x >13a +, 因为不等式组有且只有45个整数解,13a +∴<25,x ≤ 1203a +∴-≤<19,- 601a ∴-≤+<57,- 61a ∴-≤<58,-a Q 为整数,a ∴为61,60,59,---Q 2260111y a y y+++=++,22601,y a y ∴+++=+ 61,y a ∴=-- 而0,y ≤ 且1,y ≠- 610,a ∴--≤ 61,a ∴≥-又611,a --≠- 60,a ∴≠- 综上:a 的值为:61,59.-- 故选B .【点睛】本题考查的是由不等式组的整数解求参数系数的问题,考查分式方程的解为非正数,易错点是疏忽分式方程有意义,掌握以上知识是解题的关键.7.若关于x 的一元一次不等式组()213212x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y 的分式方程122+=---y a y y 有非负整数解,则符合条件的所有整数a 的和为( )A .-1B .-2C .-3D .0【答案】B 【分析】首先由不等式组的解集为x ≥5,得a <3,然后由分式方程有非负整数解,得a ≥-2且a ≠2的偶数,即可得解.【解析】由题意,得()2132x x -≤-,即5x ≥12x a ->,即2x a +>∴25a +<,即3a < 122+=---y a y y ,解得22a y +=有非负整数解,即202a y +=≥ ∴a ≥-2且a ≠2∴23a -≤<且2a ≠∴符合条件的所有整数a 的数有:-2,-1,0,1 又∵22a y +=为非负整数解, ∴符合条件的所有整数a 的数有:-2,0∴其和为202-+=-故选:B . 【点睛】此题主要考查根据不等式组的解集和分式方程的解求参数的值,熟练掌握,即可解题.8.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是( )A .1600元B .1800元C .2000元D .2400元 【答案】C【分析】设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x ,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【解析】解:设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x , 根据题意得:80004000800011.2x x+-=,解得:x =2000,经检验:x =2000是原方程的解, 答:每间直播教室的建设费用是2000元,故选:C .【点睛】本题考查了分式方程的应用,解题的关键是找到题目中的等量关系,难度不大.9.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km ”,乙对甲说:“我用你所花的时间,只能行驶80km ”.从他们的交谈中可以判断,乙驾车的时长为( )A .1.2小时B .1.6小时C .1.8小时D .2小时 【答案】C【分析】设乙驾车时长为x 小时,则乙驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【解析】解:设乙驾车时长为x 小时,则乙驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:180(3)803x x x-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.10.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务若设原计划每周生产x 万个口罩,则可列方程为( )A .18018011.5x x x x--=+ B .18018011.5x x x x --=- C .18018021.5x x =+ D .18018021.5x x =- 【答案】A【分析】根据第一周之后,按原计划的生产时间=提速后生产时间+1,可得结果.【解析】由题知:18018011.5x x x x--=+ 故选:A . 【点睛】本题考查了分式方程的实际应用问题,根据题意列出方程式即可.11.若关于x 的分式方程2222x m m x x +=--有增根,则m 的值为_______. 【答案】1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【解析】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为_____. 【答案】1或12分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.【解析】去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a--=3时,分式方程无解,则a=1,故关于x的分式方程333x ax x+-+=2a无解,则a的值为:1或12.故答案为1或12.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.13.若分式11x+的值等于1,则x=_____.【答案】0【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.【解析】解:由分式11x+的值等于1,得11x+=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解决本题的关键.14.某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程_________.【答案】24024021.5x x=+【分析】设原计划每天生产零件x个,则实际每天生产零件1.5x个,根据比原计划少用2天,列方程即可.【解析】解:设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意,得24024021.5x x=+.故答案是:24024021.5x x=+.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.15.方程3122xx x=++的解是_______.【答案】3 2【分析】根据分式方程的解法步骤解出即可.【解析】3122xx x=++左右同乘2(x+1)得: 2x=3解得x=32.经检验x=32是方程的跟.故答案为:32.【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.16.解方程:32xx--+1=32x-.【答案】x=1【分析】找出最简公分母(x-2),去分母,变成一元一次方程从而得解.【解析】32xx--+1=32x-,两边同乘以(x﹣2)得,x﹣3+(x﹣2)=﹣3,解得,x=1.经检验x=1是原分式方程的解.【点睛】本题考查实数的混合运算,尤其是负指数运算,还考查了解分式方程,解题关键是熟练掌握实数混合运算顺序.。
2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)
![2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)](https://img.taocdn.com/s3/m/3fab1d378bd63186bdebbc65.png)
《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备价格(万元/台)月处理污水量(吨/台)(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?A 型m 220B 型m ﹣318016.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作根据题意得:7m+5×解得:m≥10.≤220,天,﹣=2,=,答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴∴20≤m≤40.∵15>0,,+=1,+=1,﹣=10,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元,根据题意得:解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天,依题意,得:+=,=2×,整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m 天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m +)+2.4×≤127,解得:m ≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B 台灯每盏的进价为x 元,则A 台灯每盏的进价为(x +30)元,依题意,得:解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x +30=80.答:A 台灯每盏的进价为80元,B 台灯每盏的进价为50元.(2)设购进A 台灯m 台,则购进B 台灯(100﹣m )台,依题意,得:(120﹣80)m +(80﹣50)(100﹣m )≥3400,解得:m ≥40.答:至少需购进A 台灯40台.8.解:(1)设第一批饮料进货单价为x 元,则第一批饮料进货单价为(x +2)元,依题意,得:解得:x =4,经检验,x =4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y 元,依题意,得:(300+900)y ﹣(1200+5400)≥5400,解得:y ≥10.=3×,=,答:销售单价至少为10元.9.解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元,依题意,得:1.2(x +10)+x ≤34,解得:x ≤10.答:购入的B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a +30)元,依题意,得:解得:a =50,经检验,a =50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x +0.5)元,根据题意得:解得:x =2,经检验:x =2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元,根据题意得:解得:m ≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x 万元,则每个甲种配件的价格为(x ﹣0.4)万元,根据题意得:解得:x =1.2,经检验,x =1.2是原分式方程的解,∴x ﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m 件,购买乙种配件n 件,根据题意得:0.8m +1.2n =80,=,×(3﹣2)+×(m ﹣2.5)≥1500,×2=,=,∴m =100﹣1.5n .∵甲种配件要比乙种配件至少要多22件,∴m ﹣n ≥22,即100﹣1.5n ﹣n ≥22,解得:n ≤31.2,∵m ,n 均为非负整数,∴n 的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm 2,则乙队每天可绿化面积为2xm 2,根据题意得:解得:x =50,经检验,x =50是所列分式方程的解,∴2x =100.答:甲队每天可绿化面积为50m 2,乙队每天可绿化面积为100m 2.(2)设应安排乙队绿化m 天,则安排甲队绿化根据题意得:0.25×解得:m ≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x 米,则甲工程队每天完成2x 米,依题意,得:解得:x =300,经检验,x =300是原方程的解,且符合题意,∴2x =600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y 天,则甲乙两工程队还需合作依题意,得:7000(y +解得:y ≥1,∴﹣y ≤﹣=6.﹣y )+5000(﹣y )≤79000,=(﹣y )天,﹣=10,+0.4m ≤8,天,﹣=4,答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:解得:m =18,经检验,m =18是原方程的解,且符合题意.∴m =值为18.(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(10﹣x )台,依题意得:18x +15(10﹣x )≤156,解得:x ≤2,∵x 是整数,∴有3种方案.当x =0时,y =10,月处理污水量为180×10=1800吨,当x =1时,y =9,月处理污水量为220+180×9=1840吨,当x =2时,y =8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x 米,则乙队每天修路(x ﹣50)米,依题意,得:解得:x =200,经检验,x =200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y 天才能完工,依题意,得:45000﹣(200﹣50)y ≥200×120,解得:y ≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元,依题意,得:解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意,∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.=,=,=,(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,+=1,依题意,得:解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,﹣=50,依题意,得:解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,=,依题意,得:解得:x=40,﹣=4,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作依题意,得:3m+2.4×解得:m≥10.答:至少安排甲队工作10天.≤66,天,。
初中数学:分式方程应用题专题练习附详解(精)
![初中数学:分式方程应用题专题练习附详解(精)](https://img.taocdn.com/s3/m/5df4811154270722192e453610661ed9ad5155a6.png)
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考2012分式方程 应用题真题训练(含答案)1、 我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、 南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率=污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于...70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少..还需要增加多少万吨,才能符合国家规定的要求?4、 甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天5、 炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、 张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、 有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、 进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、 甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、 南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、 某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、 今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、 某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、 甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、 某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?通过这段对话,请你求出该地驻军原来每天加固的米数.17、 A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、 轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.2012分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 解这个方程,得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去. 7分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分 341040%1.05x x-= 4分 解得56x ≈ 5分经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨. 10分4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 7分答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, ……………………1分 根据题意,得 10x +1245x =1 ………………………………… 4分 解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分 解得:5x =经检验5x =是原方程的解 6分所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元) 8分答:该老板两次售书总体上是赚钱了,共赚了520元. 9分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分 经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 3分 解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分 ∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分 18、 20。