三段式电流保护带自动重合闸前加速保护实验
自动重合闸后加速保护实验报告心得
自动重合闸后加速保护实验报告心得重合闸是电力系统中常见的操作,用于恢复电力系统的供电。
而加速保护是为了在重合闸后能够快速发现和隔离故障,确保系统的安全运行。
在进行自动重合闸后加速保护的实验中,我学到了很多知识和经验,深刻体会到了实验的重要性和意义。
首先,在实验过程中,我了解到了自动重合闸和加速保护的原理和作用。
自动重合闸是一种用于自动恢复电力系统供电的装置,当系统发生短暂故障而导致电力中断时,自动重合闸能够快速恢复供电,减少中断时间,提高供电可靠性。
而加速保护则是为了在重合闸后能够快速发现和隔离故障,防止故障进一步扩大,保护电力设备和系统的正常运行。
其次,实验中我了解到了加速保护系统的组成和工作流程。
加速保护系统由故障检测模块、故障判断模块和故障隔离模块组成,工作流程为:当重合闸完成后,故障检测模块快速检测电网的电压、电流和频率等参数,根据预设的故障判断规则判断是否存在故障;如果存在故障,则故障判断模块会发出信号,并将故障信息传输给故障隔离模块;故障隔离模块根据故障信息,快速对故障进行隔离,避免故障蔓延和扩大。
再次,通过实验我意识到了实验操作的重要性和对结果的影响。
在实验前,我们要严格按照实验要求和步骤进行操作,确保实验的准确性和可靠性。
实验中,我们需要认真观察和记录实验数据,及时发现异常和故障。
在实验结束后,我们要认真整理和分析实验数据,总结实验结果,找出实验中存在的问题和改进的方向。
最后,我认识到了加速保护在电力系统中的重要性和必要性。
加速保护能够快速发现和隔离故障,保护电力设备和系统的安全运行。
在电网事故和故障发生后,加速保护能够迅速采取措施,避免故障进一步扩大,减少事故损失。
因此,加速保护在电力系统的设计和运行中起着至关重要的作用。
通过本次实验,我对自动重合闸和加速保护有了更深入的理解,掌握了实验操作的技能和方法,并获得了宝贵的经验。
我相信这些知识和经验对我的专业学习和今后的工作都具有积极的影响和意义。
三段式电流保护与自动重合闸后加速11111111
SCIENCE & TECHNOLOGY COLLEGE OFNANCHANG UNIVERSITY《专业综合实验与设计》任务书TASK PLAN FOR INTEGRA TED EXPERIMENT AND DESIGN题目三段式电流保护与自动重合闸后加速学科部、系:信息学科部专业班级:电气工程081班学号:7022808043学生姓名:聂丹指导教师:黄灿英、许仙明、吴敏起讫日期:2011.11.7----2011.11.18一、课程设计的要求和内容(包括原始数据、技术要求、工作要求)原始数据:交流电压220V,实验装置一套技术及工作要求:1、掌握短路电流的计算;一.概述供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件.二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.在介绍简化计算法之前必须先了解一些基本概念.1.主要参数Sd三相短路容量(MV A)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(Ω)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量Sjz =100 MV A基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MV A时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)2、掌握三段式电流保护的整定计算;(一)、一次网络模拟接线中各点短路电流及负荷电流表22-1短路点D1 D2D3 XL-1的正常最大工作电流并R f后的负荷电流最大运行方式下三相短路电流(安)4.5 1.75 0.695 0.25 0.5最小运行方式下三相短路电流(安)3 1.465 0.645 / /(二)、三段保护动作值的整定计算1、线路XL-1的无时限电流速断保护电流速断保护的动作值按大于本线路末端D2点短路时流过保护的最大短路电流I dL2。
自动重合闸前加速保护实验报告
自动重合闸前加速保护实验报告实验名称:自动重合闸前加速保护实验实验目的:1. 了解自动重合闸前加速保护的工作原理和应用场景。
2. 掌握自动重合闸前加速保护的接线方法和调试流程。
3. 实现自动重合闸前加速保护的保护动作,并进行实时监测和记录。
实验原理:自动重合闸前加速保护是极限短路电流跟踪保护的一种,它是指在短路发生后,短路电流将导致系统电压下降,从而引起系统频率增加,当系统频率增加到一定值时,自动重合闸前加速保护将对该线路进行高速自动隔离或断开,以保护线路设备的安全运行。
自动重合闸前加速保护根据系统频率的改变进行动作,因为频率高于标准频率表明负荷容量不足,可能会导致电力设备受损。
在过电压的保护下,自动重合闸前加速保护是一个次要联锁,它的作用是在保护变压器、母线、某些开关等设备免受短时间内的过负载。
在保护一段时间内,自动重合闸前加速保护也可能会被启动。
它使用超速元件来监测并控制频率值。
如果频率码>频率上限则由定时器发送信号,使断路器被打开。
实验仪器:1. 交流稳压电源2. 变压器3. 高低压开关柜4. 电动机模拟器5. 数字频率表6. 示波器7. 光电隔离测量仪8. 多功能电流互感器9. 自动重合闸前加速保护装置实验步骤:1. 对实验仪器进行连接,查看接线是否准确。
2. 打开交流稳压电源,调整输出电压和电流,使其符合实验要求。
3. 通过数码频率表检测电源的频率值,保持在50Hz左右。
4. 切断高低压开关柜中的隔离开关,使其断开。
5. 启动电动机模拟器,控制电机的负载,使其处于额定负载以下。
6. 通过光电隔离测量仪、数字电流表以及数字电压表检测不同信号的电流和电压值,保证信号符合实验条件且正常。
7. 开始自动重合闸前加速保护实验验证:通过改变负载并提高电动机的转速,引发短路故障,记录在故障发生时的电压、电流和频率的变化。
8. 观察自动重合闸前加速保护动作的监测指示灯以及继电器状态。
9. 查看自动重合闸前加速保护的保护动作是否正确,确认其对设备安全的保护有效。
重合闸前加速与后加速保护应用分析
重合闸前加速与后加速保护应用分析尹莉欣【摘要】在现在供电网络中,架空线路仍占有一定比例,而在架空线路的故障中由于暂时性故障引起,如雷电、异物悬挂、风吹树枝接触线路、小动物攀爬等.这些事件引起的线路故障只是暂时导致线路绝缘降低,但一但切断电源后,异物消失,线路绝缘又可自动恢复,在这种情况下合理利用线路重合闸可有效提高线路供电可靠性水平,对前加速与后速重合闸的适用范围及优缺点加以论述以供参考.【期刊名称】《电力与能源》【年(卷),期】2016(037)003【总页数】3页(P391-393)【关键词】供电网络;重合闸;瞬时故障;保护延时【作者】尹莉欣【作者单位】国网山西省电力公司太原供电公司,太原030009【正文语种】中文【中图分类】TM755由于城市配电线路设备复杂,线路跨距大,同时对于供电质量要求较高,而电力系统的运行经验证明,架空线路的故障大多是“瞬时性”的,如大风引起的线路之间的互碰、鸟类及小动行碰撞造成线路摇摆,雷电引起的绝缘子表面闪络等。
在故障由继电保护装置迅速断开后,故障点表面绝缘恢复,此时如果由线路值班人员手动合闸,会造成操作时间较长,用户负荷设己较长时间停电,如所带负荷对电力可靠性要求较高则会带来不必要的损失,但如利用自动重合闸装置将对断路器进行一次合闸会大大提高供电的可靠性,但由于重合间设备是无法判断故障是瞬时还是永久性的,所以重合后有可能由故障未能排除而再次跳开,根据运行资料统计,自动重合闸的成功率一般以60%~90%之间,但由于该设备本身投资小,且简单有效,因此在电力系统中应用较广。
在断路器开关正常工作时,如开断负荷,重合闸装置是不应起动,但线路掉闸时该装则能正常动作,这就需要在保护整定调整时需要明确运行状态,以故障电流为限区分动作要求。
在人工或以后台机方式遥控操作开关动作时,重合闸装置不应起动;低周保护按频率减载切掉负荷时,也应将该装置闭锁;该装置还应带有方向性,向保护线路后侧的主变及母线发生故障引起开关掉闸时,因不属于线路故障,应闭锁重合闸。
(整理)电力系统继电保护实验指导书
实验一 阶段式过电流与自动重合闸前加速一、实验目的1、熟悉自动重合闸前加速保护的原理与接线。
2、掌握自动重合闸与继电保护的配合形式。
3、理解继电保护与自动重合闸前加速这种配合形式的使用场合。
二、实验说明重合闸前加速保护是当线路发生故障时,靠近电源侧的保护首先无选择性地瞬时动作,使断路器跳闸,尔后再借助于自动重合闸来纠正这种非选择性的动作。
重合闸前加速保护的动作原理可由图12-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH 仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则来整定,即t 2>t 4。
图 12-1 自动重合闸前加速保护原理示意图当任何线路、母线(I 除外)或变压器高压侧发生故障时,装在变电所I 的无选择性电流速断保护1总是先动作,不带延时地将1QF 跳开,尔后ZCH 动作再将1QF 重合。
若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH 的动作退出工作,因此,此时通过各电流保护有选择性地切除故障。
图12-2示出了ZCH 前加速保护的原理接线图。
其中1LJ 是电流速断,2LJ 是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ 动作,其接点闭合,经JSJ 的常闭接点不带时限地动作于断路器,使其跳闸,随后断路器辅助触点起动重合闸装置,将断路器合上。
重合闸动作的同时,起动加速继电器JSJ ,其常闭接点打开,若此时线路故障还存在,但因JSJ 的常闭接点已打开,只能由过流保护继电器2LJ 及SJ 带时限有选择性地动作于断路器跳闸,再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH 的优点。
其缺点是增加了1QF 的动作次数,一旦1QF 或ZCH 拒绝动作将会扩大停电范围。
三段式电流保护与自动重合闸综合实验
SCIENCE & TECHNOLOGY COLLEGE OF
NANCHANG UNIVERSITY
《专业综合实验与设计》任务书
TASK PLAN FOR INTEGRA TED EXPERIMENT AND DESIGN
题目三段式电流保护与自动重合闸后加速
学科部、系:信息学科部
专业班级:电气工程
学号:07电气
学生姓名:
指导教师:黄灿英许仙明
起讫日期:2010.11.16----2010.11.27
说明
1.课程设计任务书由指导教师填写,并经专业学科组审定,下达到
学生。
2.进度表由学生填写,交指导教师签署审查意见,并作为课程设计
工作检查的主要依据。
3.学生根据指导教师下达的任务书独立完成课程设计。
4.本任务书在课程设计完成后,与论文一起交指导教师,作为论文
评阅和课程设计答辩的主要档案资料。
实验报告-线路三段式电流保护实验-学生
9.观察负荷灯泡熄灭情况和电流表读数,观察三段保护的动作情况。
10.实验结束后,将故障模拟断路器断开,将三相调压器输出调回0V,断开所有电源开关。
六.实验现象及分析
1.按两相星形接线图完成实验接线,将变压器原方CT的二次侧短接。
2.根据理论计算值整定各继电器的动作整定值:
=A、 =秒
=A、 =秒
=A、 =秒
3.将模拟线路电阻可移动头放置在中间(50%)位置。
4.系统运行方式选择为“最大”,将重合闸开关切换至“OFF”位置,转换开关选择在“线路”。退出所有保护连接片,使保护动作后不能够跳闸。
1.学习电力系统电流保护中电流、时间整定值的调整方法。
2.分析三段式电流保护动作配合的正确。
二.使用设备明细
DJZ-IIIC电气控制与继电保护综合教学试验台
三.实验内容
1.学习整定线路三段式电流保护的动作整定值、时间整定值;
2.观察三段式电流保护动作配合情况。
四.实验原理
图1实验原理接线图
五.实验方法、步骤
由于保护出口连接片已退出断开保护动作后不能使模拟断路器分断所以故障持续时间不易太长即要在故障开始后当所有保护均已经动作时人为断开故障模拟断路器
电气工程及其自动化专业实验报告
姓名
学号
实验名称
线路三段式电流保护实验
指导教师
刘天野、秦鹏
实验日期
20140921
所属课程
电力系统继电保护原理
设备台号
一.实验目的
5.核查三相调压器输出为0V。
6.合三相电源开关,合直流电源开关,合上变压器两侧的模拟断路器1KM、2KM,调节调压器输出,使线路上的线电压不超过100V,负载灯亮,合上模拟断路器。
三段式电流保护带自动重合闸前加速保护实验
三段式电流保护带自动重合闸前加速保护实验一、原理说明重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。
重合闸前加速保护的动作原理可由图19-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则整定,即t2>t4。
图 19-1 自动重合闸前加速保护原理说明图当任何线路、母线(I除外)或变压器高压侧发生故障时,装在变电所I的无选择性电流速断保护1总是首先动作,不带延时地将1QF跳开,而后ZCH动作再将1QF 重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。
图19-2示出了ZCH前加速保护的原理接线图。
其中1LJ是电流速断,2LJ是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ动作,其接点闭合,经JSJ的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。
重合闸动作的同时,起动加速继电器JSJ,其常闭接点打开,若此时线路故障还存在,但因JSJ的常闭接点已打开,只能由过流保护继电器2LJ及SJ带时限有选择性地动作于断路器跳闸,再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH 的优点。
其缺点是增加了1QF 的动作次数,一旦1QF 或ZCH 拒绝动作将会扩大停电范围。
实验设备 L实验步骤和操作方法1、根据过电流保护的要求整定2LJ的动作电流值,和SJ的动作时限2、根据速断保护的要求整定1LJ的动作电流(例:取1LJ动作电流为3A)。
继电保护试验-三段式电流保护
实验三三段式电流保护一、实验目的1.加深了解三段式电流保护的原理。
2.掌握三段式电流保护的参数整定及各段保护之间的配合。
二、实验内容三段式电流保护分电流速断保护(I段保护),限时电流速断保护(II 段保护)和过电流保护(III段保护):包括以下4个部分:(1)电流保护I段:它是经过傅立叶模块变换的电流与预先设置的继电器电流相比较,若大于预置值则输出0,反之输出1。
其动作电流按躲开线路末端发生三相短路的短路电流整定;因为电流I段是瞬时动作,所以延时时间很小(延时0.05S)。
它只能保护线路的一部分,不能保护全长。
(2)电流保护II段:其动作原理与电流I段相同,其动作电流按与下一级线路的I段或II段配合来整定,整定值小于I段,延时时间0.5S,它能保护本线路的全长。
(3)电流保护I段:其动作原理与电流保护I段相同,其动作电流按躲开最大负荷电流整定,保护经过一个动作延时启动并切出故障,它不仅能保护本线路的全长,而且能保护下级相邻线路的全长。
当满足灵敏度的情况下,它的动作时间应与下一保护的ni段相配合。
(4)保护出口部分,该部分的功能就是将电流I、II和n段的输出信号相与。
模拟单侧电源系统中,线路发生故障时保护的动作情况。
ContinuousThnee-Pha&e Sfluroe 1)三相电源模排,战电压为1MV二A相的相柱南为0:^电内部连接方式为Yg;内部电限力内部也感为0,04比疑问2)格踞殁模块起始状态身close,勾iiA, H,白拜美,不在胃触发:勾逸开、断时间为外部校前方式□・» In1 DirtlSwtKygtem 3Three-PhaseFault5)故障发时4)二相卤端,500KW9.图3-1仿真模型图3-2子系统模型主要模块参数设置如下:(1)三相电源模块:线电压设置为10kV ; A 相的相位角设置参数为0;频 率设置参数为50Hz,内部连接方式设置为Yg ,星形连接;电源的内部电阻 设置参数为3。
电力系统继电保护实验指导书一--三段式电流保护与自动重合闸装置综合实验
实验一三段式电流保护与自动重合闸装置综合实验(-)实验目的1.了解电磁式电流保护的组成。
2.学习电力系统电流保护中电流、时间整定值的调整方法。
3.研究电力系统中运行方式变化对保护灵敏度的影响。
4.分析三段式电流保护动作配合的正确性。
()基本原理1.电流保护实验基本原理图in 电流保护实验一次系统图1)三段式电流保护当网络发生短路时,电源与故障点之间的电流会增大。
根据这个特点可以构成电流保护。
电流保护分无时限电流速断保护(简称I段)、带时限速断保护(简称II 段)和过电流保护(简称II段)。
下面分别讨论它们的作用原理和整定计算方法。
(1)无时限电流速断保护(I段)单侧电源路线上无时限电流速断保护的作用原理可用图1-2来说明。
短路电流的大小人和短路点至电源间的总电阻R E及短路类型有关。
三相短路和两相短路时,短路电流人与R E的关系可分别表示如下:/⑶=E, = E,K R E凡+ R。
,/ (2)=心* Esk — 2R +R,ls式中,E——电源的等值计算相电势;R——归算到保护安装处网络电压的系统ss等值电阻;Ro——路线单位长度的正序电阻;I ――短路点至保护安装处的距离。
由上两式可以看到,短路点距电源愈远(Z愈长)短路电流&愈小;系统运行方式小(尺愈大的运行方式)4亦小。
4与I的关系曲线如图1-2曲线1和2所示。
曲线1为最大运行方式(R,最小的运行方式)下的衣=/( /)曲线,曲线2为最小运行方式(Rs最大的运行方式)下的I K=JU)曲线。
路线AB和BC上均装有仅反应电流增大而瞬时动作的电流速断保护,则当路线AB上发生故障时,希翼保护KA?能瞬时动作,而当路线BC 士故障时,希望保护KAi 能瞬时动作,它们的保护范围最好能达到本路线全长的00%。
但是这种愿望是否能实现,需要作具体分析。
以保护KA 2为例,当本路线末端妇点短路时,希翼速断保护KA2能够瞬时动作切除故障,而当相邻路线BC的始端(习惯上又称为出口处)化点短路时,按照选择性的要求,速断保护KA2就不应该动作,因为该处的故障应由速断保护KAi动作切除。
实验二报告
实验二 三段式电流保护及自动重合闸张汉花 5100309389一、实验目的1) 熟悉微机三段式电流保护的原理和算法,掌握三段式电流保护的整定计算方 法。
2)了解重合闸前加速,后加速的基本原理和方法。
二、实验原理1)简单线路的三段式电流保护III 段过流保护整定:动作时间:△tIII 整定1s ;.max k zq dz f hK K I I K =式中:Kh 电流继电器返回系数,一般采用0.85;Kk 可靠系数,一般采用1.20; Kzq 自起动系数无电动机时取1 有电动机时大于1;Ifmax 最大负荷电流。
II 段保护整定:动作时间:△tII 整定为0.5s ;B 站 1.15I dz dz I I = A 站 Idz=1.05Ik.min 式中:Idz1下一段线路的I 段保护整定值I 段保护整定:动作时间:△tII 整定为0.1s ;.max 1.3dz k I I =式中:Ikmax 最大运行方式三相短路电流。
2)重合闸前加速,后加速的基本原理所谓“前加速”是指当多级分段保护线路无论哪一处发生故障,保护装置都迅速动作以防故障扩大,如果是瞬间故障则重合闸投入就成功,恢复正常供电;如果是永久故障则重合闸投入失败,保护装置就按预先整定的设置分段跳闸。
“前加速”的配合方式广泛应用于35kv 以下的非重要负荷配电线路上。
所谓后加速就是当第一次故障时,保护有选择性动作,然后,进行重合。
如果重合于永久性故障上,则在断路器合闸后,再加速保护动作,瞬时切除故障,而与第一次是否带时限无关。
“后加速”的配合方式广泛应用于35kv 以上的网络和对重要负荷供电的送电线路上。
三、实验内容1.B 站 A 站电流保护整定 1)B 站III 段保护.max 0.526f I A = ..max 1.2/0.850.734III dz Bf I I A ∴=⨯=△tIII 整定1s2)A 站I 、II 段保护整定.min 0.687k I A = ..min 1.150.79II dz A k I I A ∴=⨯=△tII 整定为0.5s.max 0.863k I A = ..max 1.3 1.1219I dz A k I I A ∴=⨯=△t I 整定0.1s3)B 站I 、II 段保护整定. 1.1219I dz AIA = ..1.15 1.2901II I dz Bdz AIIA ∴=⨯=△tII 整定为0.5s.max 1.467k I A = ..max 1.3 1.9071I dz B k I I A ∴=⨯=△t I 整定0.1s2. B 站A 站保护装置整定B 站保护将电流I 、II 、III 段保护投入,电流I 、II 段动作时间分别设定在0 秒和0.5 秒。
线路三段式电流保护
实验一线路三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路XL-2的一部分,其动作时限为t1II = t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括XL-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
当线路XL-2短路而XL-2的保护拒动或断路器拒动时,线路XL-1的过电流保护可起后备作用使断路器1跳闸而切除故障,这种后备作用称远后备。
武汉理工大学电力系统继电保护实验指导书.
实验一 电流电压联锁保护原理与实验一、实验目的1、通过实验进一步理解电流电压联锁保护的原理、并掌握其整定和计算的方法。
2、掌握电流电压联锁保护适用的条件。
二、实验原理 1、电压速断保护在电力系统的等值电抗较大或线路较短的情况下,当线路上不同地点发生相间短路时,短路电流变化曲线比较平坦,见图10-1所示的无时限电流速断保护。
电流速断保护的保护范围较小,尤其是在两相短路和最小运行方式时的保护范围更小,甚至没有保护范围。
在这种情况下,可以采用电压速断保护,而不采用电流速断保护。
在线路上不同地点发生相间短路时,母线上故障相之间残余电压Ucy 的变化曲线如图10-2所示。
从图中看出,短路点离母线愈远,Ucy 愈高。
其中:①表示最大运行方式下Ucy 变化曲线;②表示最小运行方式下的 Ucy 变化曲线。
电压速断保护是反应母线残余电压Ucy 降低的保护。
在保护范围内发生短路时,Ucy 较低,保护装置起动;在保护范围以外发生短路时,Ucy 较高,保护装置不起动。
如同电流速断保护一样,电压速断保护可以构成无时限的,也可以构成有延时的。
在图10-2所示的线路上,如果装有保护相间短路的无时限电压速断保护,它的动作电压Udx 应整定为kLd kcy K X I K U Udx )3(min .min .3==(10-1)式中Ucy.min —— 最小运行方式下在线路末端三相短路时,线路始端母线上的残余电压;)3(min .d I —— 上述短路时的短路电流;X l —— 线路电抗;Kk —— 可靠系数,考虑到电压继电器的误差和计算误差等因素,它一般取1.1~1.2。
从图10-2可见,在最小运行方式下,电压速断保护的保护范围(Ib.min )最大;在最大运行方式下,保护范围(Ib.max )最小。
所以电压速断保护应按最小运行方式来整定动作电压,按最大运行方式来校准保护范围。
在线路上任何一点发生短路时,不论是三相短路还是两相短路,母线上故障相之间的残余电压是相等的。
三段式过电流及距离保护实验
实验目的:
1)了解微机三段式过电流保护装置的原理
2)了解三段式过电流保护定值设置方法
3)进行保护动作特性实验
实验方法:
1)合直流开关,保护装置上电,进行过电流定值设定,设置过电流Ι段定值,其它保护功能退出。
2)三相、单相调压器调整在零位置,合交流电源开关;
4)作出距离Ⅲ段动作特性曲线图。
5)有兴趣的可以自行进行距离保护Ι段功能的实验,实验方法同前。
实验分组:4组,每组15人左右。
实验时间:下周一(11月10日)下午2点开始1组,周三下午1组,周四下午1组,周五1组。
3)调单相调压器,A相电流进入保护装置,慢慢调整调压器增大输出电流,当电流超过Ι段定值后应动作,观察保护装置动作情况(动作后动作等亮及报警灯亮,记录动作电流值及保护装置动作报告;记录完成,调整调压器减小电流,装置复归。
4)如上述方法分别进行Ⅱ段定值的设定及实验
5)如上述方法分别进行Ⅲ段定值的设定及实验
6)Ι段、Ⅱ段、Ⅲ段保护全投入,慢慢调整调压器增大输出电流,当电流超过其相应定值后应动作,动作顺序应是Ⅲ段、Ⅱ段、Ι段。记录完成后,减小电流,调压器归零位置。
7)绘制三段动作特性图。
实验内容二:距离保护动作阻抗特性实验
实验目的:
1)了解距离保护的原理
2)了解距离保护的动作特性设置方法
3)进行距离阻抗特性实验
实验方法:
1)设置距离Ⅲ段保护定值,退出三段式过电流保护;
2)取A相电流,AB相电压,调整单相调压器,输出电流为1A;
3)调整三相调压器输出电压为40V,调整移相器在某一个角度后,调整滑线电阻,降低输出电压,观察距离保护动作电压,动作后,记录动作电压;调整滑线电阻,增大电压,使装置动作复归。然后摇动移相器把守,再移动一个角度,调整滑线电阻,降低输出电压,观察距离保护动作电压,动作后,记录动作电压;调整滑线电阻,增大电压,使装置动作复归。然后摇动移相器把守,再移动一个角度,重复上述实验过程,做完360度,记录其动作电压。
自动重合闸前加速保护实验(精)
实验四、自动重合闸前加速保护实验一、实验目的1、熟悉自动重合闸前加速保护的原理接线。
2、理解自动重合闸前加速保护的组成型式,技术特性,掌握其实验操作方法。
二、预习和思考1、图19-2中各个继电器的功用是什么?2、在重合闸动作前是由哪几个继电器及其触点共同作用,实现前加速保护。
3、重合于永久性故障,保护再次起动,此时由哪几个继电器及其触点共同作用,恢复有选择性地再次切除故障的?4、为什么加速继电器要具有延时返回的特点?5、在前加速保护电路中,重合闸装置动作后,为什么JSJ继电器要通过1LJ的常开触点、JSJ自身延时返回的常开触点进行自保持?6、在输电线路重合闸电路中,采用前加速时,JSJ是由什么触点起动的?7、请分析自动重合闸前加速保护的优缺点。
三、原理说明重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。
重合闸前加速保护的动作原理可由图19-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则整定,即t2>t4。
图 19-1 自动重合闸前加速保护原理说明图当任何线路、母线(I除外或变压器高压侧发生故障时,装在变电所I的无选择性电流速断保护1总是首先动作,不带延时地将1QF跳开,而后ZCH动作再将1QF重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。
图19-2示出了ZCH前加速保护的原理接线图。
其中1LJ是电流速断, 2LJ是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ动作,其接点闭合,经JSJ的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。
三段式电流保护实验
三段式电流保护实验
电流的三段保护的内容分别指的是电流速断保护(第一段)、限时电流速断保护(第
二段)、还有定时限过电流保护(第三段)相互配合构成的一套保护。
一段又叫电流速断保护,没有时限,按躲开本段末端最大短路电流整定。
二段又叫做限时电流速割断,按挡住下级各相连元件电流速割断维护的最小动作范围
整定,可以做为本段线路一段的后备维护,比一段多时间t时限。
三段又叫过电流保护,按照躲开本元件最大负荷电流来整定,具有比二段更长的时限,可以作为一二段的后备保护,保护范围最大,时限最长。
当线路出现短路时,关键特征之一就是线路中的电流急剧减小,当电流穿过某一原订
值时,反应于电流增高而动作的保护装置叫做过电流维护。
电源的保护功能主要是过压、过流保护两种功能。
任何一种电源在出现故障时,都有可能并使输入电压或输入电流丧失掌控,为了并使
用户的功率不致因此而损毁,我公司的电源通常都建有过压和过流维护。
有些功率例如阻
性功率,当电源存有故障,功率上的电压有可能大幅下降,而电流的上时贬值不一定能够
少于过流维护值。
此种情况宜用过压保护,例如工作在50v,可将电压保护值调至55v,如果电源故障
只要电压升至55v时,电源会自动切断电压输出。
当有些负载是容性负载时,由于大容量
的电解电容器并联在一起,当电源发生故障时,电流就可能大幅度上升,而电压的升值却
不甚明显,这时电源内部的过流保护部件会首先启动,电源会自动切断输出。
继电保护实验-三段式电流保护
实验三三段式电流保护一、实验目的1.加深了解三段式电流保护的原理。
2.掌握三段式电流保护的参数整定及各段保护之间的配合。
二、实验内容三段式电流保护分电流速断保护(Ⅰ段保护),限时电流速断保护(Ⅱ段保护)和过电流保护(Ⅲ段保护):包括以下4个部分:(1)电流保护Ⅰ段:它是经过傅立叶模块变换的电流与预先设置的继电器电流相比较,若大于预置值则输出0,反之输出1。
其动作电流按躲开线路末端发生三相短路的短路电流整定;因为电流Ⅰ段是瞬时动作,所以延时时间很小(延时0.05S)。
它只能保护线路的一部分,不能保护全长。
(2)电流保护Ⅱ段:其动作原理与电流Ⅰ段相同,其动作电流按与下一级线路的I段或II段配合来整定,整定值小于I段,延时时间0.5S,它能保护本线路的全长。
(3)电流保护Ⅲ段:其动作原理与电流保护Ⅰ段相同,其动作电流按躲开最大负荷电流整定,保护经过一个动作延时启动并切出故障,它不仅能保护本线路的全长,而且能保护下级相邻线路的全长。
当满足灵敏度的情况下,它的动作时间应与下一保护的Ⅲ段相配合。
(4)保护出口部分,该部分的功能就是将电流Ⅰ、Ⅱ和Ⅲ段的输出信号相与。
模拟单侧电源系统中,线路发生故障时保护的动作情况。
图3-1 仿真模型图3-2 子系统模型主要模块参数设置如下:(1)三相电源模块:线电压设置为10kV ;A 相的相位角设置参数为0;频率设置参数为50Hz ,内部连接方式设置为Yg ,星形连接;电源的内部电阻设置参数为3Ω;电源内部电感设置参数为0.04H 。
(2)断路器模块:断路器的起始状态设置为closed ,闭合状态,断三相,即A 、B 、C 开关打勾;开、断时间为外部控制,在前面打勾。
(3)三相故障模块:通过对参数的设置,可以选择故障类型、控制信号、开关状态等。
设置起始状态为闭合,故障时间为0.4~1.6S 。
(4)线路:此模块用于模拟线路,线路长度100公里,其余取默认值。
(5)三相负载:按电压10KV ,频率50HZ ,功率500KW 设置。
自动重合闸前加速保护实验
图21-2示出了自动重合闸前加速保护的原理接线图。其中KA是过流保护。从该图可清楚地看出,线路故障时,首选继电器KA1动作,其触点闭合,经KM2的常闭触点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。重合闸动作的同时,起动继电器KM2,其常闭触点打开。若此时线路故障还存在,但因KM2的常闭接点已打开,只能由过流保护继电器KA2和时间继电器KT带时限有选择性地动作于断路器跳闸,再次切除故障。
3.模拟故障继续存在,但由于KM2常闭触点已经打开,所以只能由过流保护KM2和KT带时限有选择性地进行跳闸,切除故障。
五、实验结果及总结
1.当线路故障时,过流保护继电器KA1动作,其触点闭合,经KM2的常闭触点不带时限地动作于断路器,使其立即跳闸,实现前加速保护。
2.重合闸后,由于永久性故障,保护会再次起动。但由于KM2的常闭触点已打开,只能由过流保护继电器KA2和时间继电器KT,经延时后KT常开触点闭合,动作于断路器跳闸,再次切除故障。
1
6
EPL-08
自动重合闸
1
7
EPL-11
交流电压表
1
8
EPL-11
交流电流表
1
9
EPL-12B
光示牌
1
10
EPL-14
按钮及电阻盘
1
11
EPL-17A
三相电源
1
12
EPL-11
直流电源及母线
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三段式电流保护带自动重合闸前加速保护实验
一、原理说明
重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。
重合闸前加速保护的动作原理可由图19-1说明,线路X-1上装有无选择性的电流速断保护1和过流保护2,线路X-2上装有过流保护4,ZCH仅装在靠近电源的线路X-1上。
无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。
过流保护2、4的动作时限按阶梯原则整定,即t2>t4。
图 19-1 自动重合闸前加速保护原理说明图
当任何线路、母线(I除外)或变压器高压侧发生故障时,装在变电所I的无选择性电流速断保护1总是首先动作,不带延时地将1QF跳开,而后ZCH动作再将1QF 重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由ZCH的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。
图19-2示出了ZCH前加速保护的原理接线图。
其中1LJ是电流速断,2LJ是过流保护。
从该图可以清楚地看出,线路X-1故障时,首先速断保护的1LJ动作,其接点闭合,经JSJ的常闭接点不带时限地动作于断路器
使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。
重合闸动作的同时,起动加速继电器JSJ,其常闭接点打开,若此时线路故障还存在,但因JSJ的常闭接点已打开,只能由过流保护继电器2LJ及SJ带时限有选择性地动作于断路器跳闸,
再次切除故障。
自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套ZCH的优点。
其缺点是增加了1QF的动作次数,一旦1QF或ZCH拒绝动作将会扩大停电范围。
实验设备
7 ZB04 手动开关1只
实验步骤和操作方法
1、根据过电流保护的要求整定2LJ的动作电流值,和SJ的动作时限
2、根据速断保护的要求整定1LJ的动作电流(例:取1LJ动作电流为3A)。
3、根据时间继电器、加速继电器、保护出口继电器的技术参数选择相应的操作电源。
4、按图19-2自动重合闸前加速保护原理接线图绘制展开图和安装图,进行安装接线。
5、检查“前加速保护”接线的正确性,确定无误后,接入相应直流操作电源。
6、此时重合闸装置未启动,加速继电器JSJ未动作。
调交流电流回路,给电流继电器输入一个大于整定值的电流,模拟线路XL-1故障,观察前加速动作情况,加速跳闸后重合闸启动,图19-3中用开关S1闭合模拟ZCH出口接点的闭合来起动JSJ,JSJ常闭触点打开。
7、模拟故障继续存在,但由于JSJ常闭触点已经打开,所以只能由过电流保护2LJ 和SJ带时限有选择性地进行跳闸,切除故障。
注意事项
在操作试验前必须理解自动重合闸前加速保护的电路原理,在操作过程中要集中思想进行正确接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验中每一环节的正确性和安全性。
图19—3 自动重合闸前加速保护实验接线图。