(word完整版)三角形常见辅助线做法总结,推荐文档
(完整word版)三角形常见辅助线做法总结,推荐文档
数学专题一一三角形中的常用辅助线典型例题人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
全等三角形辅助找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,△ ABC是等腰直角三角形,/ BAC=90,BD平分/ ABC交AC于点D, CE垂直于BD,交BD的延长线于点E。
求证:BD=2CE(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
例2:如图,已知△ ABC中, AD是/BAC的平分线,AD又是BC边上的中线求证:△ ABC是等腰三角形。
li(3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利 用的思维模式是三角形全等变换中的 “对折”,所考知识点常常是角平分线的性 质定理或逆定理。
例 3:已知,如图,AC 平分/ BAD CD=CB AB>AD 求证:/ B+Z ADC=180。
① 关于角平行线的问题,常用两种辅助线;(4) 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式 是全等变换中的“平移”或“翻转折叠”例4:如图,△ ABC 中,AB=AC E 是AB 上一点,F 是AC 延长线上一点,连 EF 交BC 于D,若EB=CF求证:DE=DFB解题后的思考:(1)本题也可以在AB 上截取AD=AQ 连0D 构造全等三角形,即“截长法”例 5*ABC 中,/ BAC=60,/ C=40° ABC 交 AC 于 Q 求证:AB+BP=BQ+AQBQ 平 分/ ,AP 平分/ BAC 交BC 于P , A(2)本题利用“平行法”的解法也较多,举例如下:①如图(2),过0作OD// BC交AC于。
全等三角形中常见辅助线的作法
全等三角形中常见辅助线的作法一、倍长中线法。
1. 作法。
- 当遇到三角形中线时,可将中线延长一倍,连接相应顶点,构造全等三角形。
- 例如,在△ABC中,AD是BC边上的中线。
延长AD到E,使DE = AD,然后连接BE。
2. 原因。
- 因为BD = CD(AD是中线),∠BDE = ∠CDA(对顶角相等),DE = AD(所作辅助线),根据SAS(边角边)判定定理,可以证明△BDE≌△CDA。
- 这样做的好处是可以将分散的线段和角集中到新构造的全等三角形中,从而便于解决问题,比如可以将AC边转化为BE边,进而在新的三角形△ABE中研究线段之间的关系。
二、截长补短法。
1. 截长法。
- 作法。
- 在较长的线段上截取一段等于已知的较短线段。
- 例如,在△ABC中,要证明AB = AC + CD(假设AC<AB)。
在AB上截取AE = AC,然后连接DE。
- 原因。
- 截取AE = AC后,我们可以通过证明△ADE≌△ADC(如果有合适的条件,如AD 是角平分线,则可以利用SAS判定),得到DE = CD。
这样就将AB = AC+CD的证明转化为证明BE = DE的问题,将问题简化。
2. 补短法。
- 作法。
- 延长较短的线段,使延长后的线段等于较长的线段。
- 例如,在上述△ABC中,延长AC到F,使CF = CD,然后连接DF。
- 原因。
- 延长AC到F使CF = CD后,如果能证明△ABD≌△AFD(根据具体题目中的条件,可能利用AAS、ASA等判定定理),就可以将AB = AC + CD的证明转化为证明AB = AF的问题,通过构造全等三角形,把线段之间的关系进行转化,从而达到解题目的。
三、作平行线法。
1. 作法。
- 过三角形的一个顶点作某条边的平行线。
- 例如,在△ABC中,D是AB上一点,E是AC上一点,要证明AD/AB = AE/AC。
过D作DF∥AC交BC于F。
2. 原因。
- 因为DF∥AC,根据平行线的性质,可得∠ADF = ∠A,∠AFD = ∠C,∠BDF = ∠B。
专题全等三角形常见辅助线做法及典型例题
全等三角形辅助线做法总结 图中有角平分线;可向两边作垂线.. 也可将图对折看;对称以后关系现..角平分线平行线;等腰三角形来添.. 角平分线加垂线;三线合一试试看..线段垂直平分线;常向两端把线连.. 要证线段倍与半;延长缩短可试验..三角形中两中点;连接则成中位线.. 三角形中有中线;延长中线等中线..一、截长补短法和;差;倍;分截长法:在长线段上截取与两条线段中的一条相等的一段;证明剩余的线段与另一段相 等截取----全等----等量代换补短法:延长其中一短线段使之与长线段相等;再证明延长段与另一短线段相等延长 ----全等----等量代换例如:1;已知;如图;在△ABC 中;∠C =2∠B;∠1=∠2..求证:AB=AC+CD..2;已知:如图;AC ∥BD;AE 和BE 分别平分∠CAB 和∠DBA;CD 过点E .求证:1AE ⊥BE ; 2AB=AC+BD .二、图中含有已知线段的两个图形显然不全等或图形不完整时;添加公共边或一其中 一个图形为基础;添加线段构建图形..公共边;公共角;对顶角;延长;平行例如:已知:如图;AC 、BD 相交于O 点;且AB =DC;AC =BD;求证:∠A =∠D..三、延长已知边构造三角形例如:如图6:已知AC =BD;AD ⊥AC 于A ;BC ⊥BD 于B;求证:AD =BC四、遇到角平分线;可自角平分线上的某个点向角的两边作垂线“对折”全等例如:已知;如图;AC 平分∠BAD;CD=CB;AB>AD..求证:∠B+∠ADC=180..五、遇到中线;延长中线;使延长段与原中线等长“旋转”全等 例如:1如图;AD 为 △ABC 的中线;求证:AB +AC >2AD..三角形一边上的中线小于其他两边之和的一半2;已知:AB=4;AC=2;D 是BC 中点;AD 是整数;求AD..3;如图;已知:AD 是△ABC 的中线;且CD=AB;AE 是△ABD 的中线;求证:AC=2AE.六、遇到垂直平分线;常作垂直平分线上一点到线段两端的连线可逆 :遇到两组线段相等;可试着连接垂直平分线上的点 例如:在△ABC 中;∠ACB=90;AC=BC;D 为△ABC 外一点;且AD=BD;DE ⊥AC 交AC 的延长 线于E;求证:DE=AE+BC..七、遇到等腰三角形;可作底边上的高;或延长加倍法“三线合一”“对折”例如: 如图;ΔABC 是等腰直角三角形;∠BAC=90°;BD 平分∠ABC 交AC 于点D;CE 垂 直于BD;交BD 的延长线于点E..求证:BD=2CE..八、遇到中点为端点的线段时;延长加倍次线段例如:如图2:AD 为△ABC 的中线;且∠1=∠2;∠3=∠4;求证:BE +CF >EF九、过图形上某点;作特定的平行线“平移”“翻转折叠” 例如:如图;ΔABC 中;AB=AC;E 是AB 上一点;F 是AC 延长线上一点;连EF 交BC 于D; 若EB=CF..求证:DE=DF.. AD BCD CB A 110 图OC A EB D。
初中三角形最常见26种做辅助线做法及思路.doc
初中三角形最常见26种做辅助线做法及思路1、在利用三角形三边关系证明线段不等关系时,如果不能直接证明结果,可以接连两点或延长一边构造三角形,使结论中出现的线段在一个或几个三角形中,然后利用三边关系定理及不等式性质证明。
(注意:利用三角形三边关系定理及推论证明时,常通过做辅助线,将求证量或与求证相关的量移到同一个或几个三角形中)2、利用三角形外角大于任何与它不相邻的内角证明角的不等关系式,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证明。
3、有角平分线时常在角两边截取相等的线段,构造全等三角形4、有线段中点为端点的线段时,常加倍延长此线段构造全等三角形5、在三角形中有中线时,常加倍延长中线构造全等三角形6、截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段补短法:延长较短线段和较长线段相等7、证明两条线段相等的步骤:①观察要证明线段在那两个可能全等的三角形中,然后证明这两个三角形全等;②若图中没有全等三角形,可以把求证线段用和它相等的线段代替,再证明它们所在三角形的全等;③如果没有相等的线段替换,可作辅助线构造全等三角形。
8、在一个图形中,有多组垂直关系时,常用同角(等角)的余角相等来证明两个角相等。
9、三角形一边的端点到这边的中线所在的直线的距离相等10、条件不足时延长已知边构造三角形11、连接四边形的对角线。
把四边形问题转化成三角形来解决12、有和角平分线垂直的线段时,通常把这条线段延长,可归纳为“角分垂等腰归”13、当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形。
14、当证题中缺少线段相等条件时,可取某条线段中点,为证题提供条件。
15、有角平分线时,常过平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证明。
16、有等腰三角形时常用的辅助线:①作顶角的平分线、底边中线、底边高线②有底边中点时,常作底边中线③将腰延长一倍,构造直角三角形解题④常过一腰上的某一已知点做另一腰的平分线⑤常过某一腰上的某一已知点作底边的平行线⑥常将等腰三角形转换成特殊等腰三角形――等边三角形17、有二倍角时常用的辅助线:①构造等腰三角形使二倍角是等腰三角形的顶角的外角②平分二倍角③加倍小角18、有垂直平分线时常把垂直平分线抢的点与线段两端点连接起来19、有垂直时长构造垂直平分线20、有中点时常构造垂直平分线21、当涉及到线段平分的关系时常构造直角三角形,利用勾股定理证题22、条件中出现特殊角时常做高把特殊角放在直角三角形中23、三角形中一个内角平分线与一个外角平分线相交所称的锐角,等于第三个内角的一半24、三角形中的两个内角平分线相交所成的钝角等于90°加上第三个内角的一半25、三角形的两个外角平分线相交所成的锐角等于90°减去第三个内角的一半26、从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差的绝对值的一半。
(完整word版)八年级数学上几何证明中的辅助线添加方法
八年级数学(上)几何证明中的辅助线添加方法数学组 田茂松八年级数学的几何题, 有部分题需要做出辅助线才能完成。
有的时候, 做不出恰当的辅助线,或者做不出辅助线, 就没有办法完成该题的解答。
为了能够更好的让学生在做几何题时得心应手, 现在将八年级数学中几何题的辅助线添加方法总结如下。
常见辅助线的作法有以下几种:1.遇到等腰三角形, 可作底边上的高, 利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”。
2.遇到三角形的中线, 倍长中线, 使延长线段与原中线长相等, 构造全等三角形, 利用的思维模式是全等变换中的“旋转”。
3.遇到角平分线, 可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折”, 所考知识点常常是角平分线的性质定理或逆定理.4.过图形上某一点作特定的平分线, 构造全等三角形, 利用的思维模式是全等变换中的“平移”或“翻转折叠”。
5.截长法与补短法, 具体做法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长, 是之与特定线段相等, 再利用三角形全等的有关性质加以说明.这种作法, 适合于证明线段的和、差、倍、分等类的题目。
6.特殊方法:在求有关三角形的定值一类的问题时, 常把某点到原三角形各顶点的线段连接起来, 利用三角形面积的知识解答。
常见辅助线的作法举例:例. 如图1, , . 求证: .分析:图为四边形, 我们只学了三角形的有关知识, 必须把它转化为三角形来解决。
证明: 连接 (或 )∵//AB CD , //AD BC (已知) ∴∠1=∠2, ∠3=∠4 (两直线平行, 内错角相等) 在ABC ∆与CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC ∴ABC ∆≌CDA ∆(ASA ) ∴AD BC =(全等三角形对应边相等)例. 如图2,在 中, , , , 的延长于 .求证: .分析: 要证 , 想到要构造线段 , 同时 与 的平分线垂直, 想到要将其延长。
全等三角形中的两类辅助线的做法总结
全等三角形中的两类辅助线类型一、中线加倍法例题:如图,已知在△ABC 中,AD 是BC 边上的中线,且BAD CAD ∠=∠,求证:AB=AC.练习:1、已知在△ABC 中,AB=5,AC=3,求中线AD 的取值范围.2、如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证: AF=EF.3、如图,已知在△ABC 中,CD=AB ,BDA BAD ∠=∠,AE 是△ABD 的中线,求证:C BAE ∠=∠.4、如图,已知在△ABC 中,AD 是BAC ∠的平分线,M 是BC 的中点,过点M 作ME ∥DA ,与BA ,CA 或延长线交于点E ,F ,求证:BE=CF.MF E DCBA5、如图,已知在△ABC 中,AD 是BC 边上的中线,E 、F 分别是AB 、AC 上的点,且 DE DF ⊥,试判断 BE CF +与EF 的大小关系,并证明你的结论.C类型二、角平分线截长补短法例题:如图,已知在△ABC 中,AC=BC ,90C ∠=o,AD 是CAB ∠的平分线,求证:AB=AC+CD.B练习:1、如图,已知在△ABC 中,CD 平分ACB ∠,且BC AC AD =+,求证:2A B ∠=∠.C2、如图,已知在四边形ABCD 中,AD ∥BC ,12∠=∠,34∠=∠,直线DC 过点E 交AD 于D ,交BC 于C ,求证:AB=AD+BC.3、如图,已知在梯形ABCD 中,CE AB ⊥,CE 平分BCD ∠,求证:AD+DC=BC.EDCB A4、如图,已知在△ABC 中,60B ∠=o,AD 、CF 分别平分BAC ∠、ACB ∠,求证:AC=AF+CD.OFDCBA。
三角形中常见辅助线的作法(已整理)
几何常见的辅助线作法(三角形篇)1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”法构造全等三角形.2.中线类辅助线作法:遇到三角形的中线,常用倍长中线法,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.倍长中线辅助线作法:方式1: 延长AD 到E ,使DE=AD , 方式2:延长AD 到E ,使DE=AD ,连接BE ,即得△ACD ≌△EBD 连接CE ,即得△ABD ≌△ECD3. 角平分线类辅助线作法:角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种:①.截长与补短构全等:截长:已知∠1=∠2,在AB 上 补短:已知∠1=∠2,延长AC 到点E , 截取AF =AC . 即得△ACD ≌△AFD 使AB =AE ,即得△AED ≌△ABD注:截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目。
②.角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到角两边距离相等的性质来证明问题;说明:作PB ⊥ON ,可知PA=PB,进而得到△PAO ≌△PBO.F D C B A12截长图E D C B A 12补短图③.延长垂线段:题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。
说明:延长AP交ON于点B,可证△PAO≌△PBO,进而得到△AOB是等腰三角形。
④.作平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形(如左下图);或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形(如右下图).说明:作PQ平行于ON交OM于点Q,说明:作AB平行于OP交NO的延长线于点B,三角形POQ即为等腰三角形。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析).docx
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
线段垂直平分线,常向两端把线连。
三角形中两中点,连接则成中位线。
也可将图对折看,对称以后关系现。
角平分线加垂线,三线合一试试看。
要证线段倍与半,延长缩短可试验。
三角形中有中线,延长中线等中线。
1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2. 倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5. 用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法, (1 )可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理. ( 2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
三角形中的常用辅助线方法总结
三角形中的常用辅助线方法总结在解决三角形相关问题时,辅助线是一种常用的方法。
通过引入辅助线,我们可以更好地理解三角形的性质和特点,从而更容易解决问题。
在本篇文章中,我将总结一些常用的辅助线方法,并给出相应的解释和推导。
一、中位线和中线1.定义:中位线是连接一个三角形的两个顶点和中点的线段,而中线是连接一个三角形的两个边对中点的线段。
2.性质:-三条中位线交于一点(重心),该点到各顶点距离的平方和最小。
-三条中线交于一点(重心),此点在中线上离两端点的距离分别是中线的两段长度的1:2-重心将中位线和中线按1:2分割。
-重心到三顶点的距离与中线长度成正比。
3.应用:-利用中线的性质可以求三角形的重心坐标。
-利用中线和中位线的定比分割性质可以求解三角形内部各线段的长度。
二、角平分线和高线1.定义:角平分线是从一个三角形的顶点出发,将对角分为两个相等角的线段,而高线是从一个三角形的顶点垂直于对边的线段。
2.性质:-三条角平分线交于一点(内心),该点到三边的距离和最小。
-高线与对应边的对称中线相等。
-三角形任意两边上的高线交于一点(垂心)。
-内心、垂心和重心共线,且重心到垂心的距离是重心到内心距离的2倍。
3.应用:-利用角平分线的性质可以求三角形内部角度的大小。
-利用高线的性质可以求解三角形的面积和高。
三、中垂线和外心1.定义:中垂线是从一个三角形的顶点垂直于对边的线段,而外心是指一个三角形的三条垂直平分线的交点。
2.性质:-三条中垂线交于一点(外心),该点到各顶点的距离相等。
-外心是三角形的外接圆圆心。
-外心到三个顶点的距离相等,且等于外接圆的半径。
3.应用:-利用中垂线的性质可以求解三角形的垂足和高。
-利用外心的性质可以求解三角形的外接圆半径和三角形外接圆内切于三边的三角形内切圆半径。
四、三角形不等边中点连接线1.定义:不等边中点连接线是连接一个三角形的三个顶点的中点的线段。
2.性质:-三角形三边的中点连接线交于一点。
(完整版)三角形中位线中常见辅助线
1 / 22 1三角形中位线中的常见辅助线知识梳理知识点一 中点一、与中点有关的概念三角形中线的定义: 三角形顶点和对边中点的连线等腰三角形底边的中线三线合一 (底边的中线、顶角的角平分线、底边的高重合三角形中位线定义 :连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理: 三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.)直角三角形斜边中线: 直角三角形斜边中线等于斜边一半斜边中线判定: 假设三角性一边上的中线等于该边的一半,那么这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:但凡出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段, 从而到达将条件进行转化的目的。
方法二:构造中位线解读:但凡出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而到达构造三角形 中位线的目的。
2 / 22 2方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,那么考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点 构造三角形中位线考点说明:①但凡出现中点,或多个中点,都可以考虑取 四边形对角线中点 、等腰三角形底边中点、直角三角形斜边中点或其他线段中点 ;②延长三角形一边,从而到达构造三角形中位线的目的。
“题中有中点,莫忘中位线〞.与此很相近的几何思想是“题中有中线,莫忘加倍延〞,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用.3 / 223典型例题【例1】:AD 是△ABC 的中线, AE 是△ABD 的中线,且 AB BD ,求证:AC 2AE .AB E D C举一反三 1.如右以下列图,在 ABC 中,假设 B2 C ,AD BC ,E 为BC 边的中点.求证: A B 2DE .AB D E C4 / 2242.在ABC 中,ACB90,AC1BC ,以BC 为底作等腰直角BCD ,E 是CD 的中点,求证:AEEB2且AEBE .DE CA B【例2】四边形ABCD 的对角线ACBD ,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:∠AMN∠BNM .ABFENMCD举一反三1.四边形 ABCD 中,AC BD ,E 、F 分别是AD 、BC 的中点,EF 交AC 于M ;EF 交BD 于N ,AC和BD 交于G 点.求证: GMN G NM .DE ANGMBFC5 / 22 52.:在 ABC 中,BC AC ,动点D 绕ABC 的顶点A 逆时针旋转,且AD BC ,连结DC .过AB 、DC 的中点 E 、F 作直线,直线 EF 与直线AD 、BC 分别相交于点M 、N .1 〕如图 1旋转到BC 的延长线上时,点 N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,〔 ,当点D 求证:AMFBNE 〔2〕当点D 旋转到图 2中的位置时,AMF 与 BNE 有何数量关系?请证明.MDF(N)CCFN DMAE B AEB【例3】如图,在五边形 ABCDE 中, ABC AED 90, BAC EAD ,F 为CD 的中点.求证:BF EF .A BECF D6 / 22 6举一反三1.如下列图,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:1〕DEM ≌FDN ;〔2〕PAE PBF .CA DBE MNFP3.:在 ABC中,分别以AB 、AC为斜边作等腰直角三角形 ABM ,和CAN,P 是边BC的中点.求 证:PMPNA MPBNC7 / 22 74.如下列图, ABD 和ACE都是直角三角形,且ABDACE90,连接DE ,设M 为DE 的中点.1〕求证MBMC .〔2〕设 BAD CAE ,固定 RtABD ,让RtACE 移至图示位置,此时 MB MC 是否成立?请证明你的结论.A AE CECM MD DBB8 / 22 85.在△ABC 中,AB=AC ,分别以 AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形, M 是BC 边中点中点,连接 MD 和ME1〕如图1所示,假设AB=AC ,那么MD 和ME 的数量关系是2〕如图2所示,假设AB ≠AC 其他条件不变,那么MD 和ME 具有怎样的数量和位置关系?请给出证明过程;〔3〕在任意△ABC 中,仍分别以 AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断 △MED 的形状.AA ADDEEB C BMCBMCM图1图2 图39 / 229【例4】以ABC的两边 AB 、A C为腰分别向外作等腰RtABD 和等腰RtACE ,BADCA E90.连接DE ,M 、N 分别是 BC 、DE 的中点.探究:A M与DE 的位置关系及数量关系.〔1〕如图①当AB C为直角三角形时,A M与DE 的位置关系是________;线段A M与DE 的数量关系是________;〔2〕将图①中的等腰 RtABD 绕点A 沿逆时针方向旋转 (0 90)后,如图②所示,〔1〕问中得到的两个结论是否发生改变?并说明理由.DDNNEAEABMCBMC图①图②举一反三1. 11△ABC的外角平分线,过点A 作 ADBD 、AE CE ,垂足分别为 D 、E , 〔〕如图,BD 、CE 分别是连接DE .求证:DE ∥BC ,DE 1BCACAB2〔2〕如图2,BD、CE分别是△ABC的内角平分线,其他条件不变;〔3〕如图3,BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变。
(完整版)三角形中位线中的常见辅助线
三角形中位线中的常见辅助线知识梳理知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
方法二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。
方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点构造三角形中位线考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点;②延长三角形一边,从而达到构造三角形中位线的目的。
“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用.CEDBA典型例题【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.举一反三1. 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.2. 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠.MNF EDCB A举一反三1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.GBCDEFM N AMN ABEF DC(N )M F EDCBA2. 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA举一反三1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1)DEM FDN ∆∆≌; (2)PAE PBF ∠=∠.3. 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =PNMCBA4. 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE 的中点.(1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论.EMDCBA EM DCBAEDEDBC5. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图2所示,若AB≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; (3)在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.图1 图2 图3图【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.图①NM EDCB A图②NMEDCBA举一反三1. (1)如图1,BD 、CE 分别是ABC △的外角平分线,过点A 作AD BD AE CE ⊥⊥、,垂足分别为D E 、,连接DE .求证:()12DE BC DE AB BC AC =++,∥ (2)如图2,BD CE 、分别是ABC △的内角平分线,其他条件不变; (3)如图3,BD 为ABC △的内角平分线,CE 为ABC △的外角平分线,其他条件不变。
全等三角形中做辅助线技巧窍门要点大汇总
全等三角形中做协助线技巧重点大汇总口诀:三角形图中有角均分线,可向两边作垂线。
也可将图对折看,对称此后关系现。
角均分线平行线,等腰三角形来添。
角均分线加垂线,三线合一试一试看。
线段垂直均分线,常向两头把线连。
线段和差及倍半,延伸缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连结则成中位线。
三角形中有中线,延伸中线等中线。
一、由角均分线想到的协助线口诀:图中有角均分线,可向两边作垂线。
也可将图对折看,对称此后关系现。
角均分线平行线,等腰三角形来添。
角均分线加垂线,三线合一试一试看。
角均分线拥有两条性质: a 、对称性; b 、角均分线上的点到角两边的距离相等。
对于有角均分线的协助线的作法,一般有两种。
①从角均分线上一点向两边作垂线;②利用角均分线,结构对称图形(如作法是在一侧的长边上截取短边)。
往常状况下, 出现了直角或是垂直等条件时, 一般考虑作垂线; 其余状况下考虑结构对称图形。
至于选用哪一种方法,要联合题目图形和已知条件。
与角有关的协助线EA(一)、截取构全等如图 1-1 ,∠ AOC=∠BOC ,如取 OE=OF ,并连 ODC接 DE 、 DF ,则有△ OED ≌△ OFD ,从而为我们证FBA图1-1明线段、角相等创建了条件。
E例1. 如图 1-2 ,AB//CD , BE 均分∠ BCD ,CE 均分∠ BCD ,点 E 在 AD 上,求证:BC=AB+CD 。
BF例2.已知:如图 1-3 , AB=2AC ,∠ BAD=图1-2∠ CAD ,DA=DB ,求证 DC ⊥ACD C.\例3.已知:如图1-4,在△ ABC中,∠ C=2∠ B,AD均分∠ BAC,求证:AB-AC=CD剖析:本题的条件中还有角的均分线,在证明A中还要用到结构全等三角形,本题仍是证明线段的和差倍分问题。
用到的是截取法来证明的,在长的E线段上截取短的线段,来证明。
试一试看能否把短的延伸来证明呢?CB D练习图 1-41.已知在△ ABC中,AD均分∠ BAC,∠ B=2∠C,求证: AB+BD=AC2.已知:在△ ABC中,∠ CAB=2∠B,AE均分∠ CAB交BC于E,AB=2AC,求证: AE=2CE3.已知:在△ ABC中,AB>AC,AD为∠ BAC的均分线,M为AD上任一点。
(完整版)全等三角形常用辅助线做法
五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。
求证: CD=AD+BC。
思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。
2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。
初中几何辅助线大全-最全
三角形中作辅助线的常用方法举例一、延长已知边构造三角形:例如:如图7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BC分析:欲证AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。
E 证明:分别延长DA,CB,它们的延长交于E点,∵AD⊥ACBC⊥BD(已知)∴∠CAE=∠DBE=90°(垂直的定义)在△DBE与△CAE中A BO EE()公共角∵DBECAE()已证D CBDAC(已知)图71∴△DBE≌△CAE(AAS)∴ED=ECEB=EA(全等三角形对应边相等)∴ED-EA=EC-EB即:AD=BC。
(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)二、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
三、有和角平分线垂直的线段时,通常把这条线段延长。
例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。
求证:BD=2CEF分析:要证BD=2CE,想到要构造线段2CE,同时AE1B 12DC 图91CE与∠ABC的平分线垂直,想到要将其延长。
证明:分别延长B A,CE交于点F。
∵BE⊥CF(已知)∴∠BEF=∠BEC=90°(垂直的定义)在△BEF与△BEC中,12(已知)∵BEBE(公共边)BEFBEC()已证1C F(全等三角形对应边相等)∴△BEF≌△BEC(ASA)∴CE=FE=2∵∠BAC=90°BE⊥CF(已知)∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD与△ACF中BACCAF(已证)BDABFC()已证AB=AC(已知)∴△ABD≌△ACF(AAS)∴BD=CF(全等三角形对应边相等)∴BD=2CE四、取线段中点构造全等三有形。
完整版)全等三角形常用辅助线做法
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
等腰三角形中做辅助线的八种常用方法
等腰三角形中做辅助线的八种常用方法以等腰三角形中做辅助线的八种常用方法为标题,写一篇文章。
一、连接底边中点和顶点的直线在等腰三角形中,连接底边中点和顶点的直线是最常见的辅助线之一。
通过连接底边中点和顶点的直线,可以将等腰三角形分为两个等边三角形,从而为解决问题提供了更多可能性。
二、平分底角另一种常见的辅助线是平分底角。
通过连接底边两个顶点与底角的平分线,可以将等腰三角形分成两个相等的小三角形,从而使得问题的解决更加简单明了。
三、平分顶角平分顶角也是一种常用的辅助线方法。
通过连接顶点与底边中点的直线,可以将等腰三角形分为两个相等的小三角形,从而使得问题的解决更加方便。
四、连接底边两个顶点与三角形顶点的直线通过连接底边两个顶点与三角形顶点的直线,可以形成一个内切等边三角形。
这个内切等边三角形可以为解决问题提供更多线索。
五、连接底边两个顶点与顶角平分线的交点通过连接底边两个顶点与顶角平分线的交点,可以形成一个四边形。
这个四边形可以为解决问题提供更多线索。
六、连接底边两个顶点与底边中点的连线通过连接底边两个顶点与底边中点的连线,可以形成一个等腰梯形。
这个等腰梯形可以为解决问题提供更多线索。
七、连接底边两个顶点与对边中点的连线通过连接底边两个顶点与对边中点的连线,可以形成一个平行四边形。
这个平行四边形可以为解决问题提供更多线索。
八、连接对边中点的连线通过连接对边中点的连线,可以形成一个等腰三角形的中线。
这个中线可以为解决问题提供更多线索。
在解决等腰三角形相关问题时,可以灵活运用以上八种常用的辅助线方法。
通过合理选择辅助线,可以使问题的解决更加简单明了。
当然,在运用辅助线的过程中,需要注意辅助线与等腰三角形的关系,确保辅助线的引入能够帮助解决问题,而不会导致问题的复杂化。
总结起来,通过连接底边中点和顶点的直线、平分底角、平分顶角、连接底边两个顶点与三角形顶点的直线、连接底边两个顶点与顶角平分线的交点、连接底边两个顶点与底边中点的连线、连接底边两个顶点与对边中点的连线以及连接对边中点的连线这八种常用的辅助线方法,我们可以更加灵活地解决等腰三角形相关问题。
全等三角形六种辅助线方法
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
初中数学三角形辅助线大全(精简、全面)
三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学专题一一三角形中的常用辅助线
典型例题
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
全等三角形辅助
找全等三角形的方法:
(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;
(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;
(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:
①延长中线构造全等三角形;
②利用翻折,构造全等三角形;
③引平行线构造全等三角形;
④作连线构造等腰三角形。
常见辅助线的作法有以下几种:
(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,△ ABC是等腰直角三角形,/ BAC=90,BD平分/ ABC交AC于点D, CE垂直于BD,交BD的延长线于点E。
求证:BD=2CE
(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
例2:如图,已知△ ABC中, AD是/BAC的平分线,AD又是BC边上的中线求证:△ ABC是等腰三角形。
li
(3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利 用的思维
模式是三角形全等变换中的 “对折”,所考知识点常常是角平分线的性 质定理或逆定理。
例 3:已知,如图,AC 平分/ BAD CD=CB AB>AD 求证:/ B+Z ADC=180。
① 关于角平行线的问题,常用两种辅助线;
(4) 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式 是全等变换中的“平移”或“翻转折叠”
例4:如图,△ ABC 中,AB=AC E 是AB 上一点,F 是AC 延长线上一点,连 EF 交BC 于D,若EB=CF
求证:DE=DF
B
解题后的思考:
(1)本题也可以在AB 上截取AD=AQ 连0D 构造全等三角形,即“截长法”
例 5*ABC 中,/ BAC=60,/
C=40° ABC 交 AC 于 Q 求证:AB+BP=BQ+AQ
BQ 平 分/
,AP 平分/ BAC 交BC 于P , A
(2)本题利用“平行法”的解法也较多,举例如下:①如图(2),过0作OD// BC交AC于。
,则厶ABO从而得以解决。
图(2)
②如图⑶!过0作DEWBC交AB于D,交AC于匸则△ ADO笆△血Q6
△ABO务i AEOA而得以解夷
③如图(4) t J2P作PD"BQ交AB的延长线于D,则AAPD空AAPC从而得以解决.
④如图(5),过P作PD// BQ交AC于。
,则厶ABP^A ADP从而得以解决
图⑸
(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例6:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证:CD=AD F BC
2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连 接两点或
延长某边构成三角形,使结论中出现的线段在一个或几个三角形中, 再
运用三角形三边的不等关系证明。
小结:三角形
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角形。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
全等三角形中的常见辅助线的添加方法举例
一.
有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。
例:如图 1 已知 ABC 的中线,且/ 1 = 7 2, / 3=/ 4,求证:BE ^ CF
> EF 。
图
1
二、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。
例::如图2: ABC的中线,且/ 1 = / 2,Z 3=/4,求证:BE+ CF>
EF
三、有三角形中线时,常延长加倍中线,构造全等三角形。
例:如图3: AD为△ ABC 勺中线,求证:AB+ AO2AD
图3
练习:已知△ ABC AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图4,求证EF= 2AD
E
图4
图7
四、截长补短法作辅助线。
例如:已知如图5:在厶ABC 中,AB > AC , / 1 = Z 2, P 为AD 上任一点 求证:
AB- AO PB- PC
五、延长已知边构造三角形:
例如:如图 6:已知 AOBD, ADL AC 于 A , BCLBD 于 B, 求证:AD= BC
图6
六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
例如:如图 7: AB// CD AD// BC 求证:AB=CD
C
A
C
S 沁i.
M
七有和角平分线垂直的线段时,通常把这条线段延长。
例如:如图8:在Rt△ ABC中,AB= AC, / BAC= 90°,/ 1 = Z 2, CEL BD 的延长于E。
求证:BD= 2CE
八、连接已知点,构造全等三角形。
例如:已知:如图9; AC BD相交于O点,且A吐DC AOBD,求证:/ A =/ Do
图10 1
九、取线段中点构造全等三有形。
例如:如图10:AB= DC / A=Z D 求证:/ ABG^Z DCB。