2.1质点运动学的基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 运动
学
§2.1质点运动学的基本概念
2.1.1、参照物和参照系
要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物,为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系,
通常选用直角坐标系O –xyz ,有时也采用极坐标系,平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标),
2.1.2、位矢 位移和路程
在直角坐标系中,质点的位置可用三个坐标x,y,z 表示,当质点运动时,它的坐标是时间的函数
x=X (t ) y=Y (t ) z=Z (t )
这就是质点的运动方程,
质点的位置也可用从坐标原点O 指向质点
P (x 、y 、z )的有向线段r
来表示,如图2-1-1所示, 也是描述质点在空间中位置的物理量,
的长度为质点到原点之间的距离,r 的方向由余弦 cos 、 cos 、 cos 决定,它们之间满足
1cos cos cos 222
当质点运动时,其位矢的大小和方向也随时间
图2-1-1
)
2图2-1-2
而变,可表示为r =r (t),在直角坐标系中,设分别为、、沿方向x 、y 、z 和单位矢量,则可表示为
t z t y t x t )()()()( 位矢与坐标原点的选择有关,
研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点),,(1111z y x P 运动到另一点),,(2222z y x P ,相应的位矢由1变到
2,其改变量为
z z y y x x r r )()()(12121212
称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段,它描写在一定时间内质点位置变动的大小和方向,它与坐标原点的选择无关,
2.1.3、速度
平均速度 质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度
t s v
平均速度是矢量,其方向为与r
的方向相同,平均速度的大小,与所取的时间
间隔t 有关,因此须指明是哪一段时间(或哪一段位移)的平均速度,
瞬时速度 当t 为无限小量,即趋于零时,r
成为t 时刻的瞬时速度,简称速
度
t s v v t t
00
lim
lim
瞬时速度是矢量,其方向在轨迹的切线方向, 瞬时速度的大小称为速率,速率是标量,
2.1.4、加速度
平均加速度 质点在t 时间内,速度变化量为v ,则v
与t 的比值为这段时间内的平均加速度
t v a
平均加速度是矢量,其方向为v
的方向,
瞬时加速度 当t 为无限小量,即趋于零时,v
与t 的比值称为此时刻的瞬时加速度,简称加速度
t v
a t
0lim
加速度是矢量,其方向就是当t 趋于零时,速度增量的极限方向,
2.1.5、匀变速直线运动
加速度a 不随时间t 变化的直线运动称为匀变速直线运动,若a 与v
同方向,则为匀加速直线运动;若a 与v 反方向,则为匀减速直线运动,
匀变速直线运动的规律为:
at v v 1 2
021at t v s
as v v 2221 t v v vt s t )(21
匀变速直线运动的规律也可以用图像描述,其位移—时间图像(s ~t 图)和速度—时间图像(v ~t 图)分别如图2-1-3和图2-1-4所示,
从(s ~t )图像可得出:
(1)任意一段时间内的位移,
(2)平均速度,
在
t
图2-1-3
图2-1-4
(12t t )的时间内的平均速度的大小,是通过图线上点1、点2的割线的斜率,
(3)瞬时速度,图线上某点的切线的斜率值,等于该时刻的速度值,从s ~t 图像可得出:
从(v ~t )图像可得出: (1)任意时刻的速度,
(2)任意一段时间内的位移,21t t 时间内的位移等于v ~t 图线,21t t 、时刻与横轴所围的“面积”,这一结论对非匀变速直线运动同样成立,
(3)加速度,v ~t 图线的斜率等于加速度的值,若为非匀变速直线运动,则v ~t 图线任一点切线的斜率即为该时刻的瞬时加速度的大小,