人教版高中数学(必修五)第二章数列第二节等差数列第一课时等差数列的教学设计

合集下载

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。

2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

二、教学重点:研究等差数列的概念以及通项公式的推导。

教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。

四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。

由复习引入,通过数学知识的内部提出问题。

知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

3.在等差数列{an}中,若 a1·a3=8,a2=3,则公差 d=( )
A.1 B.-1 C.±1 D.±2 a1(a1+2d)=8,
解析:由已知得 a1+d=3,
解得 d=±1. 答案:C
第九页,共32页。
4. lg( 3 + 2 ) 与 lg( 3 - 2 ) 的 等 差 中 项 是 ______________.
第十六页,共32页。
[变式训练] (1)已知数列 3,9,15,…,3(2n-1),…, 那么 81 是它的第________项( )
A.12 B.13 C.14 D.15 (2)已知等差数列{an}中,a15=33,a61=217,试判断 153 是不是这个数列的项,如果是,是第几项? 解析:(1)an=3(2n-1)=6n-3,由 6n-3=81,得 n =14.
第十七页,共32页。
(2)设首项为 a1,公差为 d,则 an=a1+(n-1)d, a1+(15-1)d=33,
由已知 a1+(61-1)d=217,
a1=-23, 解得
d=4. 所以 an=-23+(n-1)×4=4n-27,
第十八页,共32页。
令 an=153,即 4n-27=153,解得 n=45∈N*, 所以 153 是所给数列的第 45 项. 答案:(1)C (2)45
答案:(1)× (2)√ (3)√ (4)√
第七页,共32页。
2.已知等差数列{an}中,首项 a1=4,公差 d=-2,
则通项公式 an 等于( )
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:因为 a1=4,d=-2,所以 an=4+(n-1)×(-
2)=6-2n.

人教版高三数学必修五《等差数列》教案及教学反思

人教版高三数学必修五《等差数列》教案及教学反思

人教版高三数学必修五《等差数列》教案及教学反思一、引言等差数列是高中数学中的重要内容,它在数学中的运用十分广泛。

在教学过程中,我们需要注重培养学生的思维能力和解决问题的能力,让他们能够灵活地运用所学知识,提高数学应用能力。

本文将会介绍人教版高三数学必修五《等差数列》的教学反思和教案。

二、教学反思1. 教学目标通过本次授课,我们的教学目标是:•掌握等差数列的概念,理解等差数列的性质和运用;•能够分析等差数列的通项公式和求和公式,灵活掌握运用;•培养学生的数学思维能力和解决实际问题的能力。

2. 教学内容本次授课的教学内容包括:•等差数列的定义、通项公式和求和公式;•等差数列的性质和运用;•等差中项和等差数列的应用。

3. 教学方法我们采用了多种教学方法,包括:•讲授法:通过精心准备的PPT和示例,向学生讲解等差数列的定义、通项公式和求和公式,并阐述等差数列的性质和运用;•互动式教学法:通过提问、举例和解题过程中的互动讨论,培养学生的思考能力和分析问题的能力;•组织小组讨论:通过小组讨论,让学生自主探索等差数列的应用,培养学生的团队合作精神和创新精神。

4. 教学效果经过本次教学,我们发现学生的数学知识水平有了明显的提高。

在讲解等差数列的性质和运用时,学生能够将数学知识与实际问题结合起来,灵活掌握应用技巧。

在解题过程中,学生能够主动思考和分析问题,掌握解题方法,并能够独立解答一些复杂题目。

三、教案设计1. 教学目标通过本节课的教学,让学生掌握等差数列的相关概念、性质和运用,并能够通过实际问题,灵活运用所学知识,提高数学应用能力。

2. 教学内容和教学步骤:第一步:引入通过实际问题导入,引发学生兴趣,激发学生对等差数列的认识和探索欲望。

第二步:讲授•定义等差数列的概念,并介绍等差数列的通项公式和求和公式。

•阐述等差数列的性质和运用,主要包括公差、项、数列取值等。

•介绍等差中项的概念,引入等差中项的应用。

第三步:练习通过练习巩固所学知识,提高学生的运用能力。

等差数列教学设计

等差数列教学设计

等差数列教学设计等差数列教学设计(精选5篇)作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?以下是店铺帮大家整理的等差数列教学设计(精选5篇),欢迎大家分享。

等差数列教学设计1教学目标:1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:等差数列的概念及通项公式。

教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆上一节课学习数列的定义,请举出一个具体的例子。

表示数列有哪几种方法——列举法、通项公式、递推公式。

我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

人教版高中数学必修52.2等差数列(一)课件

人教版高中数学必修52.2等差数列(一)课件
(注:判断一个数列是等差数列的第2种方法,可称之为通项公式法)
an a1 (n 1)d
求通项公式的关键步骤:
求基本量a1和d :根据已知条件列方程,由 此解出a1和d ,再代入通项公式。
像这样根据已知量和未知量之间的关系,列出 方程求解的思想方法,称方程思想。 这是数学中的常用思想方法之一。
【课堂小结】
§
探要点·究所然 情境导学
第一届现代奥运会于1896年在希腊雅典举行,此后每4年 举行一次,奥运会如因故不能举行,届数照算.这样举行 奥运会的年份数构成一个数列,这个数列有什么特征呢? 这个数列叫什么数列呢?本节我们就来一起研究这个问 题.
思考1 下面我们来看这样的一些数列: (1)0,5,10,15,20. (2)48,53,58,63. (3)18,15.5,13,10.5,8,5.5. (4)10 072,10 144,10 216,10 288,10 360. 以上四个数列有什么共同的特征?
1. 通过本节学习,第一要理解与掌握等差数列的定义;
2.要会推导等差数列的通项公式,并掌握其基本应用; (方程思想). 3.理解等差数列的初步证明(归纳、叠加法);
4.等差数列与一次函数的关系(数列与函数的关系)。
谢谢观看
探究点二 等差中项
如果三个数x,A,y组成等差数列,那么A叫做x和y的 等差中项,试用x,y表示A.
例2 在-1与7之间顺次插入三个数a,b,c使这五 个数成等差数列,求此数列.
跟踪训练2 若m和2n的等差中项为4,2m和n的等差 中项为5,求m和n的等差中项.
例3 在等差数列{an}中,已知a6=12,a18=36,求通
当堂测·查疑缺
1.已知等差数列{an}的通项公式an=3-2n,则它的公差d 为( )

《等差数列》的教学设计(最新整理)

《等差数列》的教学设计(最新整理)

《等差数列》的教学设计一.设计思想数学是思维的体操,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。

基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。

在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。

这正是新课程所倡导的数学理念。

本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

二.教材分析高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。

研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。

在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。

同时也是培养学生数学能力的良好题材。

等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

三.学情分析学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。

他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

等差数列教学设计(一课时)

等差数列教学设计(一课时)

2.2.1《等差数列》教案设计难点理解等差数列“等差”的特点及通项公式的含义环节1 创设情境,提出问题在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能预测出下一次的大致时间吗?主持人问: 最近的时间什么时候可以看到哈雷慧星?天文学家陈丹说: 2062年左右。

学生活动通过情景引出数列,观察发现其规律,通过规律填写内容。

通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(2) 28, 21.5, 15, 8.5, 2, …, -24. 教师活动:提出问题,组织学生解决问题1、你能根据规律在()内填上合适的数吗?(1)、1682,1758,1834,1910,1986,(2062).(2)、28,21.5,15,8.5,2, …,(-24).(3)、1,4,7,10,( 13 ),16.(4)、2, 0, -2, -4, -6,( 8 ).问题2、它们有何共同的规律?(1)d=76 (2)d=-6.5 (3)d=3 (4)d=-2 学生活动通过多个数列观察发现其共同规律,环节二环节三环节等差数列的定义:的前一项的差等于同一个常数,这个数列就叫做等差数列。

这个常数叫做等差数列的公差,公差通常用字母教师活动:回归问题,组织学生解决问题(1)1, 3, 5, 7, 9,2, 4, 6, 8, 10(2)5(3)环节教师活动:问题驱动问题(((问题a在尝试最终得项公式这一性质。

引导学生推导等差数列的通项公式,并使用方法二再次推导,为学生提供多种推导思路与方法。

dn a a n )1(1-+=叠加的 (累加相消法)等差数列的通项公式:环节5 能力提升例1、(1) 求等差数列8,5,2,…,的第20项。

解:(2)-401是否是等差数列 -5,-9,-13,…,的项?如果是,是第几项 ? 解:因此 解得学生活动教师辅助学生自主完成例题。

等差数列教案

等差数列教案

《2.2.1等差数列》片段对应课时教案
(人教A版必修五第二章第二节)
丰顺县华侨中学曾海璇
教材简析:本节课是《普通高中课程标准实验教科书·数学》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容,等差数列是在学生学习了数列的有关概念和表示方法的基础上,对数列的知识进一步深入和拓广,同时也为今后学习等比数列提供了“联想”、“类比”的思想方法。

教学目的简析:能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式。

重点:①等差数列的概念;②会求等差数列的通项公式
难点:①等差数列的概念;②等差数列的通项公式的推导过程及应用。

教案主体:
=
a+
,d。

高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。

同时等差数列也为今后学习等比数列提供了学习比照的根据。

2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。

3、教学重点和难点重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。

学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

人教版高中数学必修⑤2.2《等差数列》教学设计

人教版高中数学必修⑤2.2《等差数列》教学设计

课题:必修⑤2.2等差数列三维目标:1.知识与技能(1)通过实例,理解等差数列、公差的概念,明确一个数列是等差数列的限定条件;(2)了解等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)体会等差数列与一次函数的关系。

2.过程与方法(1)让学生对日常生活中实际问题分析,经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。

并引导学生通过观察,推导,归纳抽象出等差数列的概念;(2)引导学生建立等差数列模型用相关知识解决一些简单的实际问题,在合作探究的过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究;(3)培养学生的观察能力,进一步提高学生的推理归纳能力;(4)培养学生分析问题、解决问题的能力与钻研精神,培养学生的运算能力、严谨的思维习惯以与解题的规范性。

3.情态与价值观(1)通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;(2)借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。

形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗;(3)通过对数列知识的学习与探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神,并进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验。

教学重点:1.理解等差数列的概念与其性质,探索并掌握等差数列的通项公式;2.会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。

教学难点:1.概括通项公式推导过程中体现出的数学思想方法。

2.等差数列通项公式与性质的灵活运用教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★同学们,上两节课我们学习了数列的定义与相关的性质,下面,请同学们简单地回顾一下:什么是数列?什么是数列的项?数列有几种分类方法?什么是数列的通项公式?什么是数列的递推公式?★在日常生活中,我们经常会遇到一类特殊的数列。

高中数学人教A版必修五2.2教学设计《等差数列》

高中数学人教A版必修五2.2教学设计《等差数列》

《等差数列》1、知识与技能(1)能根据定义判断一个数列是等差数列;(2)能通过通项公式与图像认识等差数列的性质。

2、过程与方法(1)能灵活运用通项公式求等差数列的公差、项数、指定的项;(2)能用图像与通项公式的关系解决某些问题。

3、情感态度与价值观(1)培养学生观察、分析能力,积极思维,追求新知的创新意识;(2)渗透特殊与一般的辩证唯物主义观点。

【教学重点】等差数列的概念,等差数列的通项公式、等差数列性质的理解与应用。

【教学难点】灵活应用等差数列的定义及性质解决一些相关问题。

(一)新课导入观察:这些数列有什么共同特点?我们经常这样数数,从0开始,每隔5数一次,可以得到数列: 0,5,10 ,15,… ① 2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。

该项目共设置了7个级别,其中较轻的4个级别体重组成数列(单位:kg ): 48 ,53,58,63。

②水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。

如果一个水库的水位为18m ,自然放水每天水位降低2。

5m ,最低降至5m 。

那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m ):18,15。

5,13,10。

5,8,5。

5。

③我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。

按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。

例如,按活期存入10000元钱,年利率是0。

72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个数列:10072,10144,10216,10288,10360。

④(二)新课讲授一、等差数列的定义一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)。

定义的符号表示是:a n - a n-1=d(n ≥2,n ∈N),这就是数列的递推公式。

等差数列及其通项公式教学设计

等差数列及其通项公式教学设计

等差数列及其通项公式教学设计(一)【内容分析】本节课是《普通高中课程标准实验教科书·数学5》(人教A版)第二章数列第二节等差数列第一课时.在上节学习数列的概念之后,转入特殊数列的学习,起着承前启后的作用.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.【教学目标】 1.知识与能力:理解等差数列定义,掌握等差数列的通项公式.了解等差数列的通项公式与一次函数的关系。

2.过程与方法:通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力.3.情感态度与价值观:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.【教学重点】①等差数列的概念;②等差数列的通项公式的推导过程及应用.【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【设计思路】本节采用启发式和探究式的教学方法。

从创设情境引导学生首先从三个现实问题概括出数组特点,通过观察归纳抽象出等差数列的概念;学生自主探究推导出等差数列的通项公式;借助例题进行巩固,小组合作总结反思。

【教学过程】一、创设情景,提出问题师:课本第36页的四个例题及第38页的例1,提出以上五个问题中的数蕴涵着5列数.通过实例创设等差数列的模型。

①0,5,10,15,20,25,….②18,15.5,13,10.5,8,5.5.③10072,10144,10216,10288,10360.例1教师:把每列数记做数列的第一项,第二项,……。

观察后项与前项的差有什么规律?学生:然后让学生抓住数列的特征,归纳得出等差数列概念.设计意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.二、观察归纳,引出概念教师:投出三个思考题思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?学生:分组讨论,每小组找代表发言。

数学等差数列教案(优秀5篇)

数学等差数列教案(优秀5篇)

数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5

高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5

第十六页,共25页。
研一研·问题(wèntí)探究、课堂更高
效 例2
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也
成等差数列.
证明 ∵1a,1b,1c成等差数列,

∴2b=1a+1c,即 2ac=b(a+c).
讲 栏 目
∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c
开 关
(5)1,2,5,8,11,….
第七页,共25页。
研一研·问题探究(tànjiū)、课堂更 高效
解 (1)是等差数列,a1=4,d=3;
(2)是等差数列,a1=31,d=-6;
本 讲
(3)是等差数列,a1=0,d=0;
栏 目
(4)是等差数列,a1=a,d=-b;
开 关
(5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
高效 探究 若数列{an}满足:an+1=an+2an+2,求证:{an}是等差
数列.
证明 ∵an+1=an+2an+2

⇔2an+1=an+an+2
讲 栏
⇔an+2-an+1=an+1-an

开 关
∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.

第十三页,共25页。
跟踪训练 2 已知 a,b,c 成等差数列,那么 a2(b+c),b2(c
+a),c2(a+b)是否能构成等差数列?
证明 ∵a,b,c 成等差数列,∴a+c=2b.
本 ∴a2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b
讲 栏
=(a2b+c2b)+(a2c+c2a)=b(a2+c2)+ac(a+c)

高三数学必修五教案等差数列优秀4篇

高三数学必修五教案等差数列优秀4篇

高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

等差数列教学设计(一课时)

等差数列教学设计(一课时)

2.2.1《等差数列》教案设计教材分析1.教案内容分析本节课是《普通高中课程规范实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

主要内容是等差数列定义和等差数列的通项公式。

2.地位与作用数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.教案目标知识目标1.理解并掌握等差数列的定义,能用定义判断一个数列是否为等差数列;2.掌握等差数列的通项公式.能力目标1.通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

2.培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识.情感目标通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.教案重难点重点1.等差数列的概念;2.等差数列的通项公式的推导过程及应用.难点理解等差数列“等差”的特点及通项公式的含义.教案设想本课教案,重点是等差数列的概念,在讲概念时,通过创设情境引导学生理解概念,进一步引导学生通过概念来判断一个数列是否是等差数列。

整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教案中学生的主体作用。

教案过程教案环节教师活动学生活动设计意图环节一环节1 创设情境,提出问题在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能预测出下一次的大致时间吗?主持人问: 最近的时间什么时候可以看到哈雷慧星?天文学家陈丹说: 2062年左右。

通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗学生活动通过情景引出数列,观察发现其规律,并通过规律填写内容。

高中数学新人教A版必修五:第2章 数列 教学设计

高中数学新人教A版必修五:第2章 数列 教学设计

数学5 第二章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。

在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。

3、探索并掌握等差数列的前n项和公式,体会等差数列的前n项和公式与二次函数之间的关系。

4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。

5、探索并掌握等比数列的前n项和公式,体会等比数列的前n项和公式与指数型函数之间的关系。

6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应的问题。

二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。

2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。

编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。

3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。

4、教材在内容设计上突出了一些重要的数学思想方法。

如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。

5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。

三、教学内容及课时安排建议本章教学时间约12课时2.1数列的概念与简单表示法约2课时2.2等差数列约2课时2.3等差数列的前n项和约2课时2.4等比数列约2课时2.5等比数列的前n项和约2课时问题与小结约2课时四、评价建议1、重视对学生数学学习过程的评价关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2 等差数列(第一课时)
嘉积中学数学组严学荣
一、教学内容分析
本节课是《普通高中课程标准实验教科书·数学5》(必修)第二章数列第二节等差数列第一课时。

等差数列和等比数列有着广泛的应用,教学中应重视通过具体实例(如教育贷款、购房贷款、放射性物质的衰变、人口增长等),使学生理解这两种数列模型的作用,培养学生从实际问题中抽象出数列模型的能力。

为了培养学生对数学内部联系的认识,教材需要将不同的数学内容相互沟通,比较等差数列与一次函数的图像,发现它们之间的联系。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析
我所教授学生经过一年多的学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

实现激发学生学习数学的兴趣,体会学习成功的快乐,增强学习的信心。

三、教学目标
1.知识与技能:通过实例,理解等差数列的概念;探索等差数列的通项公式,发现数列的等差关系并能用等差数列的通项公式解决简单问题。

体会等差数列与一次函数的关系。

2.过程与方法:让学生对日常生活中的实际问题出发,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列的模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作,并在操作过程中通过类比函数的概念和性质表达式得到对等差数列相应问题的研究。

教学过程渗透方程思想和函数思想。

3.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神和归纳能力;使学生逐步养成从观察、分析到归纳、类比,进而得出猜想、结论,最终证明猜想的数学思维习惯。

四、教学重难点
1.重点:①理解等差数列的概念。

②探索并推导等差数列的通项公式。

会应用通项公式
解决一些简单问题。

2.难点:(1)对等差数列中“等差”两字的把握;
(2)等差数列通项公式推导的思想方法。

差数列的
通项公式的应用。

课后探究等差数列是一种函数
模型。

五、教学方法:自主探究、合作学习
六、教学过程
七、板书设计
八、教学反思。

相关文档
最新文档