土的抗剪强度
《土的抗剪强度》课件
边坡稳定性分析的方法包括极限平衡法、有限元法和 离散元法等。这些方法可以根据工程实际情况选择, 以获得更准确的边坡稳定性评估结果。
挡土墙设计
挡土墙是工程中常用的支挡结构,主要用于防止土体滑移和坍塌。在挡土墙设计中,需要考 虑土的抗剪强度,以确保挡土墙的稳定性和安全性。
挡土墙的设计需要考虑多种因素,如土的性质、挡土墙的高度和宽度、荷载类型和大小等。 这些因素都会影响土的抗剪强度,进而影响挡土墙的稳定性和安全性。
提出了相应的加固措施和监测方案。
总结与展望
06
本课程主要内容总结
土的抗剪强度定义
土的抗剪强度影响因素
土的抗剪强度是指土体抵抗剪切破坏的极 限能力,是土力学中的重要参数。
土的抗剪强度受到多种因素的影响,如土 的颗粒组成、含水量、密度、孔隙比、有 机质含量等。
土的抗剪强度指标
土的抗剪强度与工程实践
通过试验测定土的抗剪强度指标,包括内 摩擦角和粘聚力,是评价土体稳定性的重 要依据。
了解土的抗剪强度对于工程实践具有重要 的意义,如地基承载力计算、边坡稳定性 分析、挡土墙设计等。
未来研究方向与展望
新型试验方法研究
随着科技的发展,未来可以探索更加准确、高效、环保的土的抗剪强 度试验方法。
非均质土的抗剪强度研究
对于非均质土,其抗剪强度具有空间变异性和各向异性,未来可以深 入研究其抗剪强度的变化规律。
土的抗剪强度理论
库伦-摩尔理论
库伦-摩尔理论是土的抗剪强度理论的经典理论之一,它基于摩擦和粘聚力原理,描述了土的剪切破坏 机理。
该理论认为,土的抗剪强度是由剪切面上的摩擦力和粘聚力共同作用的结果,其中摩擦力主要取决于土 颗粒之间的摩擦角,而粘聚力则与土的粘聚力和孔隙水压力有关。
土的抗剪强度的概念_概述说明以及解释
土的抗剪强度的概念概述说明以及解释1. 引言1.1 概述土的抗剪强度是土体工程中非常重要的一个概念。
它指的是在土体内部存在切变作用时,土体能够抵抗该切变作用并保持形状稳定的能力。
抗剪强度是评估土的力学性质、承载能力和稳定性的重要指标之一。
1.2 定义土的抗剪强度可以分为两个方面来理解:首先,从宏观角度来看,抗剪强度是指应变固结下产生切线应力所需达到最大值。
在一定条件下,当施加沿某一平面方向的剪切应变时,通过实验可以测得该平面上允许达到的最大应力值。
其次,从微观角度来看,抗剪强度是由于岩石或土壤颗粒之间产生摩擦造成接触邻近颗粒受到相互作用而形成的。
1.3 目的本文旨在全面介绍关于土的抗剪强度概念,并说明其重要性和应用。
通过详细解释土壤抗剪强度的定义和影响因素,以及传统试验方法和先进试验方法的介绍,读者可以深入了解土壤抗剪强度与土体工程应用之间的关系。
在展示几个土体加固和处理技术的工程实践案例后,我们还将讨论抗剪强度在土体设计中的重要作用。
通过这篇文章,读者将能够更好地理解土的抗剪强度的概念及其在土体工程中的意义,并对未来研究方向提出展望。
2. 土的抗剪强度概念2.1 概述土的抗剪强度是指土体在受到剪切力作用时能够抵抗变形破坏的能力。
它是土体力学中一个重要的参数,对于工程设计、施工和地质灾害预测等具有重要意义。
2.2 抗剪强度的定义土的抗剪强度可以分为有效应力状态下的抗剪强度和总应力状态下的抗剪强度。
在有效应力状态下,土体颗粒之间由于摩擦及内聚力的作用而形成一种阻止相对滑动或破坏的抵抗力。
该抵抗力即为土体的有效应力抗剪强度。
有效应力状态下,如果施加额外水平力,就会导致不可逆性变形,并可能引发失稳。
在总应力状态下,考虑了地下水对土体孔隙水压造成的影响。
总应力状态下的土壤承受着来自地表荷载及孔隙水压带来的综合作用,在这种情况下衡量土壤较为复杂。
当存在地下水流动时,因渗流带来部分应力的释放,土壤受到的总应力也会相应减小。
漫谈土的抗剪强度和抗剪强度指标
漫谈土的抗剪强度和抗剪强度指标土的抗剪强度是指土体在受到剪切力作用时所能承受的最大剪应力。
土体的抗剪强度是土的力学性质之一,对土的工程应用具有重要意义。
抗剪强度指标是对土体抗剪强度进行定量描述的参数。
以下将对土的抗剪强度和相关的抗剪强度指标进行漫谈。
首先,了解土的抗剪强度的概念是理解抗剪强度指标的基础。
土是由颗粒间填充或胶结而成的,具有一定的内聚力和摩擦阻力。
当土受到剪切力作用时,颗粒之间会发生相对位移,从而产生抗剪强度。
土的抗剪强度受到多种因素的影响,包括土的粒径组成、密实程度、含水量、胶结性质等。
通常情况下,土的抗剪强度随着土的密实程度的增加而提高,但当密实程度过高时,土的抗剪强度反而会下降。
抗剪强度指标是一种定量描述土体抗剪强度的参数,通常可以通过试验来确定。
常见的抗剪强度指标包括内摩擦角(φ)和剪切强度指数(C)等。
内摩擦角是指土体在受到剪切力作用时颗粒间的摩擦阻力大小,是衡量土的抗剪强度的重要参数。
内摩擦角的大小与土的结构、颗粒形状、含水量等有关。
剪切强度指数是表示土抗剪强度的另一个指标,它是土的剪切强度与有效应力之间的比值。
剪切强度指数可以用来比较不同土体之间的抗剪强度差异。
除了内摩擦角和剪切强度指数,还有一些其他的抗剪强度指标。
如粘聚力是指土表面或颗粒间存在的一种吸附力,是衡量土抗剪强度的另一个重要指标。
粘聚力的大小与土的胶结性质、颗粒形状等有关。
另外,抗剪强度指标还可以根据土壤类型的不同而有所差异。
例如,对于粘性土来说,塑性指数(PI)是表示土抗剪强度的一个重要指标,它是液限和塑限之差。
在实际土木工程中,抗剪强度指标的选择和使用是非常重要的。
不同的工程项目需要不同的土体抗剪强度,因此需要合理地选择相应的抗剪强度指标。
常见的工程应用中,一般会选择内摩擦角和剪切强度指数进行描述土的抗剪强度。
通过试验可以得到这些指标的值,从而为工程师提供合适的参考。
综上所述,土的抗剪强度是土体在受到剪切力作用时所能承受的最大剪应力。
第六章-土的抗剪强度
➢ 2、固结不排水试验(CU)
学 ➢ 3、固结排水试验(CD)
三轴压缩实验优缺点
土 ➢ 优点:
(1)可严格控制排水条件
力 (2)可量测孔隙水压力 (3)破裂面在最软弱处 ➢ 缺点:
学 (1)2=3,轴对称 (2)实验比较复杂
三、真三轴试验
土 力 学
四、无侧限抗压强度试验
力
f
cu
1 2
1
3
13 1uf 3uf 13
学 在不排水条件土 下体 ,孔 饱隙 和水压 B力 1,系改数变周
压力增量只会水 引压 起力 孔的 隙变化引 ,起 而土 不体 会 有效应力的变样 化在 ,剪 各切 试破坏应 前力 的相 有等 效 以抗剪强度不变。
二、固结不排水抗剪强度
0点说明未受任何固结压力的土,它不具有抗
学 ③土单元体的任何一个面上τ=τf时,就会发生剪 切破坏。此时土单元体的应力状态满足极限平 衡条件。
四 极限平衡条件的应用
土 已知土内一点M的主应力σ1m和σ3m ,以及土的内 摩擦角C、φ,可以判断该点土体是否破坏。
对于无粘性土
力1
m
sin
1 1 m 1m
3m 3m
m
学
>
m
m
<
m
莫尔应力圆的
半径
1 2
1
3
圆心:
(1 2
1
3
,0 )
土
A
I. II. III.
c
力
莫尔圆与抗剪强度之间的关系
抗剪强度包线与莫尔应力圆之间的关系有三种:
学 •(1)整个莫尔圆位于抗剪强度包线的下方 •(2)莫尔圆与抗剪强度包线相切(切点为A) •(3)莫尔圆与抗剪强度包线相割
土的抗剪强度
第4章土的抗剪强度§4.1概述土的抗剪强度是指土体对外荷载所产生的剪应力的极限抵抗能力。
在外荷载作用下,土体中将产生剪应力和剪切变形,当土体某点由外力产生的剪应力达到土的抗剪强度时,土就沿着剪应力作用方向产生相对滑移,该点便发生剪切破坏。
工程实践和室内试验都证明了土是由于受剪而产生破坏,剪切破坏是土体强度破坏的重要特点,因此,土的强度问题实质就是土的抗剪强度问题。
在工程实践中与土的抗剪强度有关的工程问题,主要有以下三类(图4-1):第一,是土作为材料构成的土工构筑物的稳定问题,如土坝、路堤等填方边坡以及天然土坡等稳定问题(图4-1a);第二,是土作为工程构筑物的环境的问题,即土压力问题,如挡土墙、地下结构等的周围土体,它的强度破坏将造成对墙体过大的侧向土压力,以至可能导致这些工程构筑物发生滑动、倾覆等破坏事故(图4-1b);第三,是土作为建筑物地基的承载力问题,如果基础下的地基土体产生整体滑动或因局部剪切破坏而导致过大的地基变形,都会造成上部结构的破坏或影响其正常使用的事故(图4-1c)。
图4-1 工程中土的强度问题(a)土坡滑动;(b)挡土墙倾覆;(c)地基失稳§4.2土的强度理论与强度指标4.2.1 抗剪强度的库仑定律土体发生剪切破坏时,将沿着其内部某一曲线面(滑动面)产生相对滑动,而该滑动面上的剪应力就等于土的抗剪强度。
1776年,法国学者库仑(C.A.Coulomb)根据砂土的试验结果(图4-2a),将土的抗剪强度表达为滑动面上法向应力的函数,即(4-1)τtanσϕ=⋅f以后库仑又根据粘土的试验结果(图4-2b),提出更为普遍的抗剪强度表达形式:(4-2)τtanσϕ⋅=c+f式中τ—土的抗剪强度,kPa;fσ—剪切滑动面上的法向应力,kPa;c—土的粘聚力,kPa;ϕ—土的内摩擦角,( )。
式(4-1)和式(4-2)就是土的强度规律的数学表达式,它是库仑在十八世纪七十年代提出的,所以也称为库仑定律,它表明对一般应力水平,土的抗剪强度与滑动面上的法向应力之间呈直线关系,其中c、ϕ称为土的抗剪强度指标。
土的抗剪强度指标的计算
土的抗剪强度计算公式是什么?
土的抗剪强度计算公式是:
其中φ为内摩擦角,c为土的粘聚力。
在以土的抗剪强度为纵坐标、剪切破坏面上的法向应力为横坐标的坐标系中,土的抗剪强度包线对横坐标轴的倾角。
通常以φ表示,即内摩擦角,是土的抗剪强度参数之一,其值与土的初始孔隙比、土粒形状、土的颗粒级配和土粒表面的粗糙度等因素有关。
可由土的直接剪切试验或三轴压缩试验测定,根据不同的试验方法和分析方法可得出总应力内摩擦角和有效应力内摩擦角。
土的抗剪强度的影响因素主要有土的组成、土的密实度和含水量、以及所受的应力状态等。
扩展资料
一般认为,有效应力强度指标宜用于分析地基的长期稳定性,而对于饱和软粘土的短期稳定间题,则宜采用不固结不排水试验或快剪试验的强度指标。
一般工程问题多采用总应力分析法,其指标和测试方法的选择大致如下:若建筑物施工速度较快,而地基土的透水性和排水条件不良时,可采用不固结不排水试验或快剪试验的结果。
如果地基荷载增长速率较慢,地基土的透水性不太小(如低塑性的粘土)以及排水条件又较佳时(如粘土层中夹砂层),则可以采用固结排水试验和慢剪试验指标;如果介于以上两种情况之间,可用固结不排水或固结快剪试验结果。
由于实际加荷情况和土的性质是复杂的,而且在建筑物的施工和使用过程中都要经历不同的固结状态,因此,在确定强度指标时还应结合工程经验。
常规试验方法所得到的非饱和压实土抗剪强度指标是综合的指标,其中包含了试验时不饱和状态对抗剪强度指标的贡献。
含水状态变化对压实土抗剪强度指标具有显著的影响,设计时必须充分考虑压实土含水状态变化来选取合理的抗剪强度指标。
其机理可用非饱和土理论解释;基质吸力对吸附强度的影响是非线性的。
土的抗剪强度(第四章)
不同试验方法的剪切试验结果
(1)不固结不排水剪(UU)
饱和粘性土在三组3下的不排水剪试验得到A、B、C三个 不同3作用下破坏时的总应力圆
结 不 排 水 剪 的 剪 切 试 验 结 果
cu
uA
有效应力圆 A
3A
总应力圆
u=0
B
1A
C
试验表明:三个试样的周围压力3不同,但破坏时的主应力差相 等,三个极限应力圆的直径相等,因而强度包线是一条水平线 三个试样只能得到一个有效应力圆
q
CU应力路径 K’f C
Kf
B p A
利用有效应力强度指标估算
f
cos
f
sin
f (1 -3)/2
’
K
1
1
cos
’3
’ 1
cos sin cos sin K 1U f 1 1 1 sin 1 sin cos sin f 1U 1 sin
45
cu
2
45
tanc
sin cu coscu 1 sin cu
f 1 3 / 2 sin cu tanc 3 3 1 sin cu
六 软粘土在荷载作用下的强度增长
饱和软粘土地基在外荷载作用下,随着孔隙水压力的消散以 及土层的固结,土的抗剪强度也将会随之增长。
总应力法(固结不排水强度为例)
q
tan cu
f
nf
f
O
3 =3 1
cu
1 3 sin cu 1 3 f
p(p)
土的抗剪强度指标
土的抗剪强度指标土的抗剪强度是土体在受到剪切力作用下能够抵抗破坏的能力。
它是土体的重要力学性质之一,用以描述土体抵抗剪切破坏的能力大小。
土体的抗剪强度受到多种因素的影响,包括土体类型、土结构、颗粒大小、含水量、固结状态等。
土体的抗剪强度可以通过剪切试验来测定。
在剪切试验中,应用剪切力作用于土样上,并测量剪切应力与剪切变形之间的关系,以确定土体的抗剪强度参数。
常用的土体抗剪强度指标有以下几种:1.摩擦角(φ):摩擦角是描述土体内部颗粒之间的摩擦力大小的指标。
它表示土体在受到剪切力作用下,颗粒之间能够抵抗剪切破坏的能力大小。
摩擦角是土体抗剪强度的主要指标,常用于描述非饱和土、粘性土和黏性土的抗剪强度。
2.内聚力(c):内聚力是描述含有粘性物质的土体抵抗剪切破坏的能力大小的指标。
内聚力是由于土体中吸附水分、胶结物质的存在而产生的内聚作用,与土体的粘聚力和表面张力有关。
内聚力通常用于描述粘性土和黏性土的抗剪强度。
3.剪切强度参数(c'和φ'):当土体处于饱和状态时,土体的抗剪强度可用剪切强度参数c'和φ'来表示。
剪切强度参数c'表示土体的内聚力,即无论剪切面上的剪切应力多小,土体都能够保持稳定。
剪切强度参数φ'表示土体的摩擦角,即土体在剪切面上具有一定的摩擦阻力。
4.渗透剪切强度(c'p和φ'p):当土体处于非饱和状态时,土体的抗剪强度表现出与饱和土不同的特性。
非饱和土的渗透剪切强度参数c'p和φ'p与剪切强度参数c'和φ'不同,它们分别表示非饱和土的渗透剪切内聚力和渗透剪切摩擦角。
在实际工程中,土体的抗剪强度是一个重要的参数,用于评估土体的稳定性和承载力。
在土方工程、地基工程、岩土工程等领域中,土体的抗剪强度参数通常被用于计算土体的承载能力、确定土体的稳定坡度和坝体形状等。
总结起来,土体的抗剪强度指标主要包括摩擦角、内聚力、剪切强度参数以及渗透剪切强度参数。
土的抗剪强度
Charles Augustin de Coulomb (1736 - 1806)
Christian Otto Mohr (1835-1918)
第五章 土的抗剪强度
§5.1 概述
高等土力学内容
三、抗剪强度理论的发展
(2)现代强度理论(考虑了中间主应力效应的强度理论) Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则
作用机理:库伦力(静电力)、范德华力、 胶结作用力和毛细力等 影响因素:地质历史、黏土颗粒矿物成分、 密度与离子浓度
粗粒土:一般认为是无黏性土,不具有黏聚强度:
当粗间有胶结物质存在时可具有一定的粘聚强度 非饱和砂土,粒间受毛细压力,具有假粘聚力
凝聚强度
第五章 土的抗剪强度
一、库仑定律 (2)有效应力法
摩擦强度
第五章 土的抗剪强度
§5.2 土的抗剪强度及强度理论
摩擦强度:决定于剪切面上的正应力σ和土的内摩擦角
A B B C 剪切面
A
C
包括如下两个 组成部分 : 滑动摩擦
• 是指相邻颗粒对于相对移动的约束作用 • 当发生剪切破坏时,相互咬合着的颗粒A 必须抬起,跨越相邻颗粒B,或在尖角处 被剪断(C),才能移动 • 土体中的颗粒重新排列,也会消耗能量
§5.2 土的抗剪强度及强度理论
2、库仑定律
τ f σ tg c
二、摩尔-库仑强度理论 极限平衡状态:在荷载作用下,地基内任一点都将产生应力, 当通过该点某一方向的平面上的剪应力等于土的抗剪强度时, 称该点处于极限平衡状态。 极限平衡条件(剪切破坏条件):
f
第五章 土的抗剪强度
乌江武隆县兴顺乡鸡冠岭山体崩塌
(完整版)土的抗剪强度
一、土的抗剪性
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒 之间发生相互错动,引起土中的一部分相对另一部分产生滑动。土粒抵抗这种滑动的性能, 称为土的抗剪性。 土的抗剪性是由土的内摩擦角 φ 和内聚力 c 两个指标决定。对于高层建筑地基稳定性分析、 斜坡稳定性分析及支护等问题,c、φ 值是必不可少的指标。 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩擦以及凹凸面间镶嵌作用所产生的 摩擦力组成,指标"内摩擦角 φ"值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力,不同种类的粘性土,具有不同的 粘结力,指标"内聚力 c"值的大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角 φ 和粘聚力 c 两个指标决定。
三、影响土体抗剪强度的因素分析
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而 这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以 及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
一、直接剪切试验
直接剪切仪分为应变控制式和应力控制式两种,前者是等速推动试样产生位移,测定相应的 剪应力,后者则是对试件分级施加水平剪应力测定相应的位移,目前我国普遍采用的是应变 控制式直剪仪。
应变控制式直剪仪主要部件由固定的上盒和活动的下盒组成,试样放在盒内上下两块透 水石之间。试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力 σ,然后等 速转动手轮对下盒施加水平推力,使试样在上下盒的水平接触面上产生剪切变形,直至破坏, 剪应力的大小可借助与上盒接触的量力环的变形值计算确定。假设这时土样所承受的水平向 推力为 T,土样的水平横断面面积为 A,那么,作用在土样上的法向应力则为σ=P/A,而 土的抗剪强度就可以表示为 f =T/A。ຫໍສະໝຸດ 主要内容第一节 概述
土的抗剪强度试验方法及指标的应用
土的抗剪强度试验方法及指标的应用土的抗剪强度是指土体在受剪力作用下所表现出的抵抗剪切破坏的能力。
这是衡量土体抵御剪切破坏的能力的重要指标,而抗剪强度试验方法及指标的应用则是评估土体抵御剪切破坏能力的重要工具。
本文将详细介绍土的抗剪强度试验方法及指标的应用。
一、土的抗剪强度试验方法1、直剪试验法直剪试验法是一种较为简单易行的试验方法,广泛应用于土体的抗剪强度测定。
在直剪试验中,试样呈矩形或正方形,被放在两块平行的板块间,然后沿垂直于试样的方向施加剪切力。
试样的大小和形状决定了应力集中度,因此试样的尺寸和样品数量都是影响试验精度的重要因素。
2、剪切试验法剪切试验法是一种标准的土壤试验方法,其原理为在中心的圆柱型试样上施加正常压力,使试样两侧形成最大切线受力,从而破坏试样。
在试验时,可以通过改变饱和度、干湿程度、剪切速度等因素来控制试验条件。
3、三轴压缩试验法三轴压缩试验法是一种较为复杂的试验方法,常用于测定粘性土体的抗剪强度。
在试验中,试样被放置在固体地面上,并被均匀的压力包围,然后连续的施加压力,最后使土样达到最大应力,从而达到抗剪破坏。
二、土的抗剪强度指标的应用1、抗剪强度指标的应用抗剪强度指标是评估土体抗剪能力的重要指标。
在土体力学分析中,往往采用一些抗剪强度指标来评定土体的抗剪能力,如摩尔库仑准则、穆勒-布雷曼准则、龙格兰日流动准则等。
2、抗裂强度指标的应用抗裂强度指标常常用于估计土体在剪切作用下的破裂和开裂特性。
在土工工程中,常将抗裂强度指标用于土体的支撑能力及岩体的稳定性评估等方面。
3、剪切模量指标的应用剪切模量指标可用于评估土体的应变损失、弹性变形及非线性变形性能。
在场地工程中,如地基处理、坡面稳定、深基坑支护等,常需要对土体的非线性变形特性做出准确的分析和评估,此时剪切模量指标是一种重要的分析工具。
4、应变硬化模量指标的应用应变硬化模量指标可用于评估土体的变形及破碎特性。
在土体的高应变剪切破坏分析中,常用应变硬化模量指标来评估土体的破裂性质和剪切破坏模式。
土抗剪强度包括的技术参数
土抗剪强度包括的技术参数
土壤的抗剪强度是指土壤在受到外部剪切力作用时所能抵抗剪切变形的能力。
它主要包括以下几个技术参数:
1. 孔隙比(Void ratio):表示土壤颗粒与孔隙之间的比例关系,是描述土壤孔隙特性的一个重要参数。
2. 土壤容重(Bulk density):表示土壤的密实程度,是单位
体积土壤重量和其体积之比。
3. 泥土流动性指数(Soil consistency index):用来评估土壤的流动性和可塑性特性。
4. 剪切模量(Shear modulus):表示土壤抵抗剪切变形的能力,是衡量土壤刚性的一个重要参数。
5. 黏聚力(Cohesion):表示土壤颗粒间的吸附力或聚合力,
是土壤抵抗剪切力的主要来源之一。
6. 内摩擦角(Internal friction angle):描述土壤颗粒之间的摩
擦特性,是土壤抗剪强度的另一个重要参数。
以上参数通常通过室内试验(如剪切试验、压缩试验等)或现场测试(如钻孔土样采集、动力触探等)获得,并用于土壤力学分析和工程设计中。
需要注意的是,不同类型的土壤具有不同的抗剪强度特性,因此需要针对具体土壤类型进行相应的测试和分析。
土的抗剪强度理论
莫尔应力圆
可以证明:D点对应的正应力和剪应力刚好等于面上等于 正应力和剪应力。
莫尔应力圆圆周上的任意点,都代表着单元土体中相应面上的应力状 态。
θ
3
1
土的极限平衡条件 根据这一准则,当土处于极限平衡状态即应理解为破坏状 态,此时的莫尔应力圆即称为极限应力圆或破坏应力圆, 相应的一对平面即称为剪切破坏面(简称剪破面)。
下面将根据莫尔-库仑破坏准则来研究某一土体单元处于 极限平衡状态时的应力条件及其大、小主应力之间关系, 该关系称为土的极限平衡条件。
根据莫尔-库仑破坏准则,当单元土体达到极限平衡状态 时,莫尔应力圆恰好与库仑抗剪强度线相切。
根据图中的几何关系并经过三角公式的变换,可得
1 3
s cot
2
上式即为土的极限平衡条件。当土的强度指标c,φ 为已知,若土中某点的大小 主应力σ1和σ3满足上列关系式时,则该土体正好处于极限平衡或破坏状态。 上式也可适用于有效应力,相应c,φ应该用c’,φ’。
上式也可适用于有效应力,相应c,φ应该用c’,φ’
3f
1f
tg
2
(45
2
)
2c
•
tg(45
2
)
1f
τ <τ f 稳定 τ =τ f 极限 τ >τ f 破坏
二、莫尔-库仑强度理论及土的极限平衡条件
τ=τf 时的极限平衡状态作为土的破坏准则:土体中 某点任意面上剪应力满足该式,该点破坏。
可以把莫尔应力圆与库仑抗剪强度定律互相结合起 来。通过两者之间的对照来对土所处的状态进行判 别。把莫尔应力圆与库仑抗剪强度线相切时的应力 状态,破坏状态—称为莫尔-库仑破坏准则,它是 目前判别土体(土体单元)所处状态的最常用或最基本 的准则。
土的抗剪强度
构造
② 试验方法:套橡皮膜圆柱状土样(试验前饱和器内养护), 围压σ3(三向受力)、竖向压力 1 3 ③数据测读:各级压力作用下对应的体积变形和竖向变形以及孔隙水压力、 静止侧压力系数等 ④数据整理(多个试样):~ 曲线定大小主应力,进而作应力圆,可求 抗剪强度指标 、 和 f ,并据公式(5-4)求破坏面的 、 。
【岩土力学】
第五章 土的抗剪强度
19
极限应力园
【岩土力学】
第五章 土的抗剪强度
20
图中: ①任意截面 f ②其中一截面 f 该点处于极限平衡状 态,属于极限应力圆 ③有些截面 f 这些截面的平面剪应 力超过抗剪强度(当然不可能存在此状态)
【岩土力学】
第五章 土的抗剪强度
中密 28~32 30~34 34~40 36~42
密 30~34 32~36 38~46 40~48
6பைடு நூலகம்
26~30 26~30 30~34 32~36
第五章 土的抗剪强度
无粘性土的τf主要来源于内摩擦力 粘性土因 较小,则较多依靠粘聚力(原始粘聚 力、固化粘聚力)。 原始粘聚力 ——土颗粒之间的分子引力 固化粘聚力 ——化合物的胶结作用。 其中,固化粘聚力会因土结构的破坏而丧失, 故不能扰动基底土。
1 ds cos ds cos ds sin 0 3 ds sin ds sin ds cos 0
联立求解得:
1 1 = ( 1+ 3〕+ ( 1- 3 ) cos 2 2 2 1 ( 1 3 ) sin 2 2
土的抗剪强度
莫尔包线
土中应力与土的平衡状态 随着土中应力状态的改变,应力圆与强度包线之间的位置关系 将发生三种变化情况,土中也将出现相应的三种平衡状态 。
III II
f f f
稳定平衡状态
极限平衡状态 破坏状态
c
I
摩尔-库仑破坏准则:摩尔应力圆与库仑强度线相切的应力状态作为土的破坏准则
总应力强度参数与有效应力强度参数 正常固结试样分别在三种不同排水条件下进行试验,当以总 应力表示强度时,不同试验方法引起的强度差异是通过不同 的强度参数来反映的,亦即在总应力强度参数中包含了孔隙
水压力的影响;当以有效应力表示强度时,这种强度差异可
直接通过有效应力项来反映,而不同试验方法测得的有效强 度参数一般彼此接近,即若以有效应力表示,则不论采用那 种试验方法,都得到近乎同一条有效应力破坏包线,说明抗 剪强度与有效应力有唯一的对应关系。
qu f cu 2
十字板剪切试验
十字板剪切试验是一种土的抗剪强度的原位测试方法,它在反 映土体原始抗剪强度方面比室内试验有明显的优势,在实际工 程中得到了较广泛的应用。
qu f 2
适用范围:现场测定 饱和粘性土的不排水 强度,尤其适用于均 匀的饱和软粘土。
有效应力强度指标
用有效应力法及相应指标进行计算,概念明确。当土中的孔 隙水压力能通过实验、计算或其他方法加以确定时,宜采用 有效应力法。有效应力强度指标可用三轴排水剪或三轴固结 不排水剪(测孔隙水压力)测定。
3 1
粘性土的极限平衡条件为:
1 3 tan (45 ) 2c tan( 45 )
2 0 0
3 1 tan (45 ) 2c tan( 45 )
土的抗剪强度
第5章土的抗剪强度5.1概述土的抗剪强度是指土体对于外荷载所产生的剪应力的极限抵抗能力。
当土中某点由外力所产生的剪应力达到土的抗剪强度时,土体就会发生一部分相对于另一部分的移动,该点便发生了剪切破坏。
工程实践和室内试验都验证了建筑物地基和土工建筑物的破坏绝大多数属于剪切破。
例如堤坝、路堤边坡的坍滑(图5.1a),挡土墙墙后填土失稳(图5.1b)建筑物地基的失稳(图 5.1c),都是由于沿某一些面上的剪应力超过土的抗剪强度所造成。
因此土的抗剪强度是决定地基或土工建筑物稳定性的关键因素。
所以研究土的抗剪强度的规律对于工程设计、施工和管理都具有非常重要的理论和实际意义。
由于土的抗剪强度是岩土的重要力学性质之一,本章主要讲述叙述土抗剪强度的基本概念、土地抗剪强度的基本理论、土的抗剪强度的试验方法及土的抗剪强度指标的应用。
5.2土的抗剪强度的基本理论5.2.1直剪试验土的抗剪强度可以通过室内试验与现场试验测定。
直剪试验是其中最基本的室内试验方法。
直剪试验使用的仪器称直剪仪。
按加荷方式分为应变式和应力式两类。
前者是以等速推动剪切盒使土样受剪,后者则是分级施加水平剪力于剪力盒使土样受剪。
目前我国普遍应用的是应变式直剪仪如图5.2所示。
试验开始前将金属上盒和下盒的内圆腔对正,把试样置于上下盒之间。
通过传压板和滚珠对土样先施加垂直法向应力σ=p/F(F-土样的截面积),然后再施加水平剪力T,使土样沿上下盒水平接触面发生剪切位移直至破坏。
在剪切过程中,隔固定时间间隔,测读相应的剪变形,求出施加于试样截面的剪应力值。
于是即可绘制在一定法应力条件下,土样剪变形λ与剪应力τ的对应关系(图5.3a)。
τf。
同一种土的几个不同土样分别施加不同的垂直法向应力σ做直剪试验都可得到相应的剪应力-剪切位移曲线(图5.3a),根据这些曲线求出相应于不同的法向应力σ试样剪坏时剪切面上的剪应力τf。
在直角坐标σ-τ关系图中可以作出破坏剪应力的连线(图 5.3b)。
第5章土的抗剪强度
A
如果 σ1 <σ1f :不破坏; 如果 σ1 ≥σ1f :破坏。
f c tan
A
3 3f 3
1 1
3 1
1f
1
【例题1】已知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°,问该 单元土体处于什么状态?
现场试验:十字板剪切试验、现场大型直剪试验
影响土抗剪强度指标的因素 土的种类 土样的天然结构是否被扰动 应力状态和应力历史 排水条件(室内试验时的一个需要考虑的最重要影响因 素)
室内直剪仪
室内直剪仪
三轴仪
三轴仪
无恻限压缩仪
抗剪强度理论的发展
本科只介绍的部分
(1)经典强度理论(Mohr- Coulomb强度理论)
n 1
3
m
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
1 2
(1
3)
1 2
(1
3) cos 2
1 2
(1
3)sin 2
1
2
2
2
2
1
3
2
2
ds
3 ds sin
1 ds cos
2、莫尔应力圆
正应力:压为正,拉为负; 剪应力:逆时针为正,顺时针为负。
1、不能用于反映土体的抗拉强度及破坏特性; 2、不能反映高压下土体的强度及破坏特性; 3、不能反映土体强度及破坏的中间主应力效应。
(a) 红砂岩
(b) 花岗岩
(c)破坏面方向
现代强度理论(考虑了中间主应力效应的强度理论)
Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则 Drucker-Prager强度准则 其它
第五章 土的抗剪强度
土的抗剪强度
5.1 概述
土的抗剪强度
是指土体对外荷载所产生的剪应力的 极限抵抗能力。剪切破坏是土体破坏的重 要特征。 砂土:其抗剪强度由内摩擦阻力构成, 其大小取决于土粒表面的粗糙度、密实度、 凸颗粒大小及级配等因素。 粘性土:其抗剪强度由粘结力和内摩 擦阻力两部分组成。
与土的抗剪强度有关的工程问题
u B 3 A( 1 3 )
式中:A、B-分别为不同应力条件下的孔隙压力系数。
1、试样在各向均等的初始应力作用下固结完毕
u0 0
2、试样受到各向均等的周围压力作用,试样体积变化主 要是孔隙空间的压缩所致(固体颗粒和水体积视为不可压 缩)。 孔隙体积 VV VV 压缩系数 CV u1
f
2M
D 2 ( H
D ) 3
5.3 孔隙压力系数A、B
英国斯肯普顿(Skempton) 等于1954年根据三轴压缩试验的 结果,首先提出孔隙压力系数的 概念,并用以表示土中孔隙压力 (饱和土体的孔隙压力即为孔隙 水压力)的大小。他们在三轴试 验的基础上提出了复杂压力状态 下的孔隙压力表达式为:
原理:土体剪切破坏时所施加的扭矩,与剪切破坏圆柱 面(侧面和上下面)上土的抗剪强度所产生的抵抗力矩相 等。即:
M M1 2M 2
(1)圆柱体侧面上的抗扭力矩: D M 1 DH f 2 (2)圆柱体上、下表面上的抗扭力矩: D D 2 M2 ( ) f 3 4 (3)土的抗剪强度:
中灵敏度土:2 < St ≤4
高灵敏度土: St > 4 土的灵敏度越高,其结构性越强,受扰动后土的强度降低就越多。粘 性土受扰动而强度降低的性质,一般而言对工程建设是不利的。
四、十字板剪切验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章土的抗剪强度5。
1概述土的抗剪强度是指土体对于外荷载所产生的剪应力的极限抵抗能力。
当土中某点由外力所产生的剪应力达到土的抗剪强度时,土体就会发生一部分相对于另一部分的移动,该点便发生了剪切破坏。
工程实践和室内试验都验证了建筑物地基和土工建筑物的破坏绝大多数属于剪切破。
例如堤坝、路堤边坡的坍滑(图5。
1a),挡土墙墙后填土失稳(图5.1b)建筑物地基的失稳(图5。
1c),都是由于沿某一些面上的剪应力超过土的抗剪强度所造成。
因此土的抗剪强度是决定地基或土工建筑物稳定性的关键因素。
所以研究土的抗剪强度的规律对于工程设计、施工和管理都具有非常重要的理论和实际意义。
由于土的抗剪强度是岩土的重要力学性质之一,本章主要讲述叙述土抗剪强度的基本概念、土地抗剪强度的基本理论、土的抗剪强度的试验方法及土的抗剪强度指标的应用.5.2土的抗剪强度的基本理论5.2.1直剪试验土的抗剪强度可以通过室内试验与现场试验测定.直剪试验是其中最基本的室内试验方法.直剪试验使用的仪器称直剪仪。
按加荷方式分为应变式和应力式两类。
前者是以等速推动剪切盒使土样受剪,后者则是分级施加水平剪力于剪力盒使土样受剪.目前我国普遍应用的是应变式直剪仪如图 5.2所示.试验开始前将金属上盒和下盒的内圆腔对正,把试样置于上下盒之间.通过传压板和滚珠对土样先施加垂直法向应力σ=p/F(F—土样的截面积),然后再施加水平剪力T,使土样沿上下盒水平接触面发生剪切位移直至破坏。
在剪切过程中,隔固定时间间隔,测读相应的剪变形,求出施加于试样截面的剪应力值。
于是即可绘制在一定法应力条件下,土样剪变形λ与剪应力τ的对应关系(图5。
3a)。
为τf。
同一种土的几个不同土样分别施加不同的垂直法向应力σ做直剪试验都可得到相应的剪应力-剪切位移曲线(图5.3a),根据这些曲线求出相应于不同的法向应力σ试样剪坏时剪切面上的剪应力τf。
在直角坐标σ—τ关系图中可以作出破坏剪应力的连线(图5。
3b).在一般情况下,这个连线是线性的,称为库伦强度线。
见式(5.1a)、式(5.2b )。
砂性土 ϕστtg f = (5.1a)粘性土ϕστtg c f += (5。
1b )式中:c ——土的粘聚力(kPa ),图5。
3b中的τ—σ直线在纵轴上的截距;ϕ-—土的内摩擦角,即τ-σ直线与横轴上的夹角;t gϕ—-直线的斜率。
公式(5.1)就是土体的强度规律的数学表达式。
在18世纪七十年代由库仑(Coulom b,C 。
A )砂土的摩擦试验后得出的,所以也称库仑定律。
它表明在一定的荷载范围内土的抗剪强度与法向应力之间呈直线关系,其中c 、ϕ被称为土的强度指标。
5.2。
3 土的极限平衡条件1)土中一点的应力状态在自重与外荷作用下土体(如地基)中任意一点的应力状态,对于平面应力问题,只要知道应力分量即σx、σz和τxz ,即可确定一点的应力状态。
对于土中任意一点,所受的应力又随所取平面的方向不同而发生变化。
但可以证明,在所有的平面中必有一组平面的剪应力为零,该平面称为主应力面。
题,土中一点的应力可用主应力σ1和σ3表示。
σ1材料力学可知当土中任一点的应力σx、σz、τxy 时,主应力可以由下面的应力转换关系得出: )2(2231xy x z x z στσσσσσ++±+= 主应力平面与任意平面间的夹角由下式得出:)(211x z xy tg σστα-=- α角的转动方向与摩尔应力圆图上的一致。
2)土的极限平衡状态 根据库仑定律和试验作出的库仑强度线,可以看出,如果已知土中某点任意平面上作用着法向应力σ以及剪应力τ,则由τ与抗剪强度τf对比可知:当τ<τf (在破坏线以下)τ=τf (破坏线以上) τ>τf (在破坏线上方)由此可见,的摩尔应力圆,相交时,于土的抗剪强度,圆)割时,表明该点土体已经破坏(应力圆与强度线相切时即为土体濒于剪切破坏的极限应力状态,称为极限平衡状态,与强度线相切的应力圆称为极限应力圆(图5.5中之b 圆),切点A 的坐标是表示通过土中一点的某一切面处于极限平衡状态时的应力条件。
这就是说通过库仑定律与摩尔应力圆原理的结合可以推导出表示土体极限平衡状态时主应力之间的相互关系式或应力条件。
3)土的极限平衡条件在图5。
6中,根据极限应力圆O1与强度线τf =c+σtg ϕ相切于A 点的几何关系,由直角三角形ABO 1中得到,通过三角函数间的变换关系最后可以得到土中某点处于极限平衡状态时主应力之间的关系式(式5.5a 、式5.5b ):)245(2)245(00231 +c tg ++ tg =σσϕϕ (5。
5a ) )245(2)245(00213 c tg + tg =σσϕϕ-- (5.5b) 公式(5.3)至(5。
5)可以用来判断土体中一点的应力状态。
5。
3抗剪强度试验方法抗剪强度试验的方法有室内试验和野外试验等,室内最常用的是直剪试验、三轴压缩试验和无侧限抗压强度试验等。
野外试验有原位十字板剪切试验等。
5.3。
1直接剪切试验直剪试验基本原理与方法已知前述,在直接剪切试验中,不能两侧孔隙水压力,也不能控制排水,所以只能一总应力法来表示土的抗剪强度。
但是为了考虑固结程度和排水条件对抗剪强度的影响,根据加荷速率的快慢将直剪试验划分为块剪、固结快剪和慢剪三种试验类型。
1).快剪。
竖向压力施加后立即施加水平剪力进行剪切,使土样在3-5分钟内剪坏.由于剪切速度快,可认为土样在这样短暂时间内没有排水固结或者说模拟了“不排水”剪切情况。
得到的强度指标用c q 、ϕq 表示;2).固结快剪。
竖向压力施加后,给以充分时间使土样排水固结.固结终了后施加水平剪力,快速地(约在3~5mi n内)把土样剪坏,即剪切时模拟不排水条件.得到的指标用c cq 、ϕc q表示;3)。
慢剪。
竖向压力施加后,让土样充分排水固结,固结后以慢速施加水平剪力,使土样在受剪过程中一直有充分时间排水固结,直到土被剪破,得到的指标用c s 、ϕs 表示。
由上述三种试验方法可知,即使在同一垂直压力作用下,由于试验时的排水条件不同,作用在受剪面积上的有效应力也不同,所以测得的抗剪强度指标也不同。
在一般情况下,ϕs>ϕcq >ϕq .上述三种试验方法对粘性土是有意义的,但效果要视土的渗透性大小而定。
对于非粘性土,由于土的渗透性很大,即使快剪也会产生排水固结,所以常只采用一种剪切速率进行“排水剪试验。
直剪试验的优点是仪器构造简单,操作方便,它的主要缺点是:①不能控制排水条件;②剪切面是人为固定的,该面不一定是土样的最薄弱的面;③剪切面上的应力分布不均匀的。
因此,为了克服直剪试验存在的问题,后来又发展了三轴压缩试验方法,三轴压缩仪是目前测定土抗剪强度较为完善的仪器。
5。
3。
2三轴压缩试验1)试验仪器和试验方法三轴压缩试验使用的仪器为三轴剪力仪(也称三轴压缩仪),其核心部分是三轴压力室,它的构造见图5.8。
此外,还配备有:(a )轴压系统, 即三轴剪切仪的主机台,用以对式样施加轴向附加压力,并可控制轴向应变的速率:(b)侧压系统, 通过液体(通常是水)对土样施加周围压力;(c)孔隙水压力测读系统,用以测量土样孔隙水压力及其在试验过程中的变化。
试验用的土样为正圆柱形,常用的高度与直径之比为2-2。
5。
土样用薄橡皮膜包裹,以免压力室的水进入。
试样上、下两端可根据试样要求放置透水石或不透水板。
试验中试样的排水情况由排水阀B 控制(图5。
8).试样底部与孔隙水压力量测系统相接,必要时藉以测定试验过程中试样的孔隙水压力变化。
试验时,先打开阀门A ,向压力室压入液体,使土样在三个轴向受到相同的周围压力σ3,此时土样中不受剪力。
然后再由轴向系统通过活塞对土样施加竖向压力q ,此时试样中将产生剪应力.在周围压力σ3不变情况下,不断增大q ,直到土样剪坏。
其破坏面发生在与大主应力作用成面αf =45°+2ϕ的夹角处.这时作用于土样的轴向应力σ1=σ3+q ,为最大主应力,周围压力σ3为最小主应力。
用σ1和σ3可绘得土样破坏时的一个极限应力圆。
若取同一种土的3-4个试样,在不同周围压力σ3下进行剪切直得到相应的σ1,便可绘出几个极限应力圆。
这些极限应力圆的公切线,即为抗剪强度包线.它一般呈直线形状,从而可求得指标c 、ϕ值(图5。
9).若在试验过程中,通过孔隙水测读系统分别测得每一个土样剪切破坏时的孔隙水压力的大小就可以得出土样剪切破坏时有效应力σ1′=σ1-u ,σ′3=σ3-u,绘制出相应的有效极限应力圆如图4—10,根据有效极限应力圆,即可求得有效强度指标ϕ′、c′。
2)三轴试验方法根据土样固结排水条件的不同,相应于直剪试验三轴试验也可分为下列三种基本方法:(1) 不固结不排水剪(U U):先向土样施加周围压力σ3,随后即施加轴向应力q 直至剪坏.在施加q过程中,自始至终关闭排水阀门不允许土中水排出,即在施加周围压力和剪切力时均不允许土样发生排水固结。
这样从开始加压直到试样剪坏全过程中土中含水量保持不变。
这种试验方法所对应的实际工程条件相当于饱和软粘土中快速加荷时的应力状况(2) 固结不排水剪(C U)试验:试验时先对土样施加周围压力σ3,并打开排水阀门B ,使土样在σ3作用下充分排水固结.然后施加轴向应力q ,此时,关上排水阀门B ,使土样在不能向外排水条件下受剪直至破坏为止。
三轴“CU ”试验是经常要做的工程试验,它适用的实际工程条件常常是一般正常固结土层在工程竣工时或以后受到大量、快速的活荷载或新增加的荷载的作用时所对应的受力情况。
(3) 固结排水剪(CD )试验:在施加周围压力σ3和轴向压力q 的全过程中,土样始终是排水状态,土中孔隙水压力始终处于消散为零的状态,使土样剪切破坏。
这三种不同的三轴试验方法所得强度、包线性状及其相应的强度指标不相同,其大致形态与关系如图5。
11所示。
三轴试验和直剪试验的三种试验方法在工程实践中如何选用是个比较复杂的问题,应根据工程情况、加荷速度快慢、土层厚薄、排水情况、荷载大小等综合确定.一般来说,对不易透水的饱和粘性土,当土层较厚,排水条件较差,施工速度较快时,为使施工期土体稳定可采用不固结不排水剪.反之,对土层较薄,透水性较大,排水条件好,施工速度不快的短期稳定问题可采用固结不排水剪。
击实填土地基或路基以及挡土墙及船闸等结构物的地基,一般认为采用固结不排水剪。
此外,如确定施工速度相当慢,土层透水性及排水条件都很好,可考虑用排水剪。
当然,这些只是一般性的原则,实际情况往往要复杂得多,能严格满足试验条件的很少,因此还要针对具体问题作具体分析。
5。
41)土的抗剪强度指标土的抗剪强度指标c 和ϕ为土的内摩擦系数,σtg ϕ间的相互嵌入和联锁作用产生的咬合力分子引力作用等引成的,按照库仑定律种土,化,即使是同一种土,ϕ、c 2)影响土的抗剪强度的因素(1)土粒的矿物成份、形状、颗粒大小与颗粒级配土的颗粒越粗,形状越不规则,表面越粗糙,ϕ越大,内摩擦力越大,抗剪强度也越高。