2018二次函数中考选择填空题(带答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018二次函数中考选择填空题(难)
一.选择题(共18小题)
1.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()
A.甲B.乙C.丙D.丁
2.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1
3.(2018•齐齐哈尔)抛物线C
1:y
1
=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、
B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线
x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C
2:y
2
=ax2
(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2
﹣4mx+2n>0的解作为函数C
1
的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()
A.2个B.3个C.4个D.5个
4.(2018•连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同
B.点火后24s火箭落于地面
C.点火后10s的升空高度为139m
D.火箭升空的最大高度为145m
5.(2018•贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()
A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2 6.(2018•乐山)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()
A.a=3±2B.﹣1≤a<2
C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣
7.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()
A.B.C.
D.
8.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.
下列结论:①abc<0;②9a+3b+c>0;③若点M(,y
1),点N(,y
2
)是函
数图象上的两点,则y
1<y
2
;④﹣<a<﹣.
其中正确结论有()
A.1个B.2个C.3个D.4个
9.(2018•河北)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()
A.甲的结果正确
B.乙的结果正确
C.甲、乙的结果合在一起才正确
D.甲、乙的结果合在一起也不正确
10.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()
A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2 11.(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()
A.第一象限B.第二象限C.第三象限D.第四象限
12.(2018•呼和浩特)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是()
A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4
13.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)
(x﹣1)=﹣1有两个根x
1和x
2
,且x
1
<x
2
,则﹣5<x
1
<x
2
<1;④若方程
|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()
A.1个B.2个C.3个D.4个
14.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a 的取值范围是()
A.a≤﹣1或≤a<B.≤a<
C.a≤或a>D.a≤﹣1或a≥
15.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()
A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)16.(2018•兰州)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线
在x轴及其下方的部分记作C
1,将C
1
向左平移得到C
2
,C
2
与x轴交于点B、D,
若直线y=x+m与C
1、C
2
共有3个不同的交点,则m的取值范围是()
A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣17.(2018•巴中)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()