九年级数学一元二次方程组的专项培优练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学一元二次方程组的专项培优练习题(含答案)
一、一元二次方程
1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数2
22(3)y x mx m =--+(m m 为常数).
(1)当m =0时,求该函数的零点;
(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且
12111
4
x
x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.
【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,
(3)AM 的解析式为1
12
y x =--. 【解析】 【分析】
(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;
(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】
(1)当m =0时,该函数的零点为6和6-.
(2)令y=0,得△=
∴无论m 取何值,方程
总有两个不相等的实数根.
即无论m 取何值,该函数总有两个零点. (3)依题意有,
由
解得
.
∴函数的解析式为.
令y=0,解得
∴A(
),B(4,0)
作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.
易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)
设直线AB’的解析式为y kx b =+,则
20{106k b k b -+=+=-,解得112
k b =-=-, ∴直线AB’的解析式为1
12
y x =--, 即AM 的解析式为1
12
y x =-
-.
2.李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.
【答案】 (1) 李明应该把铁丝剪成12 cm 和28 cm 的两段;(2) 李明的说法正确,理由见解析. 【解析】
试题分析:(1)设剪成的较短的这段为xcm ,较长的这段就为(40﹣x )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm 2建立方程求出其解即可; (2)设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm 2建立方程,如果方程有解就说明李明的说法错误,否则正确.
试题解析:设其中一段的长度为cm ,两个正方形面积之和为cm 2,则
,
(其中
),当
时,
,解这个方程,得
,,∴应将之剪成12cm 和28cm
的两段;
(2)两正方形面积之和为48时,,,
∵
, ∴该方程无实数解,也就是不可能使得两正方形面积
之和为48cm 2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
3.已知关于x 的方程24832x nx n --=和()2
2
3220x n x n -+-+=,是否存在这样的
n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?
【答案】存在,n=0. 【解析】 【分析】
在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.
设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=32
4
n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n 2+3n+2=-n+1,解得n=-12
,但1-n=3
2不是整数,舍.
②若4n 2+3n+2=2(n+2),解得n=0或n=-1
4
(舍),
综上所述,n=0.
4.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;
(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值. 【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12. 【解析】 【分析】
(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣26a a + ,x 1x 2=6
a
a + ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣
66a - 是是负整数,即可得6
6a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】