材料性能学 1.常规力学性能

合集下载

材料性能知识点总结

材料性能知识点总结

材料性能知识点总结材料的性能是指材料在特定条件下所表现出来的力学、物理、化学、热学等方面的特性。

了解材料的性能对于进行材料的选择、设计以及工程应用至关重要。

本文将从材料的力学性能、物理性能、化学性能和热学性能等方面进行总结。

一、材料的力学性能1. 强度材料的强度是指材料抵抗外部力作用下抵抗破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

强度是材料最基本的性能之一,对于工程结构的设计和选择材料至关重要。

2. 韧性材料的韧性是指材料在受到外部力作用下发生损伤时的能力。

与强度不同,韧性反映了材料在受到冲击或者局部损伤后的延展性和吸能能力。

韧性高的材料通常会在受力后产生一定程度的变形而不会立即断裂。

3. 刚度材料的刚度是指材料在受力作用下的变形程度。

刚度高的材料在受力后会产生较小的变形,具有较好的抗变形能力。

在很多工程应用中要求材料具有一定的刚度以满足设计要求。

4. 硬度材料的硬度是指材料抵抗表面划伤或者压痕的能力。

硬度测试通常通过洛氏硬度、巴氏硬度等方法进行检测。

硬度是材料的持久性能,硬度高的材料通常耐磨损、耐腐蚀能力较强。

5. 疲劳性能材料的疲劳性能是指材料在受到交变载荷或者重复载荷作用下的抗疲劳能力。

疲劳性能是材料在实际使用中的重要性能之一,对于机械零部件、航空工业等领域的材料选择至关重要。

6. 蠕变性能材料的蠕变性能是指材料在高温下长期受力变形的抗蠕变能力。

在高温环境下,材料的蠕变性能会影响结构的安全和可靠性。

二、材料的物理性能1. 密度材料的密度是指单位体积内的质量。

密度的大小直接影响了材料的重量和强度。

通常情况下,密度较小的材料更适合用于要求轻量化设计的结构。

2. 热导率材料的热导率是指材料传导热量的能力。

热导率高的材料在传热和散热方面表现更佳。

3. 电导率材料的电导率是指材料传导电流的能力。

电导率高的材料通常用于导电材料和电子器件的制造。

4. 磁性材料的磁性是指材料在外磁场作用下的磁导能力。

材料的力学性能有哪些

材料的力学性能有哪些

材料的力学性能有哪些
1材料力学性能
材料力学性能是指材料受外力作用时产生的结构变形以及产生的变形所抵抗的力之间的相互关系。

材料力学性能决定着物体能够承受多大载荷,从而保证物体的安全和稳定性,也是应用工程材料的重要考量标准。

材料力学性能的分类:
1.1弹性性能
弹性性能是指材料受外力作用时能够承受的恢复力的大小,是衡量材料的强度的重要指标。

包括屈服强度、抗拉强度、抗压强度和断裂强度等级。

若外力作用则材料发生变形,材料结构恢复后变形越小,弹性性能越好。

1.2理论性能
理论性能是指材料在不受外力作用时产生的固有属性,一般包括形状、尺寸、密度、抗剪强度、压缩性能等。

这些性能判断材料的加工性能。

1.3定向性能
定向性能是指材料在特定方向受外力作用时,所产生的变形程度以及抵抗力的大小,一般包括抗断裂性能、抗拉伸性能、抗压缩性能以及特殊材料(如硅胶、聚氨酯)的韧性,用来测试其在特定应用场合时的表现。

1.4加工性能
加工性能是指材料加工时机械性能指标,一般包括热处理性能、热变形性能、焊接性能以及表面质量等。

1.5材料寿命性能
材料寿命性能是指材料受到温度、湿度、外力等作用时的抗老化性能,是材料用途的重要考量标准,一般包括热稳定性、导热性能、环境老化性能、化学稳定性等。

以上就是材料的力学性能的分类及指标,它们的测试可以反映出一种材料的强度、稳定性、耐久性及环境效应等状况。

选择合适的材料并使之满足应用要求,需要对材料力学性能做出合理评估。

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。

材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。

其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。

应力软性系数:最大切应力与最大正应力的相对大小。

1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

ae=1/2σeεe=σe2/2E。

取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。

需通过合金强化及组织控制提高弹性极限。

2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。

①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。

金属中点缺陷的移动,长时间回火消除。

弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。

吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。

②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

(反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。

1强度强度是指材料在外力作用下抵抗塑性变形或断裂的能力。

强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。

2塑性塑性是指材料在断裂前产生永久变形而不被破坏的能力。

材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。

3硬度硬度是指金属材料抵抗硬物压入其表面的能力。

材料的硬度越高,其耐磨性越好。

常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。

1)布氏硬度表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。

规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。

如120 HBS 10/1000/30。

适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。

根据经验,布氏硬度与抗拉强度之间有一定的近似关系:对于低碳钢,有σ=0.36HBS;对于高碳钢:有σ=0.34HBS。

2)洛氏硬度表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。

洛氏硬度的表示方法为:在符号前面写出硬度值。

如62HRC。

适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。

4冲击韧性冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。

5疲劳强度疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

6弹性在物理学和机械学上,弹性理论是描述一个物体在外力的作用下如何运动或发生形变。

在物理学上,弹性是指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的常用力学性能指标有哪些材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能.锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等.(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力.强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD.(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力.塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度.(3)韧性韧性是指金属材料抵抗冲击负荷的能力.韧性常用冲击功Ak和冲击韧性值αk表示.Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化.而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性.表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力.(4)硬度硬度是衡量材料软硬程度的一个性能指标.硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样.最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力.而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小.因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标.力学性能主要包括哪些指标材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征.性能指标包括:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度.钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.金属材料的力学性能指标有哪些一:弹性指标1.正弹性模量2.切变弹性模量3.比例极限4.弹性极限二:强度性能指标1.强度极限2.抗拉强度3.抗弯强度4.抗压强度5.抗剪强度6.抗扭强度7.屈服极限(或者称屈服点)8.屈服强度9.持久强度10.蠕变强度三:硬度性能指标1.洛氏硬度2.维氏硬度3.肖氏硬度四:塑性指标1:伸长率(延伸率)2:断面收缩率五:韧性指标1.冲击韧性2.冲击吸收功3.小能量多次冲击力六:疲劳性能指标1.疲劳极限(或者称疲劳强度) 七:断裂韧度性能指标1.平面应变断裂韧度2.条件断裂韧度衡量钢材力学性能的常用指标有哪钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.1. 屈服强度钢材单向拉伸应力—应变曲线中屈服平台对应的强度称为屈服强度,也称屈服点,是建筑钢材的一个重要力学特征.屈服点是弹性变形的终点,而且在较大变形范围内应力不会增加,形成理想的弹塑性模型.低碳钢和低合金钢都具有明显的屈服平台,而热处理钢材和高碳钢则没有.2. 抗拉强度单向拉伸应力—应变曲线中最高点所对应的强度,称为抗拉强度,它是钢材所能承受的最大应力值.由于钢材屈服后具有较大的残余变形,已超出结构正常使用范畴,因此抗拉强度只能作为结构的安全储备.3. 伸长率伸长率是试件断裂时的永久变形与原标定长度的百分比.伸长率代表钢材断裂前具有的塑性变形能力,这种能力使得结构制造时,钢材即使经受剪切、冲压、弯曲及捶击作用产生局部屈服而无明显破坏.伸长率越大,钢材的塑性和延性越好.屈服强度、抗拉强度、伸长率是钢材的三个重要力学性能指标.钢结构中所有钢材都应满足规范对这三个指标的规定.4. 冷弯性能根据试样厚度,在常温条件下按照规定的弯心直径将试样弯曲180°,其表面无裂纹和分层即为冷弯合格.冷弯性能是一项综合指标,冷弯合格一方面表示钢材的塑性变形能力符合要求,另一方面也表示钢材的冶金质量(颗粒结晶及非金属夹杂等)符合要求.重要结构中需要钢材有良好的冷、热加工工艺性能时,应有冷弯试验合格保证.5. 冲击韧性冲击韧性是钢材抵抗冲击荷载的能力,它用钢材断裂时所吸收的总能量来衡量.单向拉伸试验所表现的钢材性能都是静力性能,韧性则是动力性能.韧性是钢材强度、塑性的综合指标,韧性越低则发生脆性破坏的可能性越大.韧性值受温度影响很大,当温度低于某一值时将急剧下降,因此应根据相应温度提出要求.力学性能指标符号是什么?任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用.如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等.这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力.这种能力就是材料的力学性能.金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标.1.1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力.强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa.工程中常用的强度指标有屈服强度和抗拉强度.屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示.抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示.对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据.1.1.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力.工程中常用的塑性指标有伸长率和断面收缩率.伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示.断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示.伸长率和断面收缩率越大,其塑性越好;反之,塑性越差.良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件.1.1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力.硬度的测试方法很多,生产中常用的硬度测试方法有布氏硬度测试法和洛氏硬度试验方法两种.(一)布氏硬度试验法布氏硬度试验法是用一直径为D的淬火钢球或硬质合金球作为压头,在载荷P的作用下压入被测试金属表面,保持一定时间后卸载,测量金属表面形成的压痕直径d,以压痕的单位面积所承受的平均压力作为被测金属的布氏硬度值.布氏硬度指标有HBS和HBW,前者所用压头为淬火钢球,适用于布氏硬度值低于450的金属材料,如退火钢、正火钢、调质钢及铸铁、有色金属等;后者压头为硬质合金,适用于布氏硬度值为450~650的金属材料,如淬火钢等.布氏硬度测试法,因压痕较大,故不宜测试成品件或薄片金属的硬度.(二)洛氏硬度试验法洛氏硬度试验法是用一锥顶角为120°的金刚石圆锥体或直径为f1.558mm(1/16英寸)的淬火钢球为压头,以一不定的载荷压入被测试金属材料表面,根据压痕深度可直接在洛氏硬度计的指示盘上读出硬度值.常用的洛氏硬度指标有HRA、HRB和HRC三种.采用120°金刚石圆锥体为压头,施加压为600N时,用HRA表示.其测量范围为60~85,适于测量合金、表面硬化钢及较薄零件.采用f1.588mm淬火钢球为压头,施加压力为1000N时,用HRC表示,其测量硬度值范围为25~100,适于测量有色金属、退火和正火钢及锻铁等.采用120°金刚石圆锥体为压头,施加压力为1500N时,用HRC表示,其测量硬度值范围为20~67,适于测量淬火钢、调质钢等.洛氏硬度测试,操作迅速、简便,且压痕小不损伤工件表面,故适于成品检验.硬度是材料的重要力学性能指标.一般材料的硬度越高,其耐磨性越好.材料的强度越高,塑性变形抗力越大,硬度值也越高.1.1.4 冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,用ak表示,单位为J/cm2.冲击韧性常用一次摆锤冲击弯曲试验测定,即把被测材料做成标准冲击试样,用摆锤一次冲断,测出冲断试样所消耗的冲击AK,然后用试样缺口处单位截面积F上所消耗的冲击功ak表示冲击韧性.ak值越大,则材料的韧性就越好.ak值低的材料叫做脆性材料,ak值高的材料叫韧性材料.很多零件,如齿轮、连杆等,工作时受到很大的冲击载荷,因此要用ak值高的材料制造.铸铁的ak值很低,灰口铸铁ak值近于零,不能用来制造承受冲击载荷的零件.低碳钢的力学性能指标低碳钢由于含碳量低,它的延展性、韧性和可塑性都是高于铸铁的,拉伸开始时,低碳钢试棒受力大,先发生变形,随着变形的增大,受力逐渐减小,当试棒断开的瞬间,受力为“0”,其受力曲线是呈正弦波>0的形状.铸铁由于轫性差,拉伸开始时,受力是逐步加大的,当达到并超过它的拉伸极限时,试棒断开,受力瞬间为“0”,其受力曲线是随受力时间延长,一条直线向斜上方发展,试棒断开,直线垂直向下归“0”.同样的道理:低碳钢抗压缩的能力比铸铁要低,当对低碳钢试块进行压缩实验时,受力逐渐加大,试块随外力变形,当试块变形达到极限时,其受力也达到最大值,其受力曲线是一条向斜上方的直线.铸铁则不然,开始时与低碳钢受力情况基本相同,只是当铸铁试块受力达到本身的破坏极限时,受力逐渐减小,直到试块在外力下被破坏(裂开),受力为“0”其受力曲线与低碳钢拉伸时的受力曲线相同.以上就是低碳钢和铸铁在拉伸和压缩时力学性质的异同点.简述常用力学性能指标在选材中的意义?钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性.简单的可这样解释:强度,是指材料抵抗变形或断裂的能力.有二种:屈服强度σb、抗拉强度σs.强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力(也叫载荷)越大;硬度,是指材料表面抵抗硬物压人的能力.常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV.硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;塑性,是指材料产生变形而不断裂的能力.有两种表示方法:伸长率δ、断面收缩率ψ.塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk.冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强.一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝."钢材的主要力学性能指标有哪些(1)拉伸性能反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率.屈服强度是结构设计中钢材强度的取值依据.抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数.强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料.钢材在受力破坏前可以经受永久变形的性能,称为塑性.在工程应用中,钢材的塑性指标通常用伸长率表示.伸长率是钢材发生断裂时所能承受永久变形的能力.伸长率越大,说明钢材的塑性越大.试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率.对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求.预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小.由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示.(2)冲击性能冲击性能是指钢材抵抗冲击荷载的能力.钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响.除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击值急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度.脆性临界温度的数值愈低,钢材的低温冲击性能愈好.所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的钢材.(3)疲劳性能受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏.疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故.钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高.硬度硬度,物理学专业术语,材料局部抵抗硬物压入其表面的能力称为硬度。

第1章材料力学性能

第1章材料力学性能
第1章材料力学性能
材料的力学性能——1.7硬度
1.7 硬度 硬度——用来衡量材料软硬程度的性能指标。 测试硬度的方法有多种,相应的也有多种硬
度指标。
第1章材料力学性能
1.布氏硬度 HB
1)试验原理
以压力F 将直径为D的 球形压头压入材料表面, 形成直径为d的压痕,以 压痕单位面积上承受的压 力大小来衡量材料的硬度。
L1L0 10% 0
L0
第1章材料力学性能
材料的力学性能——1.6塑性
2. 断面收缩率Ψ 断面收缩率是试样被拉断后,颈缩处的横截面积
收缩量(S0-S1)与原始横截面积S0之百分比:
S0 S1 100%
S0
第1章材料力学性能
材料的力学性能——1.6塑性
材料的δ、Ψ值越大,表明其塑性越好。 材料的塑性在工程上的实用意义: 1)塑性是变形加工(锻压)的条件。塑性较好 的材料才可以进行变形加工。 2)塑性好的材料,不易脆断,应用时安全性比 较好。
能力。 衡量刚度大小的指标是弹性模量E。在拉伸曲线
上,E体现为oe 段的斜率。
第1章材料力学性能
铁 214000
材料的力学性能——1.5刚度
常用材料的弹性模量E/MPa
镍 210000
钛 118010
铝 72000
铜 132400
镁 45000
在一定的载荷作用下,弹性模量(E)大的材料 发生的弹性变形比较小。
1. 屈服强度σs ——材料受静载荷作用时,抵抗塑性 变形的能力。
s
FS S0
MPa
第1章材料力学性能
材料的力学性能——1.4强度
如果材料所受的载荷达到或超过其屈服强度,材 料就会发生塑性变形。
在设计和使用机器零件时,必须保证零件的工作 载荷低于零件材料的屈服强度(σ工作<σs),否则 零件就会发生塑性变形而失效。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在外力的作用下所表现出来的力学特性和性能。

材料力学性能的评价是材料工程中非常重要的一个方面,它直接关系到材料的使用性能和安全性。

下面就常见的材料力学性能进行简要介绍。

1. 强度:材料的强度是指材料在外力作用下抗变形和断裂的能力。

强度是材料力学性能中最基本和重要的指标之一。

常见的强度指标有拉伸强度、屈服强度、抗压强度、剪切强度等。

2. 韧性:材料的韧性是指材料在受到外力作用下的抗冲击和抗断裂能力。

韧性可以通过材料的断裂韧性、冲击韧性等指标来评价。

高韧性的材料具有良好的抗冲击和抗断裂性能。

3. 塑性:材料的塑性是指材料在受到外力作用下能够发生可逆的形变。

材料的塑性可以通过塑性应变、塑性延伸率、塑性饱和应变等指标来描述。

常见的塑性材料有金属材料和塑料材料。

4. 刚性:材料的刚性是指材料在受到外力作用下不易发生形变的能力。

刚性材料具有较高的弹性模量和抗弯刚度。

常见的刚性材料有钢材和铝合金等。

5. 弹性:材料的弹性是指材料在受到外力作用后能自行恢复原状的能力。

弹性材料具有较高的弹性模量和较小的应变率。

常见的弹性材料有弹簧钢和橡胶等。

6. 硬度:材料的硬度是指材料抵抗外部物体对其表面的压入的能力。

硬度指标可以通过洛氏硬度、布氏硬度、维氏硬度等来表示。

硬度高的材料具有较好的抗划伤和抗磨损性能。

7. 耐磨性:材料的耐磨性是指材料在长时间摩擦和磨损作用下的抗磨损能力。

耐磨性可以通过磨损试验来评价。

高耐磨性的材料具有较长的使用寿命。

总的来说,材料力学性能是评价材料使用性能的重要指标,不同材料的力学性能差异很大,选择合适的材料可以提高产品的使用寿命和安全性。

在材料工程中,需要根据具体应用要求和工作环境选择合适的材料,并通过力学性能的评价来保证材料的质量和可靠性。

材料的力学性能

材料的力学性能

材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。

锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。

(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。

强度指标是设计中确定许用应力的重要依据。

常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。

高温工作时,应考虑蠕变极限为N,断裂强度为D。

(2)塑性是指金属材料在断裂前产生塑性变形的能力。

塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。

(3)韧性是指金属材料抵抗冲击载荷的能力。

韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。

而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。

断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。

(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。

硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。

最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。

肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。

因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。

力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。

(1)抗拉性能。

表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。

屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。

发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。

抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。

材料的性能有哪些

材料的性能有哪些

材料的性能有哪些材料的性能是指材料在特定条件下所表现出的各种物理、化学、力学等特性。

一种材料的性能好坏直接影响着其在各个领域的应用,并且也反映了材料的质量和性价比。

下面介绍一些常见的材料性能。

1.力学性能:包括强度、硬度、韧性、延展性、抗冲击性等,反映了材料在外力作用下的应变能力。

高强度材料通常具有较高的强度和硬度,适用于承载重量的结构,而高韧性材料能够吸收冲击能量,适用于需要耐冲击的应用。

2.热性能:包括热导率、热膨胀系数、热稳定性等,反映了材料在高温条件下的表现。

热导率高的材料能够迅速传导热能,适用于导热器件;而热膨胀系数低的材料能够减少因温差引起的热应力,提高材料的热稳定性。

3.电性能:包括导电性、绝缘性、介电常数等,反映了材料在电场下的行为。

导电性好的材料适用于电子元器件;而绝缘性好的材料能够阻止电流的流动,用于电子隔离材料。

4.光学性能:包括透光性、折射率、光学吸收等,反映了材料对光的传播和相互作用的特性。

透明材料能够透过光线,适用于透明器件;而吸收光线的材料可用于光敏元件或光吸收材料。

5.化学性能:包括耐腐蚀性、化学稳定性、可溶性等,反映了材料在不同化学环境中的化学活性。

耐腐蚀性好的材料能够抵抗化学物质的腐蚀,延长材料的使用寿命。

6.吸声性能:反映了材料对声波的能量吸收能力。

吸声性能好的材料能够减少噪音传播和回声,适用于噪音控制和声学装饰。

7.磁性能:包括磁导率、磁饱和等,反映了材料在磁场中的性能。

高磁导率的材料可以增大磁感应强度,适用于电感器件。

总之,材料的性能是多方面因素综合作用的结果,不同的领域和应用需要不同性能的材料。

因此,在选择材料时,需要根据不同的要求和条件综合考虑材料的性能特点,以便选择最适合的材料。

1材料的力学性能

1材料的力学性能
材料内部的相变(如多晶型转变、有序化转变、铁 磁性转变以及超导态转变等)都会对弹性模量产生 比较明显的影响,其中有些转变的影响在比较宽 的温度范围里发生,而另一些转变则在比较窄的 温度范围里引起模量的突变,这是由于原子在晶 体学上的重构和磁的重构所造成的。
1.2.3 无机材料的弹性模量
表 1-1 一些工程材料的弹性模量、熔点和键型
气孔的影响
EE 0(11.9P0.9P 2)
图1-13 弹性模量E与气孔率的关系
1.2.5 弹性形变的机理
Ks

F

=tan
图 1-15 原子间振动模型
(a)双原子的作用力F(r) 与距离的关系; (b) 相互作用力U(r) 与距离的关系
图1-14 双原子的作用力F(r)及其相互作用力U(r)曲线
1.8 裂纹的起源与扩展 1.9 材料的疲劳 1.10 显微结构对材料脆性断裂的影响 1.11 提高材料强度及改善脆性的途径 1.12 复合材料 1.13 材料的硬度
1 材料的力学性能
在介绍应力-应变曲线的基础上,介绍材料的弹性 变形、塑性变形、高温蠕变及其它力学性能的理 论描述、产生的原因、影响因素。从断裂的现象 和产生、断裂力学的原理出发,通过理论结合强 度、应力场的分析,阐述断裂的判据,应力场强 度因子、平面应变断裂韧性、延性断裂、脆性断 裂、沿晶断裂、静态疲劳的概念,并根据此判据 来分析提高材料强度及改进材料韧性的途径。
第一章性形变力学性能指标 ——弹性模量和泊松比的物理意义
掌握无机非金属材料弹性形变的微观机理
塑性形变
掌握塑性形变的概念及特点
掌握晶格滑移的条件
了解
滞弹性和粘弹性
断裂性能
第一章 材料的力学性能

材料力学性能知识要点

材料力学性能知识要点

1低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。

2、材料常规力学性能的五大指标为:屈服强度、抗拉强度、延伸率断面收缩率、冲击功。

3、陶瓷材料增韧的主要途径有相变增韧、微裂纹增韧、表面残余应力增韧、晶须或纤维增韧显微结构增韧以及复合增韧六种。

4、常用测定硬度的方法有—布氏硬度_、_洛氏硬度_和_维氏硬度—测试法。

1聚合物的弹性模量对结构一非常敏感,它的粘弹性表现为滞后环、应力松弛和蠕变,这种现象与温度、时间密切有关。

2、影响屈服强度的内在因素有:_结构健、组织、结构、原子本性;外在因素有:—温度、应变速率、应力状态。

3、缺口对材料的力学性能的影响归结为四个方面:(1)产生应力集中、(2)引起三相应力状态,使材料脆化、(3)由应力集中带来应变集中、(4)使缺口附近的应变速率增高。

4、低碳钢拉伸试验的过程可以分为—弹性变形—、塑性变形_和_断裂—三个阶段5、材料常规力学性能的五大指标为:—屈服强度、抗拉强度、延伸率断面收缩率、冲击功6陶瓷材料增韧的主要途径有相变增韧、微裂纹增韧、表面残余应力增韧、晶须或纤维增韧—显微结构增韧以及复合增韧六种请说明下面公式各符号的名称以及其物理意义7、- c = K © /丫J a cC c:断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大, (T c表示引力的最大值;K ic:平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;丫:几何形状因子a c:裂纹长度da8、对公式C(AK)m进行解释,并说明各符号的名称及其物理意义(5分)dN答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。

da亞:裂纹扩展速率(随周次);dNc与m:与材料有关的常数;K :裂纹尖端的应力强度因子幅度茲=Acf9、箱蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;c为蠕变应力。

材料的性能有哪些

材料的性能有哪些

材料的性能有哪些材料的性能是指材料在特定条件下所表现出的特性和行为。

不同的材料具有不同的性能,这些性能直接影响着材料在工程领域的应用。

在工程设计和制造过程中,对材料性能的了解和掌握是至关重要的。

材料的性能主要包括以下几个方面:1.力学性能,力学性能是材料最基本的性能之一,包括强度、硬度、韧性、延展性等。

强度是材料抵抗外部力量破坏的能力,硬度是材料抵抗划痕或压痕的能力,韧性是材料抵抗断裂的能力,延展性是材料在拉伸过程中的变形能力。

这些性能直接影响着材料在承受外部载荷时的表现。

2.热学性能,热学性能是材料在热力学条件下的性能表现,包括热膨胀系数、导热系数、比热容等。

热膨胀系数是材料在温度变化时长度、面积或体积的变化比例,导热系数是材料传导热量的能力,比热容是材料单位质量在温度变化时吸收或释放的热量。

这些性能对材料在高温或低温环境下的应用具有重要影响。

3.电学性能,电学性能是材料在电学条件下的性能表现,包括电导率、介电常数、击穿电压等。

电导率是材料导电的能力,介电常数是材料在电场中的极化能力,击穿电压是材料在电场中发生击穿的电压值。

这些性能对材料在电子器件和电气设备中的应用具有重要影响。

4.化学性能,化学性能是材料在化学环境下的性能表现,包括耐腐蚀性、化学稳定性、溶解度等。

耐腐蚀性是材料抵抗化学腐蚀的能力,化学稳定性是材料在特定化学环境中的稳定性,溶解度是材料在特定溶剂中的溶解程度。

这些性能对材料在化工、生物医药等领域的应用具有重要影响。

5.物理性能,物理性能是材料在物理条件下的性能表现,包括密度、磁性、光学性能等。

密度是材料单位体积的质量,磁性是材料在外部磁场下的磁化能力,光学性能是材料对光的透射、反射、折射等特性。

这些性能对材料在光学器件、磁性材料等领域的应用具有重要影响。

综上所述,材料的性能是多方面的,不同的应用领域对材料性能的要求也不同。

在工程实践中,需要根据具体的应用需求选择合适的材料,并对其性能进行全面的评估和测试,以确保其在工程中的可靠性和稳定性。

材料性能学(1)

材料性能学(1)

4、微观组织 金属的弹性模量是一个组织不敏感的力学性能指标,热处理 (显微组织)、冷塑性变形对E值影响不大;而陶瓷与高 分子材料的弹性模量对结构与组织很敏感。 工程陶瓷弹性模量的大小与构成陶瓷的相的种类、粒度、分 布、比例及气孔率有关。 高分子聚合物的弹性模数可通过添加增强性填料而提高。 复合材料为特殊的多相材料,对于增强相为粒状的复合材料, 其弹性模数随增强相体积分数的增高而增大。 5、温度 随温度的升高,原子振动加剧,体积膨胀,原子间距增 大,结合力减弱,使材料的弹性模量降低。 对金属材料而言,弹性模量E还与金属材料的熔点成正比, 越是难熔的金属材料其E越高。 6、加载条件和负荷持续时间 对金属、陶瓷几乎无影响, 高分子聚合物随着负荷时间的延长,E逐渐降低。
二、伪弹性
定义: 伪弹性是指在一定的温度条件下,当 应力达到一定水平后,金属或合金将产生应力诱 发马氏体相变,伴随应力诱发相变产生大幅度弹 性变形的现象。——形状记忆合金的原理
三、包申格效应 定义:包申格效应是指,金属材料经预先加载产生少量塑性变形(残 余应变小于4%),而后再同向加载,规定残余伸长应力增加,反向加 载,规定残余伸长应力降低的现象。 包申格效应与金属材料中位错运动所受的阻力变化有关。金属受 载产生少量塑性变形时,运动位错遇林位错而弯曲受阻,并形成位错 缠结或胞状组织。 实际意义: ⑴理论上:由于它是金属变形时长程内应力的度量(长程内应力的大 小可用X 光方法测量),包辛格效应可用来研究材料加工硬化的机制。 ⑵工程应用上:首先是材料加工成型工艺需要考虑包申格效应。其次, 包申格效应大的材料,内应力较大。 (3)因包申格效应是一种材料微观组织结构变化的结果,所以可通过热 处理加以消除。方法是对材料进行较大的塑性变形进行再结晶退火。

材料的力学性能(1)

材料的力学性能(1)

可编辑ppt
11
混凝土的破坏机理
第一章 材料的力学性能
A到 E点达以BC点后前以,时后纵,微,向内裂混裂部缝凝缝微没土形裂有产成缝明 显 生 连 一发 部 通 个展分形斜,塑成向混性破的凝变坏破土形面坏的,面变应试,形力件此主-承破
要 应 载 坏弹 变 力 面性逐开在变渐始正形偏减应,离小力应直而和力线进剪-。入应B应下力点变降的 关 时 段 作系 的 。 用B近裂下点似缝形时直发成的破线展应坏。已力带A不称点。稳为应此定峰力时, 随 试 值件混 应的凝 力横,土强向即强度变为度由形混的破突凝提坏然土高面增棱而上大柱骨增,
第一章 材料的力学性能
(二)钢筋混凝土结构:
1.使用范围: 中小跨径梁、板,墩台,拱,塔。 2. 优缺点
优点
就地取材;造价低;耐 久性、耐火性好;适应 性好。
缺点
自重大;施工受季节影 响大;有裂缝存在;不 适合用高强材料。
可编辑ppt
3
第一章 材料的力学性能
(二)钢筋混凝土结构:
1.使用范围: 中小跨径梁、板,墩台,拱,塔。 2. 优缺点
可编辑ppt
8
第一章 材料的力学性能
2 轴心抗压强度 f(棱柱体强度)
1)试件: 150mm×150mm×300mm,制作方法同 立方体试件. 2)影响因素:
试件高度h与边长b之比,比值越大,轴心抗 压强度越小.(图1-4) 3)R0a与R的近似关系 R0a=0.7R
可编辑ppt
9
3. 抗拉强度
施工方便,速度快。
优点
材料价格高; 需经常维修; 耐火性差(钢材在500℃~ 600℃软化)。
可编辑ppt
7
§第二节 混凝土
第一章 材料的力学性能

第3章 材料的力学性能1

第3章 材料的力学性能1
①抗拉强度σb —表示材料最大的抵抗能力。
②屈服强度σs —材料开始发生塑性变形时对应 的应力。 ③弹性模量E —描述应力和应变之间的比例关系。 ④延伸率δ —表征材料的塑性程度。 ⑤断面伸缩率Ψ — ⑥冲击韧性αk —抗冲击的能力(主要用于低温) ⑦硬度G—描述材料软硬的程度等。 ⑧疲劳— 使用寿命。
力学性能
提高材料屈服强度的方法很多: (1)通过热处理方法—方便,但要求它在固态下发生相变, 满足这种要求的合金包括在固态下经历有序—无序转变的合 金,伴随这一过程出现的材料强化称为有序强化,它在许多 方面类似于沉淀强化。通常利用的与热处理有关的强化方式
是过饱和固溶体的沉淀强化和共析分解反应的共析强化。如
什么影响,难以去改变键合类型和结合力来强化材 料。在这方面,一般常见的方法就是形成新的相 (因为新相中的原子键合类型和结合力自然不同)。
力学性能
2. 位错 我们有很多方法来影响材料中的位错,通 过影响位错的运动来达到强化材料的目的。 所以可以说,近代金属物理领域中的最大成 果就是关于材料中的位错的研究。
min r max
疲劳
(1)对称交变应力,如图(a)所示,
σm =0,r=-1。大多数旋转轴类零件的 循环应力就是这种情况。 (2)不对称交变应力,如图如图(b)所示,
-1<r<0。发动机连杆的循环应力就是 这种情况。
疲劳
(3)波动应力,如图如图(c)所示,
σm>σa,0<r<1。 发动机缸盖螺栓的循环应力就是这种情况。 (4)脉动应力,如图如图(d)所示, σm =σa>0,r=0。
不同材料的应力—应变曲线
弯曲试验
a) 三点弯曲加载
b) 四点弯曲加载
硬度试验
定义:表示材料抵抗他物压入的能力。它在机械制造中具有特殊的意义。

材料的力学性能和弹性模量

材料的力学性能和弹性模量

材料的力学性能和弹性模量材料的力学性能和弹性模量是材料科学中非常重要的参数,它们与材料的力学行为和性能密切相关。

本文将对材料的力学性能和弹性模量进行详细介绍和分析。

一、力学性能1. 强度:材料的强度是指材料在受力情况下能够承受的最大应力。

强度高的材料具有较高的抗拉、抗压等能力,常用来制造承重结构或需要抗外力作用的零部件。

2. 韧性:材料的韧性是指材料在受力情况下能够吸收能量的能力。

韧性高的材料能够在受到冲击或弯曲时发生塑性变形而不易断裂,常用于制造需要抗冲击或吸能的零部件。

3. 延展性:材料的延展性是指材料在受力情况下能够发生塑性变形的能力,即能够被拉长或压扁。

延展性高的材料具有较好的可加工性和适应性,常用于制造需要复杂形状或变形的零部件。

4. 脆性:材料的脆性是指材料在受力情况下发生断裂的倾向。

脆性高的材料容易发生断裂,常用于制造需要刚性和脆性的结构或零部件。

二、弹性模量弹性模量是材料在弹性阶段的应力和应变之间的比例关系。

常用的弹性模量包括杨氏模量、剪切模量和泊松比。

1. 杨氏模量:杨氏模量是指材料在拉伸或压缩过程中单位面积的应力与应变之间的比值。

杨氏模量越大,材料的刚度越高,即抵抗外力变形的能力越强。

2. 剪切模量:剪切模量是指材料在剪切过程中单位面积的剪应力与剪应变之间的比值。

剪切模量描述了材料在剪切应力作用下的变形特性。

3. 泊松比:泊松比是指材料在受力方向上的拉伸或压缩与垂直方向上的应力变形之间的比值。

泊松比描述了材料在受力作用下的变形特性,对材料的破坏和失效具有重要的影响。

三、材料选择和应用材料的力学性能和弹性模量是根据具体应用需求进行选择的。

不同的材料在力学性能和弹性模量上具有各自的优势和适用范围。

1. 金属材料:金属材料具有优异的强度和韧性,常用于制造机械零件、建筑结构和汽车零件等需要抗拉、抗压和抗冲击能力的领域。

2. 高分子材料:高分子材料具有良好的延展性和可加工性,常用于制造塑料制品、橡胶制品和纤维材料等需要复杂形状和变形能力的领域。

材料性能学

材料性能学

材料性能学:《材料性能学》是2009年上海交通大学出版社出版的图书,作者是张帆。

本书介绍材料使役性能的相关知识。

内容简介:全书共分绪论及正文10 M :绪论简要论述了材料性能的概念和划分,材料性能在表征、机理、影响因素和测试等方面的共性问题;第1 ~ 5童为力学性能部分分别介绍常规力学试验和相应性能指标、变形和强化、断裂和韧化、疲劳性能以及材料在高温、冲击、摩擦和腐蚀性介质等常见工程环境下的强度与断裂;第6 ~ 9童为物理性能部分,分别介绍材料的热学、磁学、电学及光学性能;第10童为材料的耐环境性能,介绍金属材料的腐蚀和高分子材料的老化。

《材料性能学》力求从材料性能学"四要素"——表征:规律)、机理、影响因素和测试,来阐述每一种材料性能,注重基本理论和工程应用的结合,并注意到不同材料的共性和个性。

《材料性能学》涉及的知识面宽,信息量大,基础性强,主要用作材料科学与工程一级学科的专业基础课教材,也可供研究生、相关工程技术人员参考。

作者简介:张帆,女,副教授,博士。

简历:2000年9月——2003年3月沈阳化工学院材料科学与工程学院材料学专业硕士2003年4月--- 2006年3月日本富山县立大学工学研究科博硏究方向:1纳米无机材料的制备;2纳米无机材料的新性能和新效应;3. 功能陶瓷的制备。

硏究项目:1、水热法制备单分散纳米二氧化钛粉体,辽宁省教育厅2006 年高等学校科学技术研究项目;2、高取向钛酸钮无铅压电陶瓷的制备及其压电性能的研究,沈阳化工学院博士科硏起动基金项目;3、前驱体法制备氮化硼纤维/氮化硼基体复合材料,企业项目;4、单分散纳米金粉的制备,企业项目。

教授课程:材料研究方法与测试技术;功能陶瓷材料;无机基础材料与新材料。

目录:前言绪论1材料的常规力学性能1.1单向静拉伸试验及性能1.1.1单向静拉伸试验1.1.2拉伸曲线1.1.3单向静拉伸基本力学性能指标1.2其他静载下的力学试验及性能1.2.1应力状态软性系数1.2.2压缩1.2.3弯曲1.2.4扭转1.2.5剪切1.2.6几种静载试验方法的比较1.3缺口效应1.3.1缺口处应力分布及缺口效应1.3.2缺口敏感度1.4硬度1.4.1布氏硬度1.4.2洛氏硬度1.4.3维氏硬度1.4.4其他硬度1.4.5常用材料的硬度1.4.6纳米硬度1.5冲击韧度1.5.1真比缺口冲击试验1.5.2冲击韧度和冲击功的适用性1.5.3冲击试验的应用1.6强度的统计学分析本童小结名词及术语思考题及习题2材料的变形2.1弹性变形2.1.1弹性变形的宏观描述2.1.2弹性变形的微观本质2.1.3弹性模量影响因素2.1.4橡胶弹性2.1.5非理想弹性变形2.2黏弹性变形2.2.1黏弹性行为2.2.2力学松弛2.2.3黏弹性变形的唯象描述2.2.4时温等效原理2.3塑性变形2.3.1塑性变形的一般特点2.3.2塑性变形机理2.3.3屈服2.3.4应变硬化2.3.5颈缩2.4先进材料的力学性能2.4.1金属玻璃2.4.2多孔材料2.4.3纳米结构材料本童小结名词及术语思考题及习题3材料的断裂3.1断裂概述3.1.1断裂类型3.1.2断裂强度3.1.3宏观断口3.1.4断裂机制图3.2断裂过程及机制3.2.1解理断裂3.2.2微孔聚集断裂3.2.3沿晶断裂324韧一脆转变3.3非金属材料的断裂3.3.1陶瓷材料的断裂3.3.2高分子材料的断裂3.4断裂韧度3.4.1裂纹尖端应力强度因子3.4.2断裂韧度3.4.3裂纹尖端塑性区及有效裂纹修正3.4.4断裂韧度的测试3.4.5断裂韧度的工程应用3.5材料的韧化3.5.1金属材料的韧化3.5.2陶瓷材料的韧化本童小结名词及术语思考题及习题4材料的疲劳4.1疲劳概述4.1.1变动应力4.1.2疲劳破坏特点4.1.3疲劳宏观断口4.2疲劳的宏观表征4.2.1疲劳曲线4.2.2疲劳极限4.2.3疲劳过载4.2.4疲劳缺口敏感度4.2.5低周疲劳4.2.6疲劳裂纹扩展速率4.3疲劳的微观过程4.3.1延性固体的循环变形4.3.2疲劳裂纹的萌生4.3.3疲劳裂纹的扩展4.3.4疲劳裂纹扩展的阻滞和瞬态过程4.4非金属材料的疲劳4.4.1陶瓷材料的疲劳4.4.2高分子材料的疲劳4.5特种条件下的疲劳4.5.1接触疲劳4.5.2冲击疲劳4.5.3微动疲劳4.5.4多轴疲劳4.5.5变幅疲劳本童小结名词及术语思考题及习题5材料在不同工程环境下的力学性能5.1局温蠕变5丄1概述5.1.2蠕变曲线5.1.3蠕变极限5.1.4持久强度及持久塑性5.1.5松弛稳定性5.1.6蠕变的微观过程5.1.7常见高温结构材料的蠕变性能5.2高速加载下的力学性能5.2.1概述5.2.2高速载荷下的变形5.2.3高速载荷下的断裂5.2.4动态断裂韧性5.2.5高分子材料的冲击强度5.3环境诱发断裂5.3.1应力腐蚀断裂5.3.2氢致开裂5.3.3液体金属脆5.4材料的磨损性能5.4.1概述5.4.2磨损机理5.4.3磨损试验方法5.4.4非金属材料的磨损特性本童小结名词及术语思考题及习题6材料的热学性能7磁学性能8电学性能9光学性能10材料的耐环境性能主要参考文献。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。

强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。

2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。

具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。

韧性材料通常具有较高的延展性和断裂韧性。

3.硬度:硬度是材料抵抗刮擦或压痕的能力。

硬度高的材料具有较强的抗刮擦能力和耐磨损性能。

常用的硬度测试方法有洛氏硬度和布氏硬度等。

4.延展性:延展性是指材料在受力时的塑性变形程度。

延展性高的材料能够在受力后产生大的形变而不发生断裂。

材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。

5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。

材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。

6.温度效应:材料在高温或低温环境下的性能表现。

高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。

温度效应的了解对于材料的设计和应用非常重要。

除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。

因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。

综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。

《材料性能学》教学大纲

《材料性能学》教学大纲

《材料性能学》教学大纲一、课程概述本课程是材料科学与工程专业的核心课之一,旨在介绍材料的性能及其相关理论和实验方法。

通过本课程的学习,学生将了解材料的力学性能、热学性能、电学性能、磁学性能等方面的基本概念和实验技术,以及材料的结构与性能之间的相互关系。

二、课程目标1.培养学生的材料性能分析和实验设计能力;2.培养学生的团队协作和沟通能力;3.培养学生的科学研究和创新能力。

三、教学内容1.材料性能基础知识1.1材料的内部结构1.2麦克斯韦方程组及其应用1.3力学性能和力学行为1.4热学性能和热行为1.5电学性能和电行为1.6磁学性能和磁行为2.材料性能测试与分析2.1常用材料性能测试方法与仪器2.2材料性能测试数据处理与分析2.3材料性能参数的计算与评价3.材料性能评价与设计3.1材料性能评价的基本原则和方法3.2材料性能与结构设计的相关问题3.3材料性能参数在工程设计中的应用四、教学方法1.理论课授课方式包括讲授、讨论和案例分析等;2.实验课采用实验操作和数据分析相结合的方式;3.课堂上鼓励学生多提问,教师及时解答。

五、教学评价1.平时成绩占40%,包括课堂讨论、作业和实验;2.期末考试占60%,包括理论知识和实验技能的考察。

六、参考教材1.《材料性能学》,张三、李四,清华大学出版社,2024年;2.《材料力学性能与测试》王五、赵六,北京大学出版社,2024年;3.《材料热学性能与测试》王五、赵六,北京大学出版社,2024年;4.《材料电学性能与测试》王五、赵六,北京大学出版社,2024年;5.《材料磁学性能与测试》王五、赵六,北京大学出版社,2024年。

七、教学进度安排1.第1-2周:材料性能基础知识2.第3-5周:材料性能测试与分析3.第6-8周:材料性能评价与设计4.第9-14周:课程复习和期末考试八、教学辅助手段1.使用多媒体技术进行教学内容展示;2.实验室配备相应的材料性能测试仪器,进行实验研究和操作指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x s
或:
y s x
缺口效应4:应变集中
缺口处很陡的应力梯度,必然导致很陡的应变梯度。描 述缺口应变集中的Neuber法则为:
K K Kt2
式中,Kε为塑性应变集中系数,为缺口处的局部应变与名义应变之比; Kσ为塑性应力集中系数,为缺口处的实际应力与名义应力之比; Kt为弹性应力集中系数。
2
P2 D22
1
2
1
s in 2
2
要求:
P D2
常数
0.24D d 0.6D
1.4.3 其它硬度
(1)肖氏硬度(Shore Hardness)
原理:属动态试验法,即将具有一定质量的带有金
刚石或合金钢球的重锤从一定高度落向试样表
面,根据重锤回跳的高度来表征材料硬度大小。
回跳越高,材料越硬。
Kt
max
缺口效应2:缺口截面形成复杂应力状态
σx是由于横向收缩不均匀造成的横向应力。
缺口根部为二向应力状态。 缺口内侧为三向应力状态。
缺口效应3:缺口强化
多向应力状态下,材料发生屈服的“Tresca判据”为:
1 3 s
在薄板(σz = 0)缺口根部塑性区:
y s
在厚板(σz ≠ 0,且σz > σx)缺口根部 塑性区:
gt
Lgt L0
100%
ΔLN
3)断后伸长率(延伸率)
ΔLN
LK 100 % L0
(2)断面收缩率
断面收缩率-试样拉断后,缩颈处横截面积的 缩减量与原始横截面积的百分比,用符号ψ 表示:
A0 Amin 100 %
A0 式中,A0-缩颈处的截面积。
若为圆棒试样,断面收缩率也可表示为:
石膏
3
方解石
4
萤石
5
磷灰石
6
正长石
7
石英
8
黄玉
9
刚玉
10
金刚石
新标准
顺序
材料
1
滑石
2
石膏
3
方解石
4
萤石
5
磷灰石
6
正长石
7
SiO2玻璃
8
石英
9
黄玉
10
石榴石
11
熔融氧化锆
12
刚玉
13
碳化硅
14
碳化硼
15
金刚石
(3)纳米硬度(Nanohardness)
试验原理:属压痕法一种 试验设备:纳米力学探针
原子力显微镜
构件由于本身结构和加工制造的特点,往往存在下 列几何特征: • 截面突变的台阶 • 缺口 • 键槽 • 螺纹 • 油孔 • 退刀槽
这些部位改变了受力条件,造成了若干缺口效应 (Notch effect),并改变了构件的变形和断裂行为。
1.3.1 缺口效应
缺口效应1: 缺口根部应力集中
缺口处产 生应力集中, 其程度由“应 力集中系数 (Kt)表示:
加载方式
σ1
σ2
σ3
α
扭转
σ
0

0.8单向拉伸σ0 Nhomakorabea0
0.5
三向等拉
σ
σ
σ
0
三向不等拉
σ
(8/9)σ (8/9)σ
0.1
单向压缩
0
0

2.0
双向压缩
0


1.0
三向压缩

-2σ
-2σ

联合强度理论
>2 韧性断裂
2
k Sk
1<<2 混合断裂
1
s Sk
<1 脆性断裂
几种静载试验方法的比较
1.3 缺口效应及材料的缺口敏感性
• 作为防止因材料过量塑性变形而导致机件失效的设计和选材依据;
• 根据屈强比(σs /σb)的大小,衡量进一步塑性变形的倾向,作为
金属材料冷变形加工的参考依据。
1.1.3.5 抗拉强度
抗拉强度试样在拉断过程中最大实验力所对应的名义应力:
b
Fb A0
σb 是重要的力学性能指标之一,表征材料在承受拉伸
弹性极限σe(Elastic limit)-材料发生可逆的弹性变形的上限应力值。应力
超过此值,则材料开始发生塑性变形。对工作条件不允许产生微量塑性变形 的零件,其设计或选材的依据应是弹性极限。
规定非比例伸长应力-
作图法确定规定非比例伸长应力
比例极限和弹性极限规定的残余变形比较
1.1.3.3 弹性比功
dP dh
Er
A 0.5
1
1
2 s
1
2 i
Er
Es
Ei
式中,为与压头形状有关常数;A为实际压入面积;Er、Es、Ei 分别为 体系约化模量、材料弹性模量、压头模量;s、i分别为材料和压头的泊 松比。对金刚石压头来说,Ei =1140GPa;i=0.07。
两种不同性质材料载荷-位移曲线的比较
纳米压痕法测定其它性能探索
断裂
p
Pp A0
e
Pe A0
s
Ps A0
b
Pb A0
k
Pk A0
低碳钢的力-伸长曲线
E PL0 A0L
应力-应变曲线
F A0
低碳钢应力-应变曲线
L L0
力-伸长曲线与应力-应变曲线的差异
(a)力-伸长曲线
(b)应力-应变曲线
两种不同尺寸形状相同试样的拉伸曲线比较
薄膜拉伸
1.1.2.2 真应力-真应变曲线
d02 dm2 in
d
2 0
100%
1.1.3.7 韧性与静力韧度
韧性是指材料在断裂前吸收塑性变形功和断裂功的能力。而韧度是度 量材料韧性的力学性能指标。对拉伸断裂来说,韧度可以理解为应力-应变 曲线下的面积,即
W ef Sde 0
因此,只有在强度和塑性有较好的配合时, 才能获得较高的韧性。
SP A
真应变与工程应变的关系:
L
L dL L
e
de
L0
L0
L
ln
L0
e
ln
L0
L L0
ln1
真应力与工程应力、应变的关系: S 1
证明: Al A0l0
A
A0
l0 l
A0
l l0
A0
1
S P P 1 1
A A0
1.1.3 单向静拉伸基本力学性能指标
缺口应变集中后果:
• 缺口根部裂纹萌生 • 缺口附近很高的应变速率
1.3.2 缺口敏感性试验
在一定的缺口状态下,不同的材料所表现的脆化倾向 是不同的。在保证强度的前提下,其脆化倾向越小,越能 保证具有缺口的机件处于安全的韧性状态,免于脆断危险。 因此,对于结构件来说,在选用材料时除了考虑一般光滑 试样的力学性能以外,还应考虑缺口脆化倾向。尤其是具 有缺口的机件,后者更为重要。
特点:载荷极小(可达 μN级),压痕深度极小 (nm级),故适用于微 区力学性能测定。
测试基本原理
测定内容:P-h曲线
硬度值: H Pmax A
A
24.5hc2
C1hc
1
C2hc 2
1
C3hc 4
......
1
C8hc128
测定原位(In-situ)弹性模量
通过载荷-位移曲线还可求得被测试材料的原位弹性模量。加载过 程中,材料经历弹塑性变形,而卸载初期材料为弹性变形,因此可由最 初卸载曲线斜率dP/dh得到材料的弹性模量,其公式为
F l2
Knoop 1939
几种硬度的比较
其 它 硬 度
布氏硬度
压头直径(D)及载荷(P)的选择
P1 D1
P1 D1

材 料
d

材 料
d
P2 D2
P1
D1
P1
D1






P3 D3
几何相似原理
采用不同的载荷(P)或钢球直径(D),但 必须保证压痕几何相似。
HB
P1 D12
1
2 1 sin2
根据受载情况,材料的韧性有三种度 量指标: • 静力韧度 • 冲击韧度 • 断裂韧度
1.2 其他静载下的力学试验及性能
1.2.1 应力状态软性系数
材料的塑性变形和断裂方式与应力状态有很大关系: P
• 正应力-导致脆性解理断裂; • 切应力-导致塑性变形及韧性断裂。
不同的加载条件对应不同的应力状态, 即最大切应力与最大正应力之比不同。为此。
1.1.3.1 弹性模量
多数固体材料在静拉伸的最初阶段都会发生弹性变形,表现为正应
力σ与正应变ε成正比 。
E
此式即为胡克定律(Hooke’s law),E 即为正弹性模量,简称弹性 模量(Modulus of elasticity),又称杨氏模量(Young’s modulus)。
几何意义-应力-应变曲线上直线段的斜率;
物理意义-产生100%弹性变形所需的应力。
在工程中,
E -材料刚度;
EA -构件刚度。(A为构件的截面积)
工件刚度不足内镗孔后的形状
1.1.3.2 比例极限、弹性极限、规定非比例伸长应力
比例极限σp(Proportional limit)-能保持应力与应变成正比关系的最大
应力,即在应力-应变曲线上刚开始偏离直线时的应力。对那些在服役时需 要严格保持线性关系的构件,如测力弹簧等,比例极限是重要的设计参数 和选材的性能指标。
单位体积材料在弹性变形过程中吸收变形功的 能力称为弹性比功,又称弹性比能或应变比能。
ae
1 2
相关文档
最新文档