人教版八年级上册数学 整式的乘法与因式分解(培优篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学 整式的乘法与因式分解(培优篇)(Word
版 含解析)
一、八年级数学整式的乘法与因式分解选择题压轴题(难)
1.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )
A .3-
B .5-
C .7
D .17-
【答案】A
【解析】
【分析】
首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.
【详解】
当3x =-时,33ax bx x ++=
327333ax bx x a b ++=---= 2736a b ∴+=-
当3x =时,原式=2733633a b ++=-+=-
故选A.
【点睛】
本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.
2.若(x +y )2=9,(x -y )2=5,则xy 的值为( )
A .-1
B .1
C .-4
D .4
【答案】B
【解析】
试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.
故选B
点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..
3.下列分解因式正确的是( )
A .22a 9(a 3)-=-
B .()24a a a 4a -+=-+
C .22a 6a 9(a 3)++=+
D .()2
a 2a 1a a 21-+=-+ 【答案】C
【解析】
【分析】
根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.
【详解】
A. ()2
a 9a 3a 3-=-+)(,分解因式不正确; B. ()2
4a a a 4a -+=--,分解因式不正确; C. 22a 6a 9(a 3)++=+ ,分解因式正确;
D. ()2
a 2a 1a 1-+=-2,分解因式不正确.
故选:C
【点睛】
本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.
4.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )
A .22100x y +=
B .2x y -=
C .12x y +=
D .35xy =
【答案】A
【解析】
【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.
【详解】
由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .
【点睛】
本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.
5.规定一种运算:a*b=ab+a+b ,则a*(﹣b )+a*b 的计算结果为( )
A .0
B .2a
C .2b
D .2ab
【答案】B
【解析】
【分析】
【详解】
解:∵a*b=ab+a+b
∴a*(﹣b)+a*b
=a(﹣b)+a -b+ab+a+b
=﹣ab+a -b+ab+a+b
=2a
故选B.
考点:整式的混合运算.
6.已知4y2+my+9是完全平方式,则m为()
A.6 B.±6 C.±12 D.12
【答案】C
【解析】
【分析】
原式利用完全平方公式的结构特征求出m的值即可.
【详解】
∵4y2+my+9是完全平方式,
∴m=±2×2×3=±12.
故选:C.
【点睛】
此题考查完全平方式,熟练掌握完全平方公式是解题的关键.
7.下列等式从左到右的变形,属于因式分解的是()
A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2
C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)
【答案】B
【解析】
【分析】
因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.
【详解】
A选项,从左到右变形错误,不符合题意,
B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,
C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,
D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,
故选B.
【点睛】