平面向量共线的坐标运算
高一数学人教B版必修4课件:2-2-3 用平面向量坐标表示向量共线条件
[解析]
由已知得:ka+b=(k-3,2k+2),
a-3b=(10,-4),∵ka+b 与 a=3b 平行, 1 ∴(k-3)×(-4)-10(2k+2)=0,解得 k=-3. 1 2 1 此时 ka+b=(-3-3,-3+2)=-3(a-3b), 1 ∴当 k=-3时,ka+b 与 a-3b 平行,并且反向.
2x+2=-3x 所以 2y-4=-6-3y
,
2 x=-5 解得 y=-2 5 故D
.
2 2 点坐标为-5,-5.
(2)要注意用坐标表示两向量平行的条件, a1b2-a2b1=0 具 a1 a2 有一般性,而 = 只有当 b1≠0,b2≠0 时才适用. b1 b2
• [例1] 已知a=(1,2),b=(-3,2),当k为
何值时,ka+b与a-3b平行?平行时它们 是同向还是反向? • [分析] 由a,b可以用坐标表示ka+b,a -3b,然后由向量共线的条件便可以求出 k的值.而向量是否同向,可以由λ的符号 确定.
• 2.2.3 用平面向量坐标表示
向量共线条件
• 1.向量共线条件的坐标表示: • 选择基底{e1,e2},如果a=(a1,a2),b=
b2- (b1,b2),a a1∥ ba ,则有 ; 2b1=0 a∥b a1b2-a2b1=0,则 反之,若 . • 当b不与坐标轴平行时,条件a1b2-a2b1=0 可化为 ,即两个向量平行的条 件是相应坐标成比例. • 2.向量长度的坐标表示 • 设a=(a1,a2)的位置向量 ,则由两点 间距离公式有|a|=| |= .
,
[例 4]
已知 a=(2,3),b=(-1,2),若 ma+b 与 a-2b
平行,则 m=________. 9 A.- 10 1 C.2 2 B. 11 1 D.-2
第6章 6.2 6.2.3 平面向量的坐标及其运算-(新教材)人教B版(2019)高中数学必修第二册
(1)A [以向量 a,b 公共的起点为坐标原点,建立如图坐标系, 因为 e1=(1,0),e2=(0,1),
所以 2a=(2,1),b=(1,3), 所以 2a+b=(2,1)+(1,3)=(3,4),即 2a+b 在平面直角坐标系中 的坐标为(3,4),故选 A.
]
(2)[解] ①作 AM⊥x 轴于点 M(图略),
3,即
b=-32,3
2
3.
②由①知B→A=-A→B=-b=32,-3
2
3.
③O→B=O→A+A→B=(2
2,2
2)+-32,3
2
3
=2
2-32,2
2+3
2
3,
所以点 B 的坐标为2
2-32,2
2+3
2
3.
求向量坐标的三个步骤
[跟进训练] 1.在直角坐标系 xOy 中,向量 a,b,c 的方 向如图所示,且|a|=2,|b|=3,|c|=4,分别计算 出它们的坐标. [解] 设 a=(x1,y1), 则 x1=2·cos 45°= 2,y1=2·sin 45°= 2, ∴a=( 2, 2).
[解] (1)2a+3b=2(-1,2)+3(2,1) =(-2,4)+(6,3)=(4,7). (2)a-3b=(-1,2)-3(2,1)=(-1,2)-(6,3) =(-7,-1). (3)21a-13b=12(-1,2)-13(2,1) =-12,1-23,13=-76,23.
向量坐标运算的综合应用 [探究问题] 1.已知点 O(0,0),A(1,2),B(4,5),及O→P=O→A+tA→B.当 t 为何值 时,点 P 在 x 轴上?点 P 在 y 轴上?点 P 在第二象限? [提示] ∵O→P=O→A+tA→B=(1,2)+t(3,3)=(1+3t,2+3t). 若点 P 在 x 轴上,则 2+3t=0,
平面向量的坐标运算
别业岁月悠长,有暗香盈袖。
冗长了日与夜,空掷了乐与悲。
遂撰文三两卷,遣尽浮光,以飨后学。
谨祝诸位:学业有成,前程似锦。
编者:李健,匠人,喜于斗室伏案两三卷,愁与身在红尘浪荡无涯。
写过一些铅字附庸了世态,跑过几个码头了断了青春。
如今归去来兮,只为了挥洒一方三尺讲台。
第2讲 平面向量基本定理及坐标表示一.知识梳理 1.平面向量基本定理如果12,e e 是平面内两个不共线的向量,那么对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.其中不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算 (1)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量坐标. ②设1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--;||(AB x =(2)向量的加法、减法、数乘及向量的模:设1122(,),(,)a x y b x y ==1212(,)a b x x y y +=++;1212(,)a b x x y y -=--;11(,)a x y λλλ=;21||a x y =+.3.平面向量共线的坐标表示设1122(,),(,)a x y b x y ==,其中0b ≠,则12210a b x y x y ⇔-=∥. 二.要点整合 1.辨明三个易误点(1)注意能作为基底的两个向量必须是不共线的.(2)要注意运用两个向量,a b 共线坐标表示的充要条件12210x y x y -=.(3)要注意区分点的坐标与向量的坐标的不同,尽管形式上一样,但意义完全不同,向量坐标中既有大小的信息也有方向的信息.2.有关平面向量的两类本质(1)平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. (2)向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 三.典例精析1.平面向量基本定理及其应用【例题1】(1)在梯形ABCD 中,,2,,A B C D A B C D M N=∥分别是,C D B C 的中点,若AB AM AN λμ=+,则λμ+=( )1.5A 2.5B 3.5C 4.5D (2)在ABC 中,P 是AB 上一点,且21,33CP CA CB Q =+是BC 的中点,AQ 和CP 的交点为M ,又CM tCP =,则t = . 【变式1】(1)如图,在ABC 中,P 为线段AB 上的一点,OP xOA yOB =+,且2BP PA =,则( )21.,33A x y == 12.,33B x y == 13.,44C x y == 31.,44D x y ==(2)如图,在ABC 中,13AN NC =,P 是BN 上一点,若211AP mAB AC =+,则m = .2.平面向量的坐标运算【例题2】(1)已知(2,4),(3,1),(3,4)A B C ----.设,,AB a BC b CA c ===,且3,2C M c C N b==-. (Ⅰ)求33a b c +-;(Ⅱ)求满足a mb nc =+的实数,m n ; (Ⅲ)求,M N 的坐标及向量MN 的坐标.(2)给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π.如图,点C 在以O 为圆心的AB 上运动.若(,)OC xOA yOB x y R =+∈,则x y +的最大值为 .【变式2】(1)已知O 为坐标原点,点C 是线段AB 上一点,且(1,1),(2,3)A C ,||2||BC AC =,则向量OB 的坐标是 .(2)(2014福建质检)如图,设向量(3,1),(1,3)OA OB ==,若OC =OA λOB μ+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是( )(3)已知||||2,a b a b ==⊥,若向量c 满足||2c a b --=,则||c 的取值范围是 .3.平面向量共线的坐标表示)两向量共线的充要条件的作用【例题3】(1)已知向量1(8,),(,1)2a xb x ==,其中0x >,若(2)(2)a b a b -+∥,则x 的值为( ).4A .8B .0C .2D(2)已知点(4,0),(4,4),(2,6)A B C ,则AC 与OB 的交点P 的坐标为 . (3)(2014广东佛山)设(1,2),(,1),(,0)OA OB a OC b =-=-=-,0a >,0,b O >为坐标原点,若,,A B C 三点共线,则12a b+的最小值为( ).2A .4B .6C .8D 【变式3】(1)已知向量(1,3),(2,1),(1,2)OA OB OC k k =-=-=+-,若,,A B C 三点不能构成三角形,则实数k 应满足的条件是( ).2A k =- 1.2B k =.1C k = .1D k =- (2)(2015河北唐山)设向量,a b 满足||25,(2,1)a b ==,且a 与b 的方向相反,则a 的坐标为 .(3)(2014陕西)设02πθ<<,向量(sin 2,cos ),(cos ,1)a b θθθ==,若a b ∥,则tan θ= .四.针对训练.A 组 基础训练1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且,AB a AD b ==,则BE =( )1.2A b a -1.2B b a + 1.2C a b + 1.2D a b - 2.(2015宁夏质检)如图,设O 为平行四边形ABCD 两对角线的交点,给出下列向量组:①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .其中可作为该平面内其他向量的基底的是( ).A ①② .B ①③ .C ①④ .D ③④3.已知向量3,1),(0,2)a b =-=(.若实数k 与向量c 满足2a b kc +=,则c 可以是( ).,1)A - .(3)B - .(,1)C - .(3)D - 4.已知点(1,3),(4,1)A B -,则与向量AB 同方向的单位向量是( )34.(,)55A - 43.(,)55B - 34.(,)55C - 43.(,)55D -5.(2015吉林长春)如图,设向量12,OA e OB e ==,若12,e e 不共线,且点P 在线段AB 上,||:||2AP PB =,则OP =( )1212.33A e e -1221.33B e e + 1212.33C e e + 1221.33D e e -6.已知ABC 中,点D 在BC 边上,且2,s CD DB CD r AB AC ==+,则r s +的值是( ) 2.3A 4.3B .3C - .0D 7.若三点(1,5),(,2),(2,1)A B a C ----共线,则实数a 的取值范围是 .8.在ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 中点,若(4,3)PA =,(1,5)PQ =,则BC = .9.(2015江西九江){|(1,1)(1,2)}P a a m m R ==-+∈,{|(1,2)Q b b ==-(2,3),}n n R +∈是两个向量集合,则PQ 等于 .10.ABC 中,内角,,A B C 所对的边分别为,,a b c ,若(,)p a c b =+,(,)q b a c a =--,且p q ∥,则角C = . 11.已知(1,0),(2,1)a b ==.(Ⅰ)当k 为何值时,ka b -与2a b +共线;(Ⅱ)若23,AB a b BC a mb =+=+且,,A B C 三点共线,求m 的值.12.(2015山东莱芜)如图,已知ABC 中,点C 是以A 为中点的点B 的对称点,D 将OB分为2:1两部分的一个内分点,DC 和OA 交于点E ,设OA a =,OB b =. (Ⅰ)用a 和b 表示向量,OC DC ; (Ⅱ)若OE OA λ=,求实数λ的值..B 组 能力提升1.在平面直角坐标系中,点(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针方向旋转34π后得到向量OQ ,则Q 点的坐标是( ).(2)A - .(2)B - .(,2)C -- .(,2)D - 2.已知直线x y a +=与圆224x y +=交于,A B 两点,且||OA OB +=||OA OB -,其中O 为坐标原点,则实数a 的值为( ).2A .2B - .2C 或2- D3.如图,在四边形,,,A B C D 中,1AB BC CD ===,且90B ∠=,BCD ∠=135,记向量,AB a AC b ==,则AD =( )2(1)2b -+2.(1)2B b ++ 2.(1)2C b +-2(1)2b +-4.(2014湖南)在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( ).[4,6]A .191]B .[7]C .71]D 5.在平面直角坐标系中,O 为坐标原点,已知两点(3,1),(1,3)A B -,若点C 满足(,)OC OA OB R αβαβ=+∈且1αβ+=,则点C 的轨迹方程为 .6.设向量1122(,),(,)a x y b x y ==,定义一种向量积1122(,)a b a b a b ⊗=,已知向量1(2,),(,0)23m b π==,点(,)P x y 在sin y x =图像上运动.Q 是函数()y f x =图像上的点,且满足OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的值域是 .7.如图,,,A B C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC mOA nOB =+,则m n +的取值范围是 .8.如图,设,Ox Oy 为平面内相交成60角的两条数轴,12,e e 分别是x 轴、y 轴正方向同方向的单位向量,若12OP xe ye =+,则把有序实数对(,)x y 叫做向量OP 在坐标系xOy 中的坐标.若OP 的坐标为(1,1). (Ⅰ)求||OP ;(Ⅱ)过点P 作直线l 分别与x 轴、y 轴正方向交于点,A B ,试确定,A B 的位置,使AOB 面积最小,并求出最小值.。
人教A版2019高中数学必修4讲义:第二章 2.3 2.3.4 平面向量共线的坐标表示_含答案
2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
4-2第二节 平面向量基本定理及其坐标运算(52张PPT)
T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3
2.3.3 平面向量的坐标运算 2.3.4 平面向量共线的坐标表示
2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示 ●温故知新1.(1)式子12(2)如果基底的两个向量1e 、2e ________,则这个基底为正交基底.2.在直角坐标系中建立一个________{},i j ,对于平面内任一向量a 可分解为x y =+a i j ,则有序 实数对______叫做向量a 的坐标,记作_________.3.设OA x y =+i j ,则向量OA 的坐标______就是_________的坐标;反过来,_________的坐标______也就是向量OA 的坐标.4.向量的加法法则:两向量首尾相接,则和向量为首向量的______指向末向量的______. ●课题引入在直角坐标平面中,(1)画出()2,4OA =,如何画()2,4=a ?(2)若()2,4=a ,()3,1=b ,画出+a b ,如何求+a b 的坐标?●教材新知1.2.(1)若向量的起点是坐标原点,则向量的坐标等于___________; (2)设()11,A x y ,()22,B x y ,则AB =_________.即一个向量的坐标等于表示此有向线段的___________减去___________.3.将一个向量的始点平移到坐标原点,则向量的坐标和平移后向量的______是相同的.4.设()11,x y =a ,()22,x y =b ,其中≠0b ,则a ‖b ⇔________1212,x x y y λλ=⎧⇔⇔⎨=⎩___________. 5.设()11,A x y ,()22,B x y ,()33,C x y ,只要证明________,便可证得A、B 、C 三点共线. 6.设()111,P x y ,()222,P x y ,(),P x y ,()121PP PP λλ=≠-时,x =_______,y =_______. (1)当1λ=,即点P 为12P P 的______,此时x =_______,y =_______.(2)ABC ∆中,()11,A x y ,()22,B x y ,()33,C x y ,重心(),G x y ,则x =_______,y =_______.●题组集训(1)若点P 的坐标为()11,x y ,向量PQ 的坐标为()22,x y ,则点Q 的坐标为( )A.()1212,x x y y --B.()2121,x x y y --C.()1212,x x y y ++D.()1212,x x y y -+ (2)()3,2=a ,()0,1=-b ,则向量2-b a 的坐标是( )A.()3,4-B.()3,4-C.()3,4D.()3,4-- (3)设()2,3AB =,(),BC m n =,()1,4CD =-,则DA =( )A.()1,7m n ++B.()1,7m n ----C.()1,7m n --D.()1,7m n -+-+ (4)若()0,0O ,()1,1A 且'2OA OA =,则点'A 的坐标为_______.(5)已知点()3,2M -,()5,1N --,若12MP MN =,则点P 的坐标是_______.●课堂精讲【例1】已知点A 、B 、C 的坐标分别为()2,4A -、()0,6B 、()8,10C -.求向量122AB BC AC +-的坐标.【例2】已知()1,2=a ,()3,2=-b ,当k 为何值时,k +a b 与3-a b 平行?平行时它们是同向还是反向?【变式训练】已知点()4,0A ,()5,5B ,()2,6C ,O 为坐标原点,求直线AC 与OB 的交点P 的坐 标.【例3】已知点()6,3A ,O 为坐标原点,点P 在直线OA 上,且12OP PA =,若P 是线段OB 的中点,求点B 的坐标.【变式训练1】在ABC ∆中,已知点()3,7A 、()2,5B -.若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.【变式训练2】如图,已知三点()0,8A ,()4,0B -,()5,3C -,D 点在线段AB 上,且13AD DB=, E 点在线段BC 上,若BDE ∆的面积是ABC ∆面积的一半,求向量AE 的坐标.●课后反馈(1)若三点()1,1P ,()2,4A -,(),9B x -共线,则( )A.1x =-B.3x =C.92x =D.51x = (2)在平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则BD =( )A.()2,4--B.()3,5--C.()3,5D.()2,4 (3)已知两点()2,1A -,()3,1B ,与AB 平行且方向相反的向量a 是( )A.()1,2=-aB.()9,3=aC.()1,2=-aD.()4,8=--a (4)已知()5,2=-a ,()4,3=--b ,(),x y =c ,若23-+=0a b c ,则c 等于( ) A.81,3⎛⎫ ⎪⎝⎭ B.138,33⎛⎫ ⎪⎝⎭ C.134,33⎛⎫ ⎪⎝⎭ D.134,33⎛⎫-- ⎪⎝⎭(5)设1,tan 3α⎛⎫= ⎪⎝⎭a ,3cos ,2α⎛⎫= ⎪⎝⎭b ,且a 与b 共线,则锐角α的值为( )A.12πB.6πC.4πD.3π(6)若ABC ∆的三条边得中点分别为()2,1和()3,4-,()1,1--,则ABC ∆的重心坐标为______.(7)设向量()1,2=a ,()2,3=b ,若向量λ+a b 与向量()4,7=--c 共线,则λ=______. (8)若()3,4=a ,b ‖a 且b 的起点为()1,2,终点为(),3x x ,则=b ________. (9)若()4,3=-a ,(),5x =b ,()1,y =-c ,若+=a b c ,则(),x y =_______.(10)已知()5,1A ,()1,3B ,113OA OA =,113OB OB =,求11A B .(11)设向量()1,3=-a ,()2,4=-b ,()1,2=--c .若表示向量4a 、42-b c 、()2-a c 、d 的有向线段首尾相接能构成四边形,求向量d .(12)已知O 是坐标原点,()2,1A -,()4,8B -,且3AB BC +=0,求OC 的坐标.(13)平面内给定三个向量()3,2=a ,()1,2=-b ,()4,1=c ,回答下列问题: ①求32+-a b c ;②求满足m n =+a b c 的实数m ,n ; ③若()k +a c ‖()2-b a ,求实数k .(14)如图所示,已知()4,5A ,()1,2B ,()12,1C ,()11,6D ,AC 与BD 相交于点P ,求BP 的坐 标及点P 的坐标.(15)已知平行四边形ABCD 的一个顶点坐标为()2,1A -,一组对边AB 、 CD 的中点分别为()3,0M 、()1,2N --,求平行四边形的各个顶点的坐标.。
高中数学 平面向量的基本定理及坐标表示 第3课时 平面向量共线的坐标表示课件 新人教A必修4
❖ [解析] ∵λa+b=(λ,2λ)+(2,3)=(λ+2,2λ +3),
❖ ∴存在实数k,使(λ+2,2λ+3)=k(-4,- 7),
❖ [例5] 已知A(-1,2),B(1,4). ❖ (1)求AB的中点M的坐标; ❖ (2)求AB的三等分点P、Q的坐标; ❖ (3)设D为直线AB上与A、B不重合的一点,
❖ 5.已知a=(3,2),b=(2,-1),若λa+b 与a+λb(λ∈R)平行,则λ=________.
❖ [答案] 1或-1
❖ [解析] λa+b=λ(3,2)+(2,-1)=(3λ+ 2,2λ-1),a+λb=(3,2)+λ(2,-1)=(3+ 2λ,2-λ).
❖ ∵(λa+b)∥(a+λb),
❖ 由(k-6,2k+4)=λ(14,-4),得
❖ 故当k=-1时,ka+2b与2a-4b平行. ❖ [点评] 可由向量平行的坐标表示的充要
条件得
❖ (k-6)×(-4)-(2k+4)×14=0,得k=-1.
❖ (08·全国Ⅱ)设向量a=(1,2),b=(2,3),若 向量λa+b与向量c=(-4,-7)共线,则λ =______.
❖ 3.[在证明直] 角由坐已标知条系件x得O,y内A→B,=(已0,1)知-(A-(-2,2-,3)=-(23,4),), A→BC(=0,(12),5,)-C(-(22,,5)-,3)求=(证4,8A).、B、C三点共线.
∵2×8-4×4=0,∴A→B∥A→C,
∵A→B与A→C有公共点 A,∴A、B、C 三点共线.
❖ 重点:用平面向量坐标表示向量共线条件.
❖ 难点:运用平面向量坐标表示向量共线条件 的应用,体会向量在解题中的工具性作用.
❖ 1.若a与b共线(b≠0),则存在实数λ,使a =λb,这里b≠0的条件千万不可忽视,而 在坐标表示的共线条件中,若a=(x1,y1), b=(x2,y2),则a∥b⇔x1y2-x2y1=0,对任 意向量a,b都成立,解题时,要区别应 用.
平面向量的坐标表示与运算
平面向量的坐标表示与运算一、平面向量的坐标表示平面向量是有大小和方向的量,可以用坐标来表示。
在平面直角坐标系中,以原点为起点,终点为点(x,y)的向量可以表示为:AB = xi + yj其中,i和j分别为x轴和y轴的单位向量。
x和y分别为该向量在x轴和y轴的投影长度。
二、平面向量的运算1. 向量的加法设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的和为:AB + CD = (a1 + b1)i + (a2 + b2)j即将两个向量的x轴分量和y轴分量分别相加得到新向量的x轴分量和y轴分量。
2. 向量的减法设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的差为:AB - CD = (a1 - b1)i + (a2 - b2)j即将两个向量的x轴分量和y轴分量分别相减得到新向量的x轴分量和y轴分量。
3. 向量的数量乘法设有一个向量AB = ai + bj,k为实数,则数量乘法的结果为:k * AB = (k * a)i + (k * b)j即将向量的x轴分量和y轴分量都乘以数k得到新向量的x轴分量和y轴分量。
4. 向量的点积设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的点积为:AB · CD = a1b1 + a2b2即将两个向量的x轴分量和y轴分量分别相乘,然后再相加得到一个数。
5. 向量的叉积设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的叉积为:AB × CD = (a1b2 - a2b1)k其中,k为垂直于平面的单位向量。
三、平面向量的应用平面向量的坐标表示与运算在几何学、力学、电磁学等领域中有着广泛的应用。
1. 几何学中,平面向量的坐标表示可以简化向量的计算,方便求解几何问题,如求解两条直线之间的夹角、判断两个向量是否垂直等。
2. 在力学中,平面向量的坐标表示与运算常用于描述物体的受力情况。
高三数学平面向量坐标运算试题答案及解析
高三数学平面向量坐标运算试题答案及解析1.已知向量,且,则的值为A.B.C.5D.13【答案】B【解析】由题意结合向量共线的充要条件可得:2×6-(-3)x=0,解得x=-4故=(-2,3),由模长公式可得故选C【考点】1.平面向量数量积的坐标表示、模、夹角;2.平面向量共线(平行)的坐标表示.2.已知向量=(5,-3),=(-6,4),则=( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)【答案】D【解析】根据向量坐标运算法则,=(5,-3)+(-6,4)=(-1,1),选D【考点】平面向量坐标运算.3.平面向量,,(),且与的夹角等于与的夹角,则 .【答案】2.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.4.已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为()A.(-,)B.(,-)C.(,)D.(-,-)【答案】C【解析】设点D的坐标为(x,y),∵AD是边BC上的高,∴AD⊥BC,∴⊥,又C,B,D三点共线,∴∥.又=(x-2,y-1),=(-6,-3),=(x-3,y-2),∴,解方程组得x=,y=,∴点D的坐标为(,).5.在平面直角坐标系中,,,将向量按逆时针旋转后,得向量,则点的坐标是()A.B.C.D.【答案】A【解析】解法一:设点,易知点为第二象限,且有,,因此可得,解得,故选A;解法二:由于,不妨设点,则,而,,故点的坐标为,故选A.【考点】1.平面向量;2.三角函数的定义;3.诱导公式6.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.7.(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)【答案】A【解析】∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.8.已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【答案】C【解析】∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.9.若向量,则( )A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)【答案】B【解析】解:所以选B.【考点】向量的运算.10.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数()A.B.C.D.【答案】C【解析】设,将直线方程代人,整理得,,所以,,.由于点在圆上,所以,,解得,,故选.【考点】直线与圆的位置关系,平面向量的坐标运算.11.已知向量,,若,在向量上的投影相等,且,则向量的坐标为 .【答案】【解析】设,由已知有,即,即,即①,由已知,即②,①②联立得,即.【考点】向量的运算.12.已知平面向量,,那么等于()A.B.C.D.【答案】B【解析】,所以,故选B.【考点】平面向量的坐标运算13.已知平面向量,,. 若,则实数的值为()A.B.C.D.【答案】B【解析】由题意知,,由于,则,解得,故选B.【考点】1.平面向量的坐标运算;2.共线向量14.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且=2,则顶点D的坐标为________.【答案】【解析】设D(x,y),则由=2,得(4,3)=2(x,y-2),得解得15.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=________.【答案】(-3,-5)【解析】由题意,得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).16.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,求m的值.【答案】m=-1.【解析】a+b=(1,m-1),c=(-1,2).∵ (a+b)∥c,∴,∴ m=-1.17.已知a=(sin α,sin β),b=(cos(α-β),-1),c=(cos(α+β),2),α,β≠kπ+(k∈Z).(1)若b∥c,求tan α·tan β的值;(2)求a2+b·c的值.【答案】(1)-3(2)-1【解析】(1)若b∥c,则2cos(α-β)+cos(α+β)=0,∴3cos αcos β+sin αsin β=0,∵α,β≠kπ+ (k∈Z),∴tan αtan β=-3.(2)a2+b·c=sin2α+sin2β+cos(α-β)cos(α+β)-2=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2=sin2α+cos2αsin2β+cos2αcos2β-2=sin2α+cos2α-2=1-2=-1.18.在平面直角坐标系中,点,,若向量,则实数()A.B.C.D.【答案】A【解析】,因为,故,即,解得.【考点】1、向量的坐标运算;2、向量垂直.19.向量,,则()A.B.C.D.【答案】A【解析】,故选A.【考点】平面向量的减法运算20.在平面直角坐标系中,若点,,,则________.【答案】【解析】.【考点】向量的坐标运算及向量的模.21.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算22.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.23.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,,则,所以,故选A.【考点】平面向量的坐标运算24.已知向量,,则在方向上的投影等于.【答案】【解析】,cos<>=,所以在方向上的投影等于 cos<>= =.【考点】1.向量的坐标运算;2.向量的夹角公式;3.向量的模.25.设,向量,,,且,∥,则= .【答案】15【解析】由,∥得,.【考点】1.向量的数量积;2.共线向量的充要条件;3.向量的坐标运算26.已知两点,向量,若,则实数的值为( )A.-2B.﹣l C.1D.2【答案】B【解析】由已知得,所以由得,,解得.【考点】向量垂直的坐标表示27.已知平面向量,,且,则的值为 .【答案】【解析】.【考点】平面向量数量积运算.28.设,,若,则____________.【答案】【解析】因为,所以,即,解得.【考点】平面向量垂直的坐标表示29.已知向量,若,则等于( )A.B.C.D.【答案】C【解析】由可得,所以.【考点】向量的坐标运算.30.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.31.已知双曲线:,若存在过右焦点的直线与双曲线相交于两点且,则双曲线离心率的最小值为()A.B.C.D.【答案】C【解析】因为过右焦点的直线与双曲线相交于两点且,故直线与双曲线相交只能如图所示的情况,即A点在双曲线的左支,B点在右支,设,右焦点,因为,所以,由图可知,,所以故,即,即,选C.【考点】平面向量的坐标运算、双曲线性质、双曲线离心率、不等式的性质.32.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.33.若,则 .【答案】(3,4)【解析】.【考点】向量的坐标运算.34.已知向量,,则与夹角的余弦值为()A.B.C.D.【答案】B【解析】,,解得,,所以,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积35.如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为()A.B.C.D.【答案】D【解析】设扇形所在的圆的半径为1,以所在的直线为轴,为原点建立平面直角坐标系,,则,由题意可得,令,则在不是单调函数,从而在一定有解,即在时有解,可得,即,经检验此时此时正好有极大值点.【考点】1.向量的坐标运算;2.函数的性质.36.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】由.故选B.【考点】向量的坐标运算37.已知点( )A.B.C.D.【答案】A【解析】,故选A【考点】本题考查单位向量的定义和坐标运算。
高中数学平面向量的坐标运算全版.ppt
精选整理
8
例3. 已知 ABCD的三个顶点A、B、C的坐标分别为 (-2,1)、( -1,3)、(3,4),求顶点D的坐标.
精选整理
15
作业: 课本P101 A组:1,2,3,4,5, 6, 7
精选整理
16
y
2.点A的坐标与向量a 的坐标的关系?
a
A(x, y)
两者相同
a j
向量a 一 一 对 应 坐标(x ,y)
Oi
x
3.a b x1 x2且y1 y2
精选整理
4
概念应用
例1.如图,用基底i ,j 分别表示向量a、b 、c 、d ,并 求它们的坐标.
解:由图可知
A2
a AA1 AA2 2i 3 j a (2,3) 同理, b 2i 3 j (2,3)
且
MP
1 2
MN
,
求P点的坐标;
解:设P(x, y) 则(x-3, y+2)= 1 (-8, 1)=(-4, 2
1
2)
xy32124
∴
x y
1 3
2
∴P点坐标为(-1, - 3 ) 2
2.若A(0, 1), B(1, 2), C(3, 4) 则 AB 2 BC = (-3,-3)
3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求3 j (2,3)
d 2i 3 j (2,3)
练习:已知O是坐标原点,点A在
_平面向量共线的坐标表示
k 1 3
这两个向量是反向.
4. 若三点P(1, 1),A(2, -4),B(x, -9)共线,
则 (B)
A.x =-1
B.x=3
C.x = 9
2
D.x=51
5.设a=( 3 , sinα),b=(cosα, 1 ),且a// b,则
2 锐角α为 ( C )
3
A.30o
B.60o
C.45o
uuuur 设 P1( x1, y1 ) ,P2 ( x2 , y2 ),P分P1P2 所成的
比为 ,如何求P点的坐标呢?
分析:Q
uuur P1P
(
x
x1,
y
y1)
uuur
uuur uuur
PP2 (x2 x, y2 y) P1P PP2
( x x1, y y1 ) ( x2 x, y2 y)
uuur OP1
1 3
uuuur P1P2
P P1
uuur OP1
1 3
uuur (OP2
uuur OP1 )
2 3
uuur OP1
1 uuur 3 OP2
O
x
2x1 3
x2
,
2
y1 3
y2
即点P的坐标是(2x1 x2 ,2 y1 y2 )
3
3
直线l上两点 P1 、 P2,在l上取不同于P1 、P 2
又2 6 3 4 0,
AB // AC. 直线AB、直线AC有公共点 A, A、B、C三点共线.
练习:
1.已知av=
4,
2,bv
6,
y
,
且av
/
v /b,
求y的值.
平面向量共线
人教A版必修四·新课标·数学
版块导航
4.已知向量 a,b 不共线,c=ka+b(k∈R),d=a-b, 如果 c∥d,那么( )
A.k=1 且 c 与 d 同向 B.k=1 且 c 与 d 反向 C.k=-1 且 c 与 d 同向 D.k=-1 且 c 与 d 反向
解析:∵c∥d,∴存在实数 λ,使 c=λd,即 ka+b=λ(a -b),
答案:C
人教A版必修四·新课标·数学
版块导航
3.已知向量 a=(1,1),b=(2,x),若 a+b 与 4b-2a 平
行,则实数 x 的值是( )
A.-2
B.0
C.1
D.2
解析:因为 a=(1,1),b=(2,x),所以 a+b=(3,x+1), 4b-2a=(6,4x-2),因为 a+b 与 4b-2a 平行,所以 3(4x- 2)-6(x+1)=0,解得 x=2.故选 D.
2.证明三点共线的方法 设 A(x1,y1)、B(x2,y2)、C(x3,y3), 只要证明 向量共线 ,便可证得 A、B、C 三点 共线.
3.线段的中点坐标 设 P1(x1,y1),P2(x2,y2),则 P1P2 的中点 P 的坐标为 x1+2 x2,y1+2 y2.
想一想
人教A版必修四·新课标·数学
版块导航
解:∵a=(1,1),b=(x,1), ∴u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3); v=2(1,1)-(x,1)=(2-x,1). (1)u=3v⇔(2x+1,3)=3(2-x,1)⇔(2x+1,3)=(6-3x,3) ⇔2x+1=6-3x. 解之,得 x=1.
A.x=-1 C.x=92
B.x=3 D.x=51
平面向量的坐标表示运算共线
03 平面向量的共线
共线的定义与性质
共线的定义
如果存在一个非零实数$k$,使得向量$overset{longrightarrow}{a} = koverset{longrightarrow}{b}$,则向量 $overset{longrightarrow}{a}$和$overset{longrightarrow}{b}$共线。
数乘
实数$k$与向量$overset{longrightarrow}{AB}$的数乘 $koverset{longrightarrow}{AB} = (kx_1, ky_1)$。
02 平面向量的基本定理
线性无量$vec{a}$和$vec{b}$不共线,则它们是线性无关的 。这意味着它们不能被对方线性表示。
唯一性
向量在基底下的坐标是唯一的,即如果存在另外一组基底$vec{a'}$和$vec{b'}$,使得$vec{v} = x'vec{a'} + y'vec{b'}$,则$x = x'$和$y = y'$。
向量坐标的运算性质
• 运算性质:向量的加法、数乘和向量的数量积运算不会改变其 在基底下的坐标。即如果$\vec{v} = x\vec{a} + y\vec{b}$, $\vec{w} = m\vec{a} + n\vec{b}$,则$\vec{v} + \vec{w} = (x+m)\vec{a} + (y+n)\vec{b}$,$k\vec{v} = kx\vec{a} + ky\vec{b}$,$(\vec{v} \cdot \vec{w}) = (x,y) \cdot (m,n) = xm + yn$。
高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示
类型二 利用向量共线求参数 【例2】 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b 平行?平行时它们是同向还是反向? [思路探索] 先求ka+b,a-3b的坐标,再由向量共线的充要条件 列方程组求k. 解 法一 ka+b=k(1,2)+(-3,2)=(k-3,2k+2), a-3b=(1,2)-3(-3,2)=(10,-4). 当ka+b与a-3b平行时,存在唯一的实数λ, 使ka+b=λ(a-3b), 即(k-3,2k+2)=λ(10,-4),
∴-6(x-2)+2(6-y)=0.② 解①②组成的方程组,得x=3,y=3, ∴点P的坐标为(3,3). [规律方法] 求解直线或线段的交点问题,常规方法为写出直线 或线段对应的直线方程,建立方程组求解,而利用向量方法借助 共线向量的充要条件可减少运算量,且思路简单明快.
【活学活用3】 平面上有A(-2,1),B(1,4),D(4,-3)三点,
新知导学 平面向量共线的坐标表示
前提条件
a=(x1,y1),b=(x2,y2),其中b≠0
结论 当且仅当 x1y2-x2y1=0 时,向量a,b(b≠0)共线
温馨提示:平面向量共线的坐标表示的记忆策略
互动探究 探究点1 如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? 提示 当两个向量的对应坐标同号或同为零时,同向;当两个向 量的对应坐标异号或同为零时,反向.例如,向量(1,2)与(-1, -2)反向;向量(1,0)与(3,0)同向;向量(-1,2)与(-3,6)同向;向 量(-1,0)与(3,0)反向等. 探究点2 若a∥b,a=(x1,y1),b=(x2,y2),则必有yx11=xy22吗? 提示 不一定,两个向量中,若有与坐标轴(x轴)平行的向量或 零向量,则不能写成比例式.
6.2平面向量共线定理的坐标表示
授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。
平面向量的基本定理及坐标运算
平面向量的基本定理及坐标运算好啦,今天我们来聊聊平面向量的基本定理和坐标运算。
这可是个很有趣的话题,别被那些数学术语吓跑哦!你知道吗,向量其实就像是一把钥匙,可以打开很多数学大门。
听上去挺高大上的,但实际上,我们生活中处处都离不开它们,就像你每天都离不开饭一样。
想象一下,你在操场上跑来跑去,运动会的时候,标记你起跑的地方和终点的地方。
用坐标来表示,就是一个个的点,比如 (2, 3) 代表着你起跑的地方,(5, 7) 是终点。
平面向量就像是连接这两个点的一根线,从 A 点到 B 点的过程就叫做向量的运算。
听起来是不是有点神秘?其实也没那么复杂。
向量不仅有方向,还有长度,这样一来,我们就能把它当成一个小箭头,指向目标,越远越好,嘿嘿。
再来看看坐标运算,简单来说,就是把这些向量在坐标系上转来转去。
比如说你要把一条向量从起点搬到终点,怎么搬?很简单,向量的加法就可以搞定。
想象一下,你有一个从 (2, 3) 到 (5, 7) 的向量,再加上一个从 (5, 7) 到 (8, 10) 的向量,结果就是从 (2, 3) 直接到 (8, 10)。
这就像你在操场上先跑到朋友那儿,然后一起跑到更远的地方,简直爽翻了。
向量的减法也好玩,想象你在吃汉堡,先吃了一个大汉堡,接着又吃了一个小汉堡。
这样一来,你的胃口就会受到影响嘛,向量的减法就是把一部分“胃口”给减掉。
把(5, 7) 的向量减去 (2, 3),就好比把你吃过的那部分减掉,最后留下的结果就是 (3, 4)。
这就像是记账,进账和出账的过程,清清楚楚,明明白白。
平面向量的基本定理告诉我们,两个向量如果相加,结果其实就是个新向量。
这和我们日常生活的积累特别像,不管是友情还是经历,都是点点滴滴积累起来的。
你在学校交了朋友,跑步时又认识了新伙伴,这些都是向量的相加。
每个人都是一个小向量,带着自己独特的方向和长度,拼凑起来就是一幅美丽的画面。
再说说方向和大小,向量的大小就是它的长度,方向就是箭头指向的地方。
平面向量的坐标运算
1.已知 =(1.已知 a =(-2,4), b =(5,2) 求 a+ b , ab , 2a + 4b 的坐标. 的坐标. 解: a +b = (3,6) a b = (7,2)
2a + 4b = (24,0)
2. 已知a = AB, 求向量a的始点( A)或终点( B)坐标.
(1)a = (1,3), (2)a = (2,5),
A
A1
2.3.3平面向量的坐标运算 平面向量的坐标运算
平面向量的坐标运算 1.已知 = ( x1 , y 1 ), b = ( x 2 , y 2 ),求a+b,a-b. 已知a 已知 , 解:a+b=( x1i + y1 j ) + ( x2 i + y2 j ) =( x1 + x2 )i+( y1+ y2 )j ( ( 即 同理可得 a + b = ( x1 + x2 , y1 + y2 ) a - b = ( x1 x2 , y1 y 2 )
两个向量和与差的坐标分别等于这两向量相应坐标的和与差
2.3.3平面向量的坐标运算 平面向量的坐标运算
2.已知 A( x1 , y1 ),B( x2 , y2 ).求 AB . 解: AB = OB 0 A = ( x2 , y2 ) ( x1 , y1 )
A( x1 , y1 )
y
B ( x2 , y 2 )
A(1,5) B (3,7)
B(0,8) A(5,12)
2.3.3 平面向量的坐标运算
的三个顶点A、 、 的坐标分别为 例3. 已知 ABCD的三个顶点 、B、C的坐标分别为 . 的三个顶点 (-2, )、( )、(3, ),求顶点D的坐标 ),求顶点 的坐标. (- ,1)、( -1,3)、( ,4),求顶点 的坐标. , )、( 的坐标为( , ) 解:设顶点D的坐标为(x,y) 设顶点 的坐标为
高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件
【解析】由题意得
uur P1P
=
1 3
uuur P1P2
或
uur P1P
=
2 uuur 3 P1P2
,
uuur P1P2
=(3,-3).
设P(x,y),则
uur P1P
=(x-1,y-3),
当
uur P1P
=
1 uuur 3 P1P2时,(x-1,ຫໍສະໝຸດ -3)=1 (3,-3),
3
所以x=2,y=2,即P(2,2).
【解析】因为a∥b,所以4×3-2x=0,所以x=6. 答案:6
2.(必修4P79练习T7改编)已知三个力F1=(-2,-1),F2= (-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体 保持平衡,现加上一个力F4,则F4=________.
【解析】根据力的平衡原理有F1+F2+F3+F4=0,所以F4= -(F1+F2+F3)=(1,2). 答案:(1,2)
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有 向量的一组基底. (3)平面向量的正交分解. 向量正交分解是把一个向量分解为两个_互__相__垂__直__的向 量.
2.平面向量的坐标表示 (1)平面向量的坐标表示: 在平面直角坐标系中,分别取与x轴、y轴方向相同的两 个单位向量i,j作为基底,由平面向量基本定理知,该平 面内的任一向量a可表示成a=x i+y j,由于a与有序数 对(x,y)是一一对应的,因此向量a的坐标是(x,y),记作 _a_=_(_x_,_y_)_.
2
2
于是得
1 2
1 2
1, 解得
平面向量基本定理及坐标表示
5.已知▱ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐 标为_(_1_,_5)__. 设 D(x,y),则由A→B=D→C,得(4,1)=(5-x,6-y), 即41= =56- -xy, , 解得xy==15,.
题型一 平面向量基本定理的应用
例1 在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点, AE的延长线与CD交于点F. 若A→C=a,B→D=b,则A→F等于
∴y=27, 故选 A.
题型三 向量共线的坐标表示
命题点1 利用向量共线求向量或点的坐标 例3 已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为_(_3_,3_)_.
方法一 由 O,P,B 三点共线,可设O→P=λO→B=(4λ,4λ), 则A→P=O→P-O→A=(4λ-4,4λ). 又A→C=O→C-O→A=(-2,6),
(2)已知四边形 ABCD 的三个顶点 A(0,2),B(-1,-2),C(3,1),且B→C=2A→D,
则顶点 D 的坐标为
A.(2,72)
B.(2,-12)
C.(3,2)
D.(1,3)
设 D(x,y),A→D=(x,y-2),B→C=(4,3),
又B→C=2A→D,∴34==22xy,-2, x=2,
考点自测
1.设e1,e2是平面内一组基底,那么 A.若实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0 B.空间内任一向量a可以表示为a=λ1e1+λ2e2(λ1,λ2为实数) C.对实数λ1,λ2,λ1e1+λ2e2不一定在该平面内 D.对平面内任一向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
A.(4,0)
B.(0,4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[再练一题] 3.如图 2-3-20,已知 A(4,5),B(1,2),C(12,1),D(11,6),求 AC 与 BD 的交点 P 的坐标.
图 2-3-20
【解】
→ → 设BP=λBD=λ(11-1,6-2)=(10λ,4λ).
→ 易得CB=(-11,1), → → → ∴CP=CB+BP=(10λ-11,4λ+1). → → → 又CA=(-8,4),而CP与CA共线, ∴4×(10λ-11)+8×(4λ+1)=0, 1 解得 λ=2.
→ → ∴P1P=PP2, → → → → ∴OP-OP1=OP2-OP,
x1+x2 y1+y2 → 1 → → ∴OP= (OP1+OP2)= 2 , 2 , 2
∴线段
x1+x2 y1+y2 P1P2 的中点坐标是 , 2 . 2
探究 2 设 P1,P2 的坐标分别是(x1,y1)、(x2,y2),点 P 是线段 P1P2 的一 个三等分点,则 P 点坐标是什么?
【提示】 点 P 是线段 P1P2 的一个三等分点,分两种情况:
2 → 1 → → → → → 1 → → 1 → → ①当P1P= P1P2时,OP=OP1+P1P=OP1+ P1P2=OP1+ (OP2-OP1)= 3 3 3 3
→ 1→ 2x1+x2 2y1+y2 OP1+3OP2= , 3 ; 3
【→ → ∵OP=OP1+P1P=OP1+λPP2=OP1+λ(OP2-OP)=OP1 +λ
→ → OP + λ OP λ 1 → 1 2 ∴OP= = (x ,y )+ (x ,y ) 1+λ 1+λ 1 1 1+λ 2 2
→ AC=(x,y)-(1,-3)=(x-1,y+3), 7 所以 7(y+3)-2(x-1)=0,整理得 x-2y=7, 经检验可知点(9,1)符合要求,故选 C.
【答案】
C
→ → (2)因为AB=(1,5)-(-1,1)=(2,4),AD=(4,11)-(-1,1)=(5,10), → AC=(-2,-1)-(-1,1)=(-1,-2), → → → → 所以AB=-2AC,AD=-5AC. → → → 所以AB∥AC∥AD. → → → 由于AB与AC、AD有共同的起点 A, 所以 A、B、C、D 四点共线, 因此直线 AB 与 CD 重合.
[再练一题] 2.(1)已知向量 a=(1,2),b=(2,3),若向量 λa+b 与向量 c=(-4,- 7)共线,则 λ=________. (2)已知向量 a=(1,-2),b=(3,4),若(3a-b)∥(a+kb),求实数 k 的值.
【解析】
(1)∵a=(1,2),b=(2,3),
∴λa+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量 λa+b 与向量 c=(-4,-7)共线, ∴-7(λ+2)+4(2λ+3)=0, ∴λ=2.
图 2-3-19
【精彩点拨】
→ → → 要求点 P 的坐标,只需求出向量OP的坐标,由OP与OB共
→ → → → 线得到OP=λOB,利用AP与AC共线的坐标表示求出 λ 即可;也可设 P(x,y), → → → → 由OP∥OB及AP∥AC,列出关于 x,y 的方程组求解.
→ → 【自主解答】 法一:由 O,P,B 三点共线,可设OP=λOB=(4λ,4λ), → → → → → → 则AP=OP-OA=(4λ-4,4λ),AC=OC-OA=(-2,6). 3 → → → 3→ 由AP与AC共线得(4λ-4)×6-4λ×(-2)=0,解得 λ=4,所以OP=4OB= (3,3),所以 P 点的坐标为(3,3).
判断(正确的打“√”,错误的打“×”) (1)向量(1,2)与向量(4,8)共线.(
【解析】 共线. (2)正确.因为(-4,-6)=- 2(2,3),所以向量 (2 ,3)与向量 (-4,-6) 反向. 【答案】 (1)√ (2)√
) )
(2)向量(2,3)与向量(-4,-6)反向.(
(1)正确.因为 (4, 8)=4(1,2),所以向量 (1, 2)与向量(4,8)
阶 段 一
阶 段 三
2.3.4
阶 段 二
平面向量共线的坐标表示
学 业 分 层 测 评
1.用坐标表示两向量共线.(重点) 2.根据平面向量的坐标判断向量共线.(难点) 3.两直线平行与两向量共线的判定.(易混点)
[基础· 初探] 教材整理 平面向量共线的坐标表示
阅读教材 P98“思考”以下至“例 6”以上内容,完成下列问题. 1.设 a=(x1,y1),b=(x2,y2),其中 b≠0,a、b 共线,当且仅当存在实数 a=λb . λ,使_________ 2.如果用坐标表示,可写为(x1,y1)=λ(x2,y2), x1y2-x2y1=0 当且仅当__________________ 时,向量 a、b(b≠0)共线. 注意:对于 2 的形式极易写错,如写成 x1y1-x2y2=0 或 x1x2-y1y2=0 都是 不对的,因此要理解并记熟这一公式,可简记为:纵横交错积相减.
→ → → AC=OC-OA=(10-k,k-12), 又 A,B,C 三点共线, ∴由两向量平行的充要条件,得(4-k)(k-12)+7(10-k)=0, 解得 k=-2 或 k=11. ∴当 k=-2 或 k=11 时,A,B,C 三点共线.
已知平面向量共线求参数
(1)已知向量 a=(x,3),b=(-3,x),则 ①存在实数 x,使 a∥b; ②存在实数 x,使(a+b)∥a; ③存在实数 x,m,使(ma+b)∥a; ④存在实数 x,m,使(ma+b)∥b. 其中,所有叙述正确的序号为________. (2)已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a-3b 平行?平 行时它们是同向还是反向?
设点 P 的坐标为(xp,yp), → ∴BP=(5,2)=(xp-1,yp-2),
xp-1=5, ∴ yp-2=2, xp=6, 即 yp=4,
故点 P 的坐标为(6,4).
[探究共研型]
共线向量与中点坐标公式
探究 1 设 P1、P2 的坐标分别是(x1,y1)、(x2,y2),如何求线段 P1P2 的中 点 P 的坐标? 【提示】 如图所示,∵P 为 P1P2 的中点,
【精彩点拨】 b 与 a 反向)求解;
(1)可利用向量共线定理列方程判断方程解的情况来解决.
(2)方法一: 可利用 b 与非零向量 a 共线等价于 b=λa(λ>0, b 与 a 同向; λ<0, 方法二: 可先利用坐标形式的等价条件求 k, 再利用 b=λa 判定同向还是反 向.
【自主解答】 (1)由 a∥b⇔x2=-9 无实数解,故①不对; 又 a+b=(x-3,3+x),由(a+b)∥a 得 3(x-3)-x(3+x)=0,即 x2=-9 无实数解,故②不对;
三点共线的条件以及判断方法: 若已知三点的坐标,判断其是否共线可采用以下两种方法: (1)直接利用上述条件,计算(x2-x1)(y3-y1)-(x3-x1)(y2-y1)是否为 0; → → (2)任取两点构成向量,计算出两向量如AB,AC,再通过两向量共线的条 件进行判断.
[再练一题] → → → 1.设 O 是坐标原点,OA=(k,12),OB=(4,5),OC=(10,k),当 k 为何 值时,A,B,C 三点共线? → → → 【解】 ∵AB=OB-OA=(4-k,-7),
1. 关于解决两线段的交点问题可以用解析几何的知识联立两直线方程求交 点的坐标;也可以使用对应向量共线列等式,再解方程组求解. 2.本例利用了向量共线定理,已知四边形四个顶点坐标求对角线交点坐标 的向量解法,为我们展示了向量的坐标运算在解决平面几何、平面解析几何问 题中的应用,在以后学习中应加以体会运用.
[小组合作型]
判定直线平行、三点共线
(1)已知 可以是( ) B.(9,-1) C.(9,1) D.(-9,-1)
1 A(1,-3),B8,2,且
A,B,C 三点共线,则 C 的坐标
A.(-9,1)
(2)已知四点坐标 A(-1,1)、B(1,5)、C(-2,-1)、D(4,11),请判断直 线 AB 与 CD 是否平行? → → (3)已知 A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗? 直线 AB 平行于直线 CD 吗?
→ → → → 法二:设 P(x,y),则OP=(x,y),因为OB=(4,4),且OP与OB共线,所 x y 以 = ,即 x=y. 4 4 → → → → 又AP=(x-4,y),AC=(-2,6),且AP与AC共线,则得(x-4)×6-y×(- 2)=0,解得 x=y=3,所以 P 点的坐标为(3,3).
【答案】
2
(2)3a-b=(0,-10),a+kb=(1+3k,-2+4k), 因为(3a-b)∥(a+kb), 所以 0-(-10-30k)=0, 1 所以 k=- . 3
向量共线的综合应用
如图 2-3-19 所示,已知点 A(4,0),B(4,4),C(2,6),求 AC 与 OB 的交点 P 的坐标.
→ 2 → ②当P1P=3P1P2时, → → → → 2 → OP=OP1+P1P=OP1+3P1P2 → 2 → → =OP1+3(OP2-OP1) 1→ 2→ = OP1+ OP2 3 3
x1+2x2 y1+2y2 = , . 3 3
→ → 探究 3 当P1P=λPP2时,点 P 的坐标是什么?
→ (3)因为AB=(1-(-1),3-(-1))=(2,4), → CD=(2-1,7-5)=(1,2). 又因为 2×2-4×1=0, → → 所以AB∥CD. → → 又因为AC=(1-(-1),5-(-1))=(2,6),AB=(2,4), 所以 2×4-2×6≠0, 所以 A,B,C 不共线, 所以 AB 与 CD 不重合, 所以 AB∥CD.