河南省2020年中考数学压轴题全揭秘专题03折叠与落点有迹性含解析
2020中考数学 几何图形的折叠与动点问题(含答案)
2020中考数学几何图形的折叠与动点问题(含答案)1.如图,在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD 上的一个动点,若把△BEF沿EF折叠,点B落在点B′处,当点B′恰好落在矩形ABCD的一边上,则AF的长为________.第1题图3或11 32.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是________.第2题图6-25≤BP≤43.如图,在矩形ABCD中,AB=2,AD=6,E,F分别是线段AD、BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为__________.第3题图4或4-224.如图,在四边形ABCD中,AD∥BC(AD<BC),AB与CD不平行,AB=CD=5,BC=12,点E是BC上的动点,将∠B沿着AE折叠,使点B落在直线AD上的点B′处,DB′=1,直线BB′与直线DC交于点H,则DH=________.第4题图5 11或5135.如图,已知AD∥BC,AB⊥BC,AB=8,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′分线段MN为3∶5的两部分时,EN的长为________.第5题图355 11或539 136.如图,在矩形纸片ABCD中,AB=6,BC=8,点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.第6题图24 7或8 37.如图,正方形的边长为4,E是BC的中点,点P是射线AD上一动点,过P作PF⊥AE于F.若以P、F、E为顶点的三角形与△ABE相似,则P A=________.第7题图2或58.如图,矩形ABCD中,AB=1,AD=2,E是AD中点,点P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于____________.第8题图2或53或6559.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD、BC于点E、F;点M是边AB的一个三等分点.则△AOE 与△BMF的面积比为__________.第9题图3∶4或3∶810.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EP A′,若△EP A′与△ABC的另一个交点为F,当EF=14AB时,则BP的长为________.第10题图2或2311.已知△ABC ,以AB 为直径的⊙O 交AC 于点D ,交BC 于点E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)①若AB =4,BC =23,则CD =________; ②当∠A =________时,四边形ODEB 是菱形.第1题图1.(1)证明:∵ED =EC ,∴∠EDC =∠C , ∵∠EDC +∠ADE =180°,∠B +∠ADE =180°, ∴∠EDC =∠B ,∴∠B =∠C , ∴AB =AC ; (2)解:①32; 如解图,连接BD ,第1题解图∵AB 为∵O 的直径,∵BD ∵AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt∵ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a )2, 在Rt∵CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(23)2-a 2, ∵42-(4-a )2=(23)2-a 2,解得a =32,即CD =32. ∵60°.如解图,连接OD 、OE ,∵四边形ODEB 是菱形,∵OB =BE ,又∵OB =OE ,∵∵OBE 是等边三角形,∵∵OBE =60°, ∵OD ∵BE ,∵∵BOD =120°,∵∵A =12∵BOD =60°.12 .如图,在▱ABCD 中,AD =4,AB =5,延长AD 到点E ,连接EC ,过点B 作BF ∥CE 交AD 于点F ,交CD 的延长线于点G .(1)求证:四边形BCEF 是平行四边形;(2)①当DF =______时,四边形BCEF 是正方形; ②当GFGD =________时,四边形BCEF 是菱形.第2题图13. (1)证明:∵四边形ABCD 是平行四边形,∴EF ∥BC . ∵BF ∥CE ,∴四边形BCEF 是平行四边形;(2)解:①1;∵四边形BCEF 是正方形,∵BF =BC =AD =4,∵FBC =∵AFB =90°, ∵AF =AB 2-BF 2=52-42=3. ∵AD =4,∵DF =AD -AF =4-3=1. ∵45. ∵四边形BCEF 是菱形, ∵BF =BC =AD =4.∵四边形ABCD 是平行四边形,∵CD ∵AB , ∵GD AB =GF BF ,即GF GD =BF AB =45.14.如图,AB 是半圆O 的直径,射线AM ⊥AB ,点P 在AM 上,连接OP 交半圆O 于点D ,PC 切半圆O 于点C ,连接BC .(1)求证:BC ∥OP ;(2)若半圆O 的半径等于2,填空:①当AP =________时,四边形OAPC 是正方形;②当AP =________时,四边形BODC 是菱形.第3题图解:(1)证明:连接OC ,AC ,如解图所示, ∵AB 是直径,AM ⊥AB , ∴BC ⊥AC ,AP 是半⊙O 的切线,又∵PC是半⊙O的切线,∴P A=PC,又∵OA=OC,∴OP⊥AC,∴BC∥OP;(2)① 2;② 2 3.∵若四边形OAPC是正方形,则OA=AP,∵OA=2,∵AP=2;∵若四边形BODC是菱形,则CB=BO=OD=DC,∵AB=2OB,∵ACB=90°,∵AB=2BC,∵∵BAC=30°,∵ABC=60°,∵BC∵OP,∵∵AOP=∵ABC=60°,又∵∵OAP=90°,OA=2,∵∵OP A=30°,∵OP=4,∵AP=22222-OAOP=2 3.=4-第3题解图15.如图,在△ABC中,∠ACB=90°,线段BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,AF=CE且F不与E重合.(1)求证:△EF A≌△ACE;(2)填空:①当∠B=_________°时,四边形ACEF是菱形;②当∠B=_________°时,线段AF与AB垂直.第4题图(1)证明:如解图,第4题解图∵ED是BC的垂直平分线,∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余,∴∠1=∠2=∠5,∴AE=CE.又∵AF=CE,∴AE=AF,∴∠5=∠F,在△EF A和△ACE中,AF=AE=EC,∠1=∠2=∠5=∠F,∴△EF A≌△ACE.(2)解:① 30;②45.∵∵四边形ACEF是菱形,∵AC=CE,∵CE是Rt∵ABC斜边AB的中线,∵CE=AE=BE,∵AE=AC=CE,∵∵ACE是等边三角形,∵∵1=60°,则∵B=30°,∵当∵B=30°时,四边形ACEF是菱形;∵由(1)知∵EF A∵∵ACE,∵∵AEC=∵EAF,∵AF∥CE,∵AF∵AB,∵CE∵AB,∵CE=EB,∵∵3=∵4=45°,∵当∵B=45°时,线段AF与AB垂直.16.如图,AB是⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED,EB,切点分别为点D,B.连接AD并延长交BE延长线于点C,连接OE.(1)试判断OE与AC的关系,并说明理由;(2)填空:①当∠BAC=_________°时,四边形ODEB为正方形;②当∠BAC=30°时,ADDE的值为________.第5题图5.解:(1)OE∥AC,OE=12AC.理由:连接OD,如解图,第5题解图∵DE,BE是⊙O的切线,∴OD⊥DE,AB⊥BC,∴∠ODE=∠ABC=90°,∵OD=OB,OE=OE,∴Rt△ODE≌Rt△OBE(HL),∴∠1=∠2.∵∠BOD=∠A+∠3,OA=OD,∴∠A=∠3,∴∠2=∠A,∴OE∥AC;∵OA=OB,∴EC=EB,∴OE是△ABC的中位线,∴OE=12AC.(2)①45;②3.∵要使四边形ODEB是正方形,由ED=EB,∵ODE=∵ABC=90°,只需∵DOB =90°,∵∵A=45°;∵过O作OH∵AD于H,∵∵A=30°,OA=OD,∵∵3=∵A=30°,∵OD,∵∵ODE=90°,∵1=∵3=30°,∵OD,∵ADDE=3.17.如图,将⊙O的内接矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接BC1,∠ACB=30°,AB=1,CC1=x.(1)若点O与点C1重合,求证:A1D1为⊙O的切线;(2)①当x=________时,四边形ABC1D1是菱形;②当x=________时,△BDD1为等边三角形.第6题图(1)证明:∵四边形ABCD为矩形,∴∠D=90°,∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1D1O=∠D=90°,∴A1D1⊥OD1,∴A1D1为⊙O的切线;(2)解:①1;②2.∵如解图∵,连接AD1,当x=1时,四边形ABC1D1是菱形;第6题解图∵理由:由平移得:AB=D1C1,且AB∵D1C1,∵四边形ABC1D1是平行四边形,∵∵ACB=30°,∵∵CAB=60°,∵AB=1,∵AC=2,∵x=1,∵AC1=1,∵AB=AC1,∵∵AC1B是等边三角形,∵AB=BC1,∵四边形ABC1D1是菱形;∵如解图∵所示,当x=2时,∵BDD1为等边三角形,第6题解图∵则可得BD=DD1=BD1=2,即当x=2时,∵BDD1为等边三角形.。
2020年中考数学动态问题-折叠中函数综合题型(含答案)
专题05 动点折叠类问题中函数及其综合题型一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.(1)函数中的折叠问题主要考查对函数性质的把握及综合运用知识的能力.(2)综合题型此类题目困难重重,以2019年安徽省中考第10题而言,充分体现了数学思想的表达,解题中用到的有最短路径、三角函数、所求变量的变化规律等等,充分体现了新课标对考查学生数学素养的要求.通过研究历年中考真题并结合2019年各省(市)的中考真题,特总结出此专题. 期望能给各位老师及同学以学习教学一些启发,一些指引,培养出学生的解题素养.二、精品例题解析题型一:折叠综合题型例1.(2019·安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8题型二:折叠与相似例2.(2019·济宁)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y .①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.题型三:折叠与全等例3.(2019·临沂)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH ,显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线,仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.题型四:折叠与反比例函数例4.(2019·衢州)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若(0)k y k x=≠图象经过点C ,且=1BEF S ∆,则k 的值为 .题型五:几何图形中动点折叠问题例5.(2019·衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE 为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.题型六:函数图象中动点折叠问题例6.(2019·湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC,OA=3,tan∠OAC 3D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.二、精品例题解析题型一:折叠综合题型例1.(2019·安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A .0B .4C .6 D.8【分析】当P 在边AD 上运动时,根据轴对称知识,求出PE +PF 的最小值及其变化规律,进而与9进行比较,得出结论.【答案】D .【解析】解:作点E 关于AD 的对称点E ’,连接E ’F ,交AD 于P ,此时PE +PF 的值为最小,最小值为E ’F 的长,如下图所示,过F 作FH ⊥EE ’于H ,EE ’交AD 于点G , D C EF P E'HG由题意知:AE =EF =FC =4,四边形ABCD 是正方形,AC 为对角线,∴∠FFH =∠ACB =45°,∴FH =EH =EG =E ’G 2EF =22, 在Rt △HFE ’中,由勾股定理得:E ’F 22'459E H HF +=<,当点P 在点A 处时,PE +PF =12>9,当点P 在D 点时,连接BD 交AC 于点O ,如下图所示, A D CBE F (P )O∴OD =6,OE =2,在Rt △PEO 中,由勾股定理得:PE =22210OE OD +=,PE +PF =4109>,综上所述,当点P 在AD 上运动时,PE +PF 的值的变化规律为从12逐渐减小至45,后增大至410,在这个变化过程中,有两个P 点使得PE +PF =9,∴在正方形ABCD 边上有8个点符合要求,故答案为:D .题型二:折叠与相似例2.(2019·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G .(1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y .①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【分析】(1)由翻折并利用勾股定理构建方程即可解决问题.(2)①由△ADM ∽△GMN ,可得=,由此即可解决问题.②有两种情形:当MN=MD时,当MN=DN时. 分别求解即可解决问题.【答案】见解析.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=m,则DE=EF=8﹣m.在Rt△ABF中,由勾股定理得:BF=6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,由勾股定理得:(8﹣m)2=m2+42,解得:m=3,∴EC=3.(2)①如下图中,∵AD∥CG,∴AD DE CG EC,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,由勾股定理得:AG=5,在Rt△DCG中,由勾股定理得:DG=10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM ∽△GMN , ∴AD AM HM NG =, ∴101085x yx =--, 整理得:()2214511045210510y x x x =-+=-+. ∴当x =45时,y 有最小值,最小值为2.②存在.当MN =MD 时,∵∠MDN =∠GMD ,∠DMN =∠DGM ,∴△DMN ∽△DGM ,∴MD MN DG MG=, ∵MN =DM ,∴DG =GM =10,∴x =AM =85﹣10.当MN =DN 时,过M 作MH ⊥DG 于H .∵MN =DN ,∴∠MDN =∠DMN ,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵BH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得GH MG GB AG,∴MG=55,∴x=AM=115.综上所述,满足条件的x的值为85﹣10或115 2.题型三:折叠与全等例3.(2019·临沂)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH,显然AE是∠DAF的平分线,EA是∠DEF的平分线,仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.【答案】见解析.【解析】解:∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°,由折叠知:△ADE≌△AFE,∴AD=AF=AB,∠AFG=90°,在Rt△AGB和Rt△AGF中,∵AG=AG,AF=AB,∴Rt△AGB≌Rt△AGF,∴∠6=∠7,∠3=∠4,即AG是∠BAF的平分线,GA是∠BGF的平分线;∵∠AGH=90°,∴∠6+∠HGC=90°,∠7+∠EGH=90°,∴∠HGC= EGH,即GH是∠EGC的平分线;过H作HN⊥BM于N,∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=90°,∴∠GAH=2+∠3=45°,∴AG=GH,∴△ABG≌△GNH,∴NH=BG,GN=AB=BC,∴GN-GC= BC-GC,即BG=CN=NH,∴∠HCN=45°,∠DCH=45°,即CH 是∠DCM 的平分线.题型四:折叠与反比例函数例4.(2019·衢州)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若(0)k y k x=≠图象经过点C ,且=1BEF S ∆,则k 的值为 .【答案】24.【解析】解:由题意知:AB =CD =3BE ,S △BEF = S △OBF =1∵ABCD 为平行四边形,即AB ∥CD ,∴BF :FC =BE :CD =1:3,连接OC ,OF ,如下图所示,则S △OBF :S △OFC =BF :FC =1:3,∴S △OBC =4,∵S △OBC :S △ODC =OB :CD =1:3,∴S △ODC =12,∴k =24,故答案为:24.题型五:几何图形中动点折叠问题例5.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以lcm /s 的速度沿AB 匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE 为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【答案】见解析.【解析】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,即6+t=2(6﹣t),解得:t=3,故t=3时,△BPQ是直角三角形.(2)存在.理由:如下图,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=12∠ABC=30°,∴EF=2EM,∴t=2•(3﹣12 t),解得t=3.(3)如下图,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=12(AK+CK)=12AC=3(cm).(4)如下图,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,由勾股定理得:AM=33,根据两点之间线段最短,得:AB′≥AM﹣MB′,即AB′≥33﹣3,故AB′的最小值为33﹣3.题型六:函数图象中动点折叠问题例6.(2019·湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC,OA=3,tan∠OAC=3,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.【答案】见解析【解析】解:(1)∵OA=3,tan∠OAC=3 3,在Rt△AOC中,tan∠OAC=3=3 OCOA,∴OC=3,∵ABCD是矩形,∴BC=OA=3,又D是BC的中点,∴CD=3 2 ,即D的坐标为(32,3)(2)①由tan∠OAC3知:∠OAC=30°,∴∠ACB=∠OAC=30°,若△DBF折叠后,B的落点为B’由折叠性质,知:DB’=DB=DC,∠BDF=∠B’DF,∴∠DB’C=∠ACB=30°,∴∠BDB’=60°,∠BDF=30°,在Rt△BDF中,BF=BD·tan30°3,∵AB∴AF=BF在△BFD和△AFE中,∠BFD=∠EFA,∠B=∠FAE=90°,AF=BF,∴△BFD≌△AFE,∴AE=BD=3 2即OE=OA+AE=9 2,故E点坐标为(92,0)②由题意知:F点横坐标不变为3,而∠DFB=60°,即G点与F点的连线与y轴平行,即G点横坐标不变,所以G点运动轨迹为一条线段,求出P点从O点至M点运动过程中,G点的纵坐标的差即为G点运动路径的长.2+bx,将点D(32, B(3934293a ba b⎧+=⎪⎨⎪+=⎩,解得:9a b ⎧=-⎪⎨⎪=⎩,即抛物线解析式为:2y x = 令y =0,得12902x x ==,, 即E (92,0),设直线DE 的解析式为:y =kx +b ,将D (32、E (92,0)代入得:32y x =-+, 令x =3,得y即F(3, 由BF =BG 得,G (3).+bx +c ,将点D (32, B (3,M (0)代入解析式,可得: 934293a b c a b c c ⎧++=⎪⎪⎪++=⎨⎪⎪=⎪⎩,抛物线解析式为:22733y x x =-++ 令y =0,得12362x x =-=,, 即E (6,0),设直线DE 的解析式为:y =kx +b ,将D (32、E (6,0)代入得:y x =+令x =3,得y ,即F (3, 3),由BF =BG 得,G (3,3)即G 点由(3,2)运动至(3,3),运动路径长为:2-3=6.。
河南中考黑白卷狂押到底(数学)
狂押到底·扫扫刊——数学特殊题型猜押题型一几何图形的折叠与动点问题1.如图,在矩形ABCD中,AB=2,AD=5,点P在线段BC上运动,现将纸片折叠,使点A 与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),设BP=x,当点E落在线段AB 上,点F落在线段AD上时,x的取值范围是.第1题图第2题图2.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,点E、F分别为线段AB、BC上的动点,将三角形沿折痕EF折叠,使得点B落在边AC上,记为点B΄,若以点B΄、F、C为顶点的三角形与△ABC,则CF的长为.题型二特殊四边形的探究题1.如图,已知∆ABC,过点B作DB∥AC,且DB=12AC,E是AC的中点,连接DE.(1)求证:BC=DE;(2)填空:①连接AD、BE,当△ABC满足条件,四边形DBEA是矩形,②在①的条件下,当∠C=______.四边形DBEA是正方形.第1题图2.如图,在平行四边形ABCD 中,对角线BD =8cm ,AC =4cm ,点E 从点B 出发沿BD 方向以1cm/s 的速度向点D 运动,同时点F 从点D 出发沿DB 方向以同样的速度向点B 运动,设点E 、F 运动的时间为t (s ),其中0<t <8. (1)求证:△BEC ≌△DF A ; (2)填空:①以点A 、C 、E 、F 为顶点的四边形一定是 形;②当t 的值为 时,以点A 、C 、E 、F 为顶点的四边形为矩形.第2题图题型三 类比、拓展探究题1.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图①,在正方形ABCD 中,对角线AC 、BD 相交于点O ,点E 是BC 边上一点,AE 与BD 交于点G ,过点E 作EF ⊥AE 交AC 于点F . 若2=CE BE ,求EGEF的值.第1题图(1)尝试探究在图中①,过点E 作EM ⊥BD 于点M ,作EN ⊥AC 于点N ,则EM 和EN 的数量关系是 ,EGEF的值是 . (2)类比延伸如图②,在原题的条件下,若n CE BE =(n >0),则EGEF的值是 (用含n 的代数式表示),试写出解答过程.(3)拓展迁移 如图③,在矩形ABCD 中,过点B 作BH ⊥AC 于点O ,交AD 于点H ,点E 是BC 边上一点,AE 与BH 相交于点G ,过点E 作EF ⊥AE 交AC 于点F ,若a CE BE =,b ABBC=(a >0,b >0),则EGEF的值是 (用含a 、b 的代数式表示).2.已知∆ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图①,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图②,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图③,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.第2题图创新题猜押命题点函数关系式如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DE=,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.3+xy=-(44)B.121xyx=--B.C.3+xy=-(44)D.124xyx=--命题点几何动点问题如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,点D为BC 的中点,若动点E以1cm/s的速度从A点出发,沿着A→B的方向运动,设E点的运动时间为t秒(0≤t<4),连接DE,当△BDE是直角三角时,t的值为 .名校内部模拟题命题点 二次函数图像与性质(2015信阳中学模拟8题3分)如图是二次函数y =ax 2+bx +c 图象的一部分,其对称轴为x =-3,且过点(-3,0).下列说法:①abc <0;②2a -b =0; ③4a +2b +c <0;④若(-5,y 1),(25,y 2)是抛物线上两点,则y 1>y 2,其中说法正确的有 ( )A.4个B.3个C.2个D.1个命题点 概率计算(2015平顶山一模13题3分)一个口袋中有四个完全相同的小球,把他们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,在随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是 .狂押到底·扫扫刊——数学答案特殊题型猜押题型一 几何图形的折叠与动点问题1.5-21≤x ≤22.1340 题型二 特殊四边形的探究题1.【思路分析】(1)由已知判定四边形DBEA 是平行四边形即可求证;(2)①从矩形的判定着手,对角线相等的四边形是矩形解题;②由①和四边形DBEA 是正方形判断△BEC 是等腰直角三角形即可求解.(1)证明:∵E 是AC 的中点,∴EC =12AC , 又∵DB =12AC ,∴DB =EC , 又∵DB ∥AC ,∴四边形DBCE 是平行四边形, ∴BC =DE ;(2)①AB =BC ;②45°. 【解法提示】①△ABC 添加BA =BC ,同(1)可证四边形DBEA 是平行四边形,又∵BA =BC ,BC = DE ,∴AB =DE ,∴四边形DBEA 是矩形;②∵四边形DBEA 是正方形,∴BE =AE ,∠BEC =90°,∴△BEC 是直角三角形,又∵E 是AC 的中点,∴AE =EC ,∴BE =EC ,又∵△BEC 是直角三角形,∴△BEC 是等腰直角三角形,∴∠C =45°. 2.(1)证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC , ∴∠EBC =∠FDA . 在△BEC 和△DF A 中⎪⎩⎪⎨⎧=∠=∠=DA BC FDA EBC DF BE , ∴△BEC ≌△DF A .(2)解:平行四边形;2或6.【解法提示】①平行四边形,理由如下:连接CF ,AE , 由(1)得:∠BEC =∠DF A ,EC =AF , ∴∠FEC =∠AFE ,即EC ∥AF∴以点A 、C 、E 、F 为顶点的四边形一定是平行四边形.②2或6,理由如下: ∵四边形AECF 为矩形, ∴AC =EF ,∵BD =8cm ,AC =4cm , ∴EF =4,BE =2cm 或6cm . ∵速度为1cm/s , ∴t=2或6.题型三 类比、拓展探究题1.(1)解:EM =2EN ,12. 【解法提示】∵四边形ABCD 是平行四边形,AC 、BD 是对角线, ∴∠MBE =∠NCE =45°, 又∵EM ⊥BM ,EN ⊥CN , ∴∠EMB =∠ENC =90°, ∴△EMB ∽△ENC , ∴2EM EBEN EC==即EM =2EN. 由正方形性质得BD ⊥AC 于点O ,则四边形OMEN 为矩形, ∴∠MEN =90°, 又∵AE ⊥EF ,∴∠GEM +∠GEN =90°,∠FEN +∠GEN =90°, ∴∠MEG =∠FEN ,又∵∠EMG =∠ENF =90°,∴△EMG ∽△ENF ,1.2EF EN EG EM ∴==(2)解:1n. 【解法提示】如解图①,过点E 分别作EM ⊥BD 于点M ,EN ⊥AC 于点N . ∴∠BME =∠CNE =90°,∵四边形ABCD 是正方形,AC 、BD 是对角线, ∴∠OBC =∠OCB =45°, ∴△BME ∽△CNE , ∴.EM EBn EN EC== ∴∠MEG +∠NEG =90°,∠NEF +∠NEG =90°, ∴∠MEG =∠FEN ,又∵∠EMG =∠ENF =90°, ∴△EMG ∽△ENF ,,EM EGn EN EF ∴== 1.EF EG n ∴=第1题解图① (3)解:1.ab解法提示:如解图②,分别作EM ⊥BO 交BO 于点M ,EN ⊥AC 交AC 于点N . ∴∠ENC =∠BME =90°,又∵BH ⊥AC 于点O ,则EN ∥BM , ∴∠NEC =∠MBE , ∴△BME ∽△ENC , ∴.BM BEa EN EC==又∵EN ⊥AC , ∴△CEN ∽△CAB ,即,EN CNAB BC=∴1EN AB CN BC b==,又∵△BME ∽△ENC ,则1BM EN ME CN b==,即BM =ME b , ∴.MEMEb a ab EN EN==,即 ∵AE ⊥EF , AC ⊥BH , ∴∠AOG =∠AEF =90°, 又∵∠GAO =∠F AE ,∴Rt △AGO ∽Rt △AFE ,∴∠AGO =∠NFE , 又∵∠MGE =∠AGO ,∴∠MGE =∠NFE , ∵EM ⊥BO ,FN ⊥AC , ∴∠EMG =∠ENF =90°, ∴△EMG ∽△ENF ,1,.EG EM EF ab EF EN EG ab===∴即第1题解图② 2.解:(1)证明:如解图①,∵四边形ADEF 是菱形,∴AF =AD , ∵△ABC 是等边三角形,∴AB =AC =BC ,∠BAC =60°=∠DAF , ∴∠BAC -∠DAC =∠DAF -∠DAC ,即∠BAD =∠CAF , 在△BAD 和△CAF 中AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAF ,∴CF =BD ,即证BD =CF ;∴AC =BC =BD +CD =CF +CD ,即证AC =CF +CD ; (2)如解图②,AC =CF +CD 不成立,AC 、CF 、CD 之间存在的数量关系是AC =CF -CD ,理由是:由(1)知:AB =AC =BC ,AD =AF ,∠BAC =∠DAF =60°, ∴∠BAC +∠DAC =∠DAF +∠DAC ,即∠BAD =∠CAF , ∵在△BAD 和△CAF 中AC AB BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF ,∴BD =CF ,∴CF -CD =BD -CD =BC =AC ;即AC =CF -CD . (3)AC =CD -CF . 【解法提示】如解图③,∵∠BAC =∠DAF =60°,∴∠DAB =∠CAF , ∵在△BAD 和△CAF 中,AB AC DAB FAC AD AF =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAF (SAS ),∴CF =BD ,∴CD -CF =CD -BD =BC =AC ,即AC =CD -CF .第2题解图创新题猜押命题点 函数关系式A命题点 几何动点问题2或3.5名校内部模拟题命题点 二次函数图像与性质B命题点 概率计算163狂押到底·扫扫刊——数学特殊题型猜押题型一几何图形的折叠与动点问题1.如图,已知矩形ABCD,点M、N分别为AB、CD的中点,连接MN,点E为线段BC上的动点,将△ABE沿AE折叠使得点B落在MN上,点B的对应点为B',若AB=3,则折痕AE的长为.第1题图2.如图,在△ABC中,∠B=90°,AB=6,BC=8,点D在线段AC上,点F是线段AB上的动点,将△ABC沿DE折叠,使点C落在AB上的F处,并且FD∥BC,则CD的长为.第2题图题型二与特殊四边形判定有关的证明及计算如图,已知∆ABC,在边BC的同侧分别作三个正方形.它们分别是正方形ABDI,BCFE,ACHG,连接AD、DE、EG,试探究:(1)求证四边形ADEG是平行四边形;(2)填空:①当∠BAC= 时,四边形ADEG是矩形;②在①的条件下,AC与AB满足条件时,四边形ADEG是正方形.题型三 类比、拓展探究题已知点P 是矩形ABCD 边AB 上的任意一点(与点A 、B 不重合). (1)操作发现如图①,现将△PBC 沿PC 翻折得到△PEC ;再在AD 上取一点F ,将△P AF 沿PF 翻折得到△PGF ,并使得线段PE 、PG 重合,试问FG 与CE 的位置关系为 ; (2)猜想论证在(1)中,如图②,连接FC ,取FC 的中点H ,连接GH 、EH ,请你猜想线段GH 和线段EH 的大小关系,并说明你的理由; (3)拓展延伸 如图③,分别在AD 、BC 上取点F 、C ′,使得∠APF =∠BPC ′,将△P AF 沿PF 翻折得到△PFG ,并将△PBC ′ 沿PC' 翻折得到△PEC ′,连接FC ′,取FC ′的中点H ,连接GH 、EH ,试问(2)中的结论还成立吗?请说明理由创新题猜押1.抛物线与x 轴交于A(1x ,0)、 B(2x ,0)两点,且1x <2x ,与y 轴交于点C (0,-4),其中1x ,2x 是方程01242=--x x 的两个根,则抛物线的解析式 . 2.如图,已知AB 为⊙O 的直径,过⊙O 上的点C 的切线交AB 的延长线于点E ,AD ⊥EC 于点D 且交⊙O 于点F ,连接BC ,CF ,AC . (1)求证:BC =CF ;(2)若AD =3,DE =4,求BE 的长;第2题图名校内部模拟题命题点 实数的相关概念(2015郑州一模1题3分)下列各组数中,互为相反数的两个数是 ( )A.-3和+2B.5和51C.-6和6D.2131和 命题点 阴影部分图形的面积计算(2015平顶山二模15题3分)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A'B'C',当两个三角形重叠的面积为32时,则它移动的距离AA' 等于 .命题点 实际应用题(2015平顶山二模21题10分)节能灯在城市已基本普及,今年我省面向县级农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表: 类别进价(元/只) 售价(元/只) 甲型25 30 乙型 45 60(1)如何进货,进货款恰好为46000元?(2)若何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?狂押到底·扫扫刊——数学答案特殊题型猜押题型一 几何图形的折叠与动点问题1. 22.940 题型二 与特殊四边形判定有关的证明及计算【思路分析】(1)根据全等三角形的判定定理SAS 证得△BDE ≌△BAC ,所以全等三角形的对应边DE =AG .然后利用正方形对角线的性质、周角的定义推知∠EDA +∠DAG =180°,易证ED ∥GA ;最后由“一组对边平行且相等”的判定定理证得结论;(2)根据“矩形的内角都是直角”易证∠DAG =90°.然后由周角的定义求得∠BAC =135°;(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG =90°,且AG =AD .由正方形ABDI 和正方形ACHG 的性质证得,AC =2AB .证明:图中四边形ADEG 是平行四边形.理由如下:∵四边形ABDI 、四边形BCFE 、四边形ACHG 都是正方形,∴AC =AG ,AB =BD ,BC =BE ,∠GAC =∠EBC =∠DBA =90°.∴∠ABC =∠EBD (同为∠EBA 的余角).在△BDE 和△BAC 中⎪⎩⎪⎨⎧=∠=∠=BC BE ABCDBE BA BD∴△BDE ≌△BAC (SAS ),∴DE =AC =AG ,∠BAC =∠BDE .∵AD 是正方形ABDI 的对角线,∴∠BDA =∠BAD =45°.∵∠EDA =∠BDE -∠BDA =∠BDE -45°,∴∠DAG =360°-∠GAC -∠BAC -∠BAD =360°-90°-∠BAC -45°=225°-∠BAC ,∴∠EDA +∠DAG =∠BDE -45°+225°-∠BAC =180°,∴DE ∥AG ,∴四边形ADEG 是平行四边形(一组对边平行且相等).(2)①135°;②AC =2AB .【解法提示】①当四边形ADEG 是矩形时,∠DAG =90°,则∠BAC =360°-∠BAD -∠DAG -∠GAC =360°-45°-90°-90°=135°,即当∠BAC =135°时,平行四边形ADEG 是矩形;②当四边形ADEG 是正方形时,∠DAG =90°,且AG =AD .由(2)知,当∠DAG =90°时,∠BAC =135°. ∵四边形ABDI 是正方形,∴AD =2AB .又∵四边形ACHG 是正方形,∴AC =AG ,∴AC =2AB ,∴AC =2AB 时,四边形ADEG 是正方形.题型三 类比、拓展探究题解:(1)FG ∥CE ;【解法提示】在矩形ABCD 中,∠A =∠B =90°,由题意得∠G =∠A =90°,∠PEC =∠B =90°.∴∠GEC =90°,∴∠G =∠GEC ,∴FG ∥CE .(2)GH =EH .如解图①,延长GH 交CE 于点M ,由(1)得FG ∥CE ,∴∠GFH =∠MCH .∵H 为CF 的中点,∴FH =CH .又∵∠GHF =∠MHC∴△GFH ≌△MHC (ASA ),∴GH =HM =21GM , ∵∠GEC =90°,∴EH =21GM , ∴GH =EH .解图① 解图②(3)(2)中的结论还成立.如解图②,取PF 的中点M ,PC ′的中点N ,连接GM ,EN ,HM ,HN ,∵∠FGP =90°,M 为PF 的中点,∴GM =21PF ,PM =21PF ,HM ∥PC', ∴GM =PM ,∴∠GPF =∠MGP ,∴∠GMF =∠GPF +∠MGP =2∠GPF .∵H 为FC ′的中点,M 为PF 的中点,∴HM =21PC'. 同理HN =21PF ,EN =21PC',HN ∥PF ,∠ENC'=2∠EPC', ∴GM =HN ,HM =EN .∵∠GPF =∠FP A ,∠EPC ′=∠BPC ′.∴∠BPC ′=∠APF ,∴∠GPF =∠EPC ′,∴∠GMF =∠ENC ′.∵HM ∥PC ′,HN ∥PF ,∴四边形HMPN 为平行四边形,∴∠HMF =∠HNC ′,∴∠GMH =∠HNE .∵GM =HN ,HM =EN ,∴△GMH ≌△HNE ,∴GH =HE .创新题猜押 1.434312--=x x y 2.(1)证明:如解图,连接OC ,∵ED 切⊙O 于点C ,∴CO ⊥ED ,∵AD ⊥EC , ∴CO ∥AD ,∴∠OCA =∠CAD ,∵∠OCA =∠OAC , ∴∠OAC =∠CAD ,∴»»BC CF =,∴BC =CF ;第2题解图(2)在Rt △ADE 中,AD =3,DE =4,则根据勾股定理得AE =5,∵CO ∥AD ,∴△EOC ∽△EAD ,∴ADOC EA EO =, 设⊙O 的半径为r ,则OE =5-r ,∴553r r -=,解得815=r , ∴EB =5-2r =45. 名校内部模拟题命题点实数的相关概念C命题点阴影部分图形的面积计算4或8命题点实际应用题解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200–x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400,∴购进乙型节能灯1200﹣400=800只.答:购进甲型节能灯400只、购进乙型节能灯800只,进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200–a)只,商场的获利为y元,由题意,得y=(30–25)a+(60–45)(1200–a),y=–10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴–10a+18000≤[25a+45(1200–a)]×30%,∴a≥450.∵y=–10a+18000,∴k=–10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
河南省中考数学压轴题全揭秘 专题03 折叠与落点有迹性(含解析)-人教版初中九年级全册数学试题
专题03 折叠与落点有迹性【例题】(2018·河师大附中模拟)如图,在Rt △ABC 中,∠ABC =90°,AB =5,BC =8,点P 是射线BC 上一动点,连接AP ,将△ABP 沿AP 折叠,当点B 的对应点B ’落在线段BC 的垂直平分线上时,则BP 的长等于【答案】10或52. 【解析】解:点B ’的运动轨迹是以点A 为圆心以AB 的长为半径的圆,圆与BC 的垂直平分线的交点即为所求的落点B ’,如图作出图形,分两种情况计算:①连接BB ’,过B ’作B ’E ⊥BC 于E ,如下图所示,B由题意知,BB ’=B ’C ,BP =B ’P ,BE =EC =4,BB ’⊥AP ,∴∠B ’BC =∠B ’CB ,∠B ’BC +∠APB =90°,∠B ’CB +∠CB ’E =90°,∴∠APB =∠CB ’E ,∴△CB ’E ∽△APB , ∴'AB BP CE B E=,即54'BP B E =, 设BP =x ,则B ’P =x ,EP =4-x ,B ’E =45x , 在Rt △B ’PE 中,由勾股定理得:()222445x x x ⎛⎫=+- ⎪⎝⎭, 解得:x =10(舍)或x =52, 即BP =52; ②过A 作AH ⊥MN 于H ,如图所示,∵AB =AB ’=5,AH =4,GH =5,∴B ’H =3,B ’G =8,设BP =x ,则B ’P =x ,PG =x -4,在Rt △PGB ’中,由勾股定理得:()22284x x =+-,解得:x =10,即BP =10;综上所述,答案为:10或52. 【变式】(2019·偃师一模)如图,在边长为 3 的等边三角形ABC 中,点D 为AC 上一点,CD =1,点EM为边AB 上不与A ,B 重合的一个动点,连接DE ,以DE 为对称轴折叠△AED ,点 A 的对应点为点 F ,当点 F 落在等边三角形ABC 的边上时,AE 的长为.【答案】1或5.【解析】解:第一步:确定落点,点F 在以D 为圆心,以线段AD 的长为半径的弧上,如下图所示,第二步,根据落点确定折痕(对称轴)(1)∵AD =DF =2,∠A =60°,∴△ADF 是等边三角形,∵DE 平分∠ADF ,∴AE =EF =1;(2)如下图所示,由对称知,∠EFD =∠A =60°,∴∠EFB +∠DFC =120°,∵∠DFC +∠FDC =120°,∴∠EFB =∠FDC ,∵∠B =∠C =60°,∴△BEF ∽△CFD ,BCF DF CD设AE =x ,则BE =3-x , 即321x x BF CF -==, ∴BF =2x ,CF =()23x x -, ∵BF +CF =3, 即2x +()23x x -=3,解得:x x =5,综上所述,答案为:1或51.(2019·某某二模)如图,P 是边长为 3 的等边△ABC 的边 AB 上一动点,沿过点 P 的直线折叠∠B ,使点 B 落在 AC 上,对应点为 D ,折痕交 BC 于点 E ,点 D 是 AC 的一个三等分点,PB 的长为.【答案】1或5.【解析】解:第一步确定落点,AC 的三等分点有两个,所以有两种情况;第二步根据落点确定折痕,方法:作BD 的垂直平分线即为折痕所在的直线;(1)如下图所示,由折叠性质得:∠B =∠EDP =60°,∴∠CDE +∠ADP =120°,∵∠A =∠C =60°,∴∠ADP +∠APD =120°,∴∠APD =∠CDE ,∴△CED ∽△ADP , ∴CE CD DE AD AP DP==, 设BP =DP =x ,则AP =3-x ,13x x-∴CE=23x-,DE=23xx-,∵DE=BE,∴CE+DE=CE+BE=3,即23x-+23xx-=3,解得:x=75;(2)如下图所示,当CD=1时,同理可得:∴CE CD DE AD AP DP==,设BP=DP=x,则AP=3-x,∴123CE DEx x==-,∴CE=23x-,DE=3xx-,∴23x-+3xx-=3,解得:x=74;综上所述,PB的长为75或74.2.(2017·新野一模)如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为.【答案】4或4﹣.【解析】解:如图1所示:由翻折的性质可知PF=CF=4,∵ABFE为正方形,边长为2,∴AF.∴PA=4﹣.如图2所示:由翻折的性质可知PF=FC=4.∵ABFE为正方形,∴BE为AF的垂直平分线.∴AP=PF=4.故答案为:4或4﹣.3.(2018·某某一模)如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE F在AD 上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为.【答案】4或【解析】解:第一步,确定落点,以E 为圆心,AE 的长为半径画弧,与BC 的垂直平分线的交点即为A ’,第二步,作出折痕,求解.(1) 如下图所示,由折叠性质知:A ′E =AE,AF =A ′F ,∠FA ′E =∠A =90°,AM =12AD =3, 过E 作EH ⊥MN 于H ,则四边形AEHM 是矩形,∴MH =AE由勾股定理得:A ′H∴A ′M由MF 2+A ′M 2=A ′F 2,得(3﹣AF )2+)2=AF 2,解得:AF =2,在Rt △AEF 中,由勾股定理得:EF =4;(2)如下图所示,可得:A′E=AE AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,A′H=A′G=3,在Rt△A’EG中,由勾股定理得:EG∴DH=AG=AE+EG在Rt△A’HF中,由勾股定理得:A′F=6,在Rt△AEF中,由勾股定理得:EF;故答案为:4或4.(2019·某某二模)在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为.【答案】8+,8-【解析】解:由折叠的性质得,∠EC′D′=∠C=90°,C′E=CE,∵点B、C′、D′在同一直线上,∴∠BC′E=90°,∵BC=12,BE=2CE,∴BE=8,C′E=CE=4,在Rt△BC′E中,∠C′BE=30°,①当点C′在B、D’之间时,过E作EG⊥AD于G,延长EC′交AD于H,则四边形ABEG是矩形,∴EG=AB=6,AG=BE=8,∵∠C′BE=30°,∠BC′E=90°,∴∠BEC′=60°,由折叠的性质得,∠C′EF=′CEF,∴∠C′EF=∠CEF=60°,∵AD∥BC∴∠HFE=∠CEF=60°,∴△EFH是等边三角形,∴在Rt△EFG中,EG=6,GF=∴AF②当点D′在B、C’之间时,过F作FG⊥AD于G,D′F交BE于H,同理可得:AF=8﹣故答案为:8+或8-5.(2019·某某模拟)如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为.【答案】15或53.【解析】解:第一步:确定落点,以A为圆心,AB的长为半径画弧,交射线CD于B’,分两种情况讨论;第二步,根据落点作出折痕,求解;(1)如下图所示,由折叠知:AB ′=AB =5,B ′E =BE , ∴CE =3﹣BE ,∵AD =3,∴DB ′=4,B ′C =1,由勾股定理知:B ′E 2=CE 2+B ′C 2, ∴BE 2=(3﹣BE )2+12,∴BE =53;(2)如下图所示,AB ′=AB =5,∵CD ∥AB ,∴∠1=∠3,∵∠1=∠2,A CE∴∠2=∠3,∵AE 垂直平分BB ′,∴AB =BF =5,∴CF =4,∵CF ∥AB ,∴△CEF ∽△ABE , ∴CF CE AB BE=, 即453CE CE =+, ∴CE =12,∴BE =15, 故答案为:53或15.6.(2019·某某模拟)如图,在等边三角形ABC 中,AB =,点M 为边BC 的中点,点N 为边AB 上的任意一点(不与点A ,B 重合),若点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边上,则BN 的长为cm .【解析】解:∵N 不与A 重合,∴B 落点不会在BC 上,分两种情况讨论:(1)当B 关于直线MN 的对称点B '落在AB 边上时,此时,MN ⊥AB ,即∠BNM =90°,∵△ABC 是等边三角形,AB =M 是BC 中点,∴∠B =60°,BM∴BN =12BM ; (2)当点B 关于直线MN 的对称点B '落在边AC 上时,则MN ⊥BB ′,可得:四边形BMB ′N 是菱形,∴BN =BM =12BC. 7.(2019·某某二模)在矩形ABCD 中,AB =4,BC =3,点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的A ′处,则AP 的长为. 【答案】32或94. 【解析】解:矩形对角线有两条,AC 、BD ,所以先以D 为圆心以AD 的长为半径作弧,与对角线AC 、BD 的交点即为A ’点;再作出AA ’的垂直平分线即为折痕;(1)点A 落在矩形对角线BD 上时,由AB =4,BC =3,得:BD =5,根据折叠的性质,AD =A ′D =3,AP =A ′P ,∠A =∠PA ′D =90°,∴BA ′=2,设AP =x ,则BP =4﹣x ,由勾股定理得:BP 2=BA ′2+PA ′2,(4﹣x )2=x 2+22,解得:x =32, ∴AP =32; ②点A 落在矩形对角线AC 上,根据折叠的性质可知:DP ⊥AC ,易证:∠ACB =∠APD ,∴tan ∠ACB = tan ∠APD ,∴AP =AD BC AB=94. 故答案为:32或94. 8.(2019·枫杨外国语三模)如图,在▱ABCD 中,∠A =60°,AB =8,AD =6,点E 、F 分别是边AB 、CD 上的动点,将该四边形沿折痕EF 翻折,使点A 落在边BC 的三等分点处,则AE 的长为.【答案】32或94. 【解析】解:第一步确定落点,因为BC 的三等分点有两个,所以分两种情况讨论,第二步,确定落点后,画出折痕EF ,求解.(1)如下图所示过点A ’作A ’H ⊥AB 交AB 的延长线于H ,则∠A ’BH =60°,∵A ’B =2,∴BH =1,A ’H设AE =A ’E =x ,则BE =8-x ,EH =9-x ,在Rt △A ’EH 中,由勾股定理得:()2229x x =-+,解得:x =143, 即AE =143; (2)如下图所示,过点A ’作A ’H ⊥AB 交AB 的延长线于H ,则∠A ’BH =60°,∵A ’B =4,∴BH =2,A ’H,设AE =A ’E =x ,则BE =8-x ,EH =10-x ,在Rt △A ’EH 中,由勾股定理得:()(22210x x =-+,解得:x =5.6, 即AE =5.6; 综上所述,答案为:143或5.6. 9.(2019·中原名校大联考)如图,边长为1的正方形ABCD ,点P 为边AD 上一动点(不与点A 重合).连接BP ,将△ABP 沿直线BP 折叠,点A 落在点A ′处,如果点A ′恰好落在正方形ABCD 的对角线上,则AP 的长为.1.【解析】解:由题意知,A ’落在对角线BD 上,连接A 'D ,则B、A’、D在同一直线上,∴∠A=∠PA'B=∠PA'D=90°,AP=A'P,AB=A'B=1,∴BD,∴DA'=BD﹣BA'=BD﹣AB1,由正方形性质知,∠PDA’=∠A’PD=45°,∴AP=A’P=A’D﹣1,﹣1.10.(2017·某某一模)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3).【解析】解:∵四边形A0CD为矩形,D(10,8),∴AD=BC=10,DC=AB=8,由折叠性质知:AD=AF=10,DE=EF,在Rt△AOF中,由勾股定理得:OF=6,∴FC=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,∴点E的坐标为(10,3),故答案为:(10,3).。
河南中招折叠专题
河南中招折叠专题一.填空题(共38小题)1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标是.2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C 落在DE所在直线上,则折痕的长度为.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF 绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC 沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF 沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB ∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针,当点A的对应点A'落在AB边上时,旋转角α的度旋转α角后得到△A′B′C数是度,阴影部分的面积为.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH⊥AP 交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是.19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为cm.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为.21.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP 的长为.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A 优弧上一点,则∠OBC的余弦值为.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE的长为.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D 是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为.28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D 处,且BD:DC=1:4,折痕为MN,则AN的长为.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE 折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.37.在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为.38.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是.三.解答题(共1小题)39.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.参考答案与试题解析一.填空题(共38小题)1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标是P(5,2),P(8,8),P(0,﹣8),P (3,﹣2).【解答】解:∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣8,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==2,∴AP=4,∴m2+(2m)2=(4)2,∴m=±4,当m=4时,PC=8,OC=8,P点的坐标为(8,8),当m=﹣4时,如图2,PC=8,OC=0,P点的坐标为(0,﹣8),如图3,若△PAD∽△BPA,则==,PA=AB=×2=,则m2+(2m)2=()2,∴m=±1,当m=1时,PC=2,OC=5,P点的坐标为(5,2),当m=﹣1时,如图4,PC=2,OC=3,P点的坐标为(3,﹣2);则所有满足此条件的点P的坐标是:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).故答案为:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).3.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是3<x<7.【解答】解:如图所示:∵抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),∴抛物线与x轴的另一个交点为:(7,0),∴不等式ax2+bx+c>0的解集是:3<x<7.故答案为:3<x<7.4.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C 落在DE所在直线上,则折痕的长度为和.【解答】解:∵∠ABC=90°,AC=10,BC=8,∴AB==6,∵AD是∠BAC的平分线,∴∠BAD=∠EAD,在△ABD与△AED中,,∴△ABD≌△AED,∴∠AED=∠B=90°,BD=DE,如图1,过M作MP⊥DE于P,∵EM平分∠PEC,∴∠PEM=45°,∴PE=PM,∵△EC′M是△ECM沿EM折叠得到的,∴EC′=EC=AC﹣AE=4,设PE=PM=x,则PC′=4﹣x,∵tanC=tanC′=,∴,解得:x=,∴EM=PM=;如图2,∵tanC=,∴DE=BD=3,∴CD=C′D=5,∴C′E=2,∵tanC′=tanC=,∴EM=,∴DM===.综上所述:折痕的长度为:和.故答案为:和.5.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF 绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为或或.【解答】解:(1)当BD=BQ,∠C=∠F=90°,AC=DF=3,BC=EF=4,则AB=5,过D作DM⊥BC与M,DN⊥AC于N,如图,∵D为AB的中点,∴DM=AN=AC=,BD=AB=,DN=BM=BC=2,∴BQ=BD=,QM=﹣2=,∴∠3=90°﹣∠B,而∠2+∠3=90°,∴∠2=∠B,又∵Rt△ABC≌Rt△DEF,∴∠EDF=∠A=90°﹣∠B,而∠1+∠EDF+∠2=90°,∴∠1=∠B,即∠1=∠2,∴△DQM∽△DPN,∴PN:QM=DN:DM,即PN:=2:,∴PN=,∴AP=+=;(2)当DB=DQ,则Q点在C点,如图,DA=DC=,而Rt△ABC≌Rt△DEF,∴∠EDF=∠A,∴△CPD∽△CDA,∴CP:CD=CD:CA,即CP:=:3,∴CP=,∴AP=3﹣=;(3)当QB=QD,则∠B=∠BDQ,而∠EDF=∠A,∴∠EDF+∠BDQ=90°,即ED⊥AB,如图,∴Rt△APD∽Rt△ABC,∴AP:AB=AD:AC,即AP:5=:3,∴AP=.故答案为或或.6.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC 沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.【解答】解:∵AB=4,AD=3,∴BD=5,∵把△EBC沿BC折叠得到△BC′E,,∴C′E=CE,BC′=BC=AD=3∵当点C落在矩形ABCD的对角线上,∴D,C′,B三点共线,∴C′D=2,∠DC′E=90°,∵DE=4﹣CE,∵DE2=DC′2+C′E2,即(4﹣CE)2=22+CE2,∴CE=.故答案为:.7.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF 沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为2或5或18.【解答】解:由题意可知,AF⊥BE,∴∠BAF+∠ABE=90°,∵四边形ABCD是矩形,∴∠BAD=∠D=90°,∴∠BAF+∠DAM=90°,∴∠DAM=∠ABE,∴△ABE∽△DAM,∴=,∴=,∴DM=8,AM===10,①当MN=MD时,AN=AM﹣DM=10﹣8=2或AN=AM+DM=10+8=18,②当ND=NM时,易知点N是AM中点,所以AN=AM=5,综上所述,当AN=2或5或18时,△DMN是等腰三角形.8.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB ∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.【解答】解:∵将纸片的一角沿过点B的直线折叠,A落在MN上,落点记为A′,∴A′B=AB=1,∵AB∥MN,M是AD边上距D点最近的n等分点,∴MD=NC=,∴BN=BC﹣NC=1﹣=,在Rt△A′BN中,根据勾股定理得,A′N2=A′B2﹣BN2=12﹣()2=,所以,A′N==.故答案为:.9.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作⊥BC交BC于点PD′P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.10.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=﹣1或.【解答】解:连接AE,∵四边形ABCD、APEF是正方形,∴A、E、C共线,①当CD=CE=时,AE=AC﹣EC=2﹣,∴AP=AE=﹣1②当ED=EC时,∠DEC=90°,∠EDC=∠ECD=45°,EC=CD=1,∴AE=AC﹣EC=1,∴AP=AE=.∴当△CDE为等腰三角形时,AP=﹣1或.故答案为﹣1或.11.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针,当点A的对应点A'落在AB边上时,旋转角α的度旋转α角后得到△A′B′C数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.,∴∠ACA′=60°﹣60°=30°,∴∠A′CB=90°∵∠CA′D=∠A=60°,∴∠CDA′=90°,﹣30°=60°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°,∴∠CB′D=30°∴CD=CB′=CB=×2=1,∴B′D==,∴S△CDB′=×CD×DB′=×1×=,S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.12.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.13.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH⊥AP 交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=4﹣2、2或2.【解答】解:①当HD=HC时,过点H作HE⊥CD于点E,延长EH交AB于点F,连接DP,如图1所示.∵HD=HC,∴点E为CD的中点,∵EF∥AD,∴FH为△ABP的中位线,∴AH=HP.∵DH⊥AP,∴△DAP为等腰三角形,∴AD=DP.设BP=a,则CP=4﹣a,由勾股定理得:DP2=CD2+CP2,即16=8+(4﹣a)2,解得:a=4﹣2,或a=﹣4﹣2(舍去);②当DH=DC时,如图2所示.∵DC=AB=2,∴DH=2.在Rt△AHD中,AD=4,DH=2,∴AH==2,∴AH=DH,∴∠DAH=∠ADH=45°.∵AD∥BC,∴∠APB=∠DAH=45°,∵∠B=90°,∴△ABP为等腰直角三角形,∴BP=AB=2;③当CH=CD时,过点C作CE⊥DH于点E,延长CE交AD于点F,如图3所示.∵CH=CD,CE⊥DH,∴DE=HE=DH.∵DH⊥CF,DH⊥AP,∴CF∥AP,∵AF∥CP,∴四边形AFCP为平行四边形,∴AF=CP.∵EF∥AH,DE=HE,∴DF=AF=AD=2,∴BP=BC﹣CP=BC﹣AF=4﹣2=2.综上所述:BP的长度为4﹣2、2或2.故答案为:4﹣2、2或2.14.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为:=,则其面积为:×2×=.故答案为:2或.15.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=或1.【解答】解:∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,设BP=BP'=a,AP=CP'=b,则PP'=a,在RT△PP'C中,∵PP'2+P'C2=PC2,且PC=3,∴CP'==,∵BP的长a为整数,∴满足上式的a为1或2,当a=1时,AP=CP'=,当a=2时,AP=CP'=1,故答案为:或1.16.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是或4.【解答】解:根据△B′FC与△ABC相似时的对应情况,有两种情况:①△B′FC∽△ABC时,=,,又因为AB=AC=6,BC=8,B′F=BF所以=,解得BF=;②△B′CF∽△BCA时,=,,又因为AB=AC=6,BC=8,B′F=CF,BF=B′F又BF+FC=8,即2BF=8,解得BF=4.故BF的长度是或4.故答案为:或4.17.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.【解答】解:如图所示,设PF⊥CD,∵BP=FP,由翻折变换的性质可得BP=B′P,,∴FP=B′P∴FP⊥CD,∴B′,F,P三点构不成三角形,∴F,B′重合分别延长AE,CD相交于点G,∵AB∥CD,∴∠BAG=∠AGD,∵∠BAG=∠B′AG,∴∠AGD=∠B′AG,,∴GB′=AB′=AB=5∵PB′(PF)⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ACB′中,AB′=AB=5,AC=3,∴B′C==4,∴CB′=5﹣4=1,CG=CB′+B′G=4+5=9,∴△ACG与△PB′G的相似比为9:5,∴AC:PB′=9:5,∵AC=3,∴PB′=.故答案为:.18.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【解答】解:Rt△ABC中,BC=AC=2,,∴AB=2,∠B=∠A′CB=45°①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,,A′D=AD=x,∴∠A′=∠A=∠A′CB=45°∵∠B=45°,⊥AB,∴A′C∴BH=BC=,DH=A′D=x,∴x+=2,∴x=2﹣2,∴AD=2﹣2;②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,,∴A′D=A′C∴AD=AC=2,综上所述:AD的长为:2或2﹣2.19.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).20.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为2πcm.【解答】解:∵∠ACB=90°,AB=5cm,BC=4cm,∴AC=3cm,设⊙I的半径为x,∵⊙I是Rt△ABC的内切圆,∴AE=3﹣x,BF=4﹣x,故3﹣x+4﹣x=5,解得:x=1,故⊙I的周长为2πcm.故答案为:2π.21.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为或﹣1.【解答】解:∵等腰Rt△ABC中,AB=AC=2,∴BC=2,分两种情况:①当AF=CF时,∠FAC=∠C=45°,∴∠AFC=90°,∴AF⊥BC,∴BF=CF=BC=,∵直线l垂直平分BF,∴BD=BF=;②当CF=CA=2时,BF=BC﹣CF=2﹣2,∵直线l垂直平分BF,∴BD=BF=﹣1;故答案为:或﹣122.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是6﹣π.【解答】解:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=100°,∴S扇形AEF==π,S△ABC=AD?BC=×2×6=6,∴S阴影部分=S△ABC﹣S扇形AEF=6﹣π.故答案为:6﹣π.23.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP 的长为或.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.24.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A 优弧上一点,则∠OBC的余弦值为.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.25.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.26.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.27.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,,∠D′BC=∠D′CB,∴D′B=D′C∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,,∴DD′=AD′=AD∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.28.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D 是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为(2,2)或(2,4)或(2,2)或(2,﹣2).【解答】解:连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△ACE中,,∴△ABD≌△ACE,∴BD=EC.∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C垂直x轴的直线上,且EC=DB,①当DB=DA时,点D与O重合,BD=OB=2,此时E(2,2).②当AB=AD时,BD=CE=4,此时E(2,4).③当BD=AB=2时,E(2,2)或(2,﹣2),故答案为(2,2)或(2,4)或(2,2)或(2,﹣2).29.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D 处,且BD:DC=1:4,折痕为MN,则AN的长为7或.【解答】解:①当点A落在如图1所示的位置时,∵△ACB是等边三角形,∴∠A=∠B=∠C=∠MDN=60°,∵∠MDC=∠B+∠BMD,∠B=∠MDN,∴∠BMD=∠NDC,∴△BMD∽△CDN.∴得==,∵DN=AN,∴得==,∵BD:DC=1:4,BC=10,∴DB=2,CD=8,设AN=x,则CN=10﹣x,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得x=7,∴AN=7;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN.∴得==,∵BD:DC=1:4,BC=10,∴DB=,CD=,设AN=x,则CN=x﹣10,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得:x=,∴AN=.故答案为:7或.30.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE 折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为2或1.【解答】解:连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故答案为:2或1.31.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是2.【解答】解:过点CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,在y=2x+4中,令x=0,解得:y=4,即B的坐标是(0,4).令y=0,解得:x=﹣2,即A的坐标是(﹣2,0).则OB=4,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=4,DF=OA=BE=2,∴D的坐标是(﹣6,2),C的坐标是(﹣4,6).将点D代入y=得:k=﹣12,则函数的解析式是:y=﹣.∴OE=6,则C的纵坐标是6,把y=6代入y=﹣得:x=﹣2.即G的坐标是(﹣2,6),∴CG=4﹣2=2.∴a=2.故答案为:2.32.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为或.【解答】解:分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴FN==,∴CN=CF+NF=+=;②如图所示,当∠EDF=90°时,△DEF为直角三角形,∵∠CDF+∠CDB=∠CDF+∠CBD=90°,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴NF==,∴CN=NF﹣CF=﹣=,综上所述,CN的长为或.故答案为:或.33.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB?sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.34.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF?sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.35.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为≤CF≤3.【解答】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大=3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG==4,∴DG=AD﹣AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3﹣x)2+12=x2,∴x=,∴≤CF≤3.故答案为≤CF≤3.36.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.【解答】解:如图1,作CK⊥AB于K,过E点作EP⊥BC于P.∵∠B=60°,∴CK=BC?sin60°=4×=2 ,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2 ,∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(ASA);∴CE=CF,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE?sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在Rt△ECP中,由勾股定理得(4﹣m)2+(﹣m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∴CF=EC=,∴S△CEF=××2 =,故答案为.37.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,。
2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)
2020年度初三数学专题复习中考 圆的折叠专题1. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π2. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵ AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .633. 如图,将⊙O 的劣弧︵AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .4. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.25.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π-9 B.9π-63C.9π-18 D.9π-1236.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.7.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A.22B.5C.3 D.118.如图,将半径为12的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.42B.82C.6 D.629. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm10. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.211. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .13012. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB13. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .5314. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .815. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .16. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)17. 如图,将︵ AB 沿着弦AB 翻折,C 为翻折后的弧上任意一点,延长AC 交圆于D ,连接BC .(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.18.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将︵CD 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC (1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为︵ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交︵BC 于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.19.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.20.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将︵CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.21.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.2020年度初三数学专题复习中考 圆的折叠专题22. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π【分析】连接OC 交MN 于点P ,连接OM 、ON ,根据折叠的性质得到OP=12OM ,得到∠POM=60°,根据勾股定理求出MN ,结合图形计算即可.【解答】解:连接OC 交MN 于点P ,连接OM 、ON ,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OPOM=12,AC=22OP OM =3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN =12×π×22-2×(120π×22360 -12×23×1)=23-23π, 故选:D .【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .63【分析】由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,根据S 阴=S △OBC 计算即可.【解答】解:如图,连接OB ,BC .由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,∴S 阴=S △OBC=43×62=93, 故选:B .【点评】本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 如图,将⊙O 的劣弧︵ AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .【分析】根据圆周角定理、翻转变换的性质得到∠ADB=∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ADB 所对的弧是劣弧︵AB ,∠CAB 所对的弧是劣弧︵ BC ,∠CBA 所对的弧是劣弧︵ AC ,∴∠ADB=∠CAB+∠CBA ,由三角形的外角的性质可知,∠BCD=∠CAB+∠CBA ,∴∠ADB=∠BCD,∴BD=BC=5,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈314,2≈1.41,3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.连接AB',∵四边形AMNB'是圆内接四边形,∴∠M'AB'=∠M'NM,∵∠M'=∠M',∴△M'AB'∽△M'NM,∴M′AM′N=M′B′M′M∴M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2-AN2,∴20=100-AN2,∴AN=45.故选:B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. 如图,在扇形AOB 中,∠AOB=90°,半径OA=6,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为( )A .9π-9B .9π-63C .9π-18D .9π-123【分析】首先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,继而求得OC 的长,即可求得△OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积,继而求得阴影部分面积.【解答】解:连接OD .根据折叠的性质,CD=CO ,BD=BO ,∠DBC=∠OBC ,∴OB=OD=BD ,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=12∠DBO=30°, ∵∠AOB=90°,∴OC=OB•tan ∠CBO=6×33=23, ∴S △BDC =S △OBC =12×OB×OC=12×6×23=63, S 扇形AOB =90360•π×62=9π, ∴整个阴影部分的面积为:S 扇形AOB -S △BDC -S △OBC =9π-63-63=9π-123.故选:D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.27.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.【分析】作O关于PQ的对称点O′,O′恰好落在⊙O上,于是得到OP=12Rcos∠POE,推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°于是得到结论.【解答】解:作O关于PQ的对称点O′,O′恰好落在⊙O上,∴OP=12Rcos∠POE,∵△OO′Q为等边三角形,∴OQ=O′Q=OO′=R,∠POE+∠QOB=30°,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°,∴OP=1cos30°=332.故答案为:332.【点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .22B .5C .3D .11【分析】根据题意先画出图形,可知翻转过后的弧AB 所在的圆和⊙O 全等,且两个圆的圆心相距为6,又已知圆的半径,故根据勾股定理即可求出答案.【解答】解:根据题意画出图形如下所示:BD=4,OB=5,点O′为翻转过后的弧AB 所在圆的圆心,则有O′D=OD=2245-=3.又O′C=5,O′O=6,∴OC=22C ′O O ′O -=2256-=11.故选:D .【点评】本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧AB 所在圆的圆心是解题关键.29. 如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB长为( )A .42B .82C .6D .62【分析】延长CO 交AB 于E 点,连接OB ,构造直角三角形,然后再根据勾股定理求出AB 的长【解答】解:延长CO 交AB 于E 点,连接OB ,∵CE ⊥AB ,∴E 为AB 的中点,∵OC=6,CD=2OD ,∴CD=4,OD=2,OB=6,∴DE=12(2OC-CD )=12(6×2-4)=12×8=4, ∴OE=DE-OD=4-2=2,在Rt △OEB 中,∵OE 2+BE 2=OB 2,∴BE=22OE OB -=2246-42∴AB=2BE=82.故选:B .【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm【分析】连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,根据翻折的性质得出OF′=6,再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,∵OC′=8cm ,∴OF′=6cm ,∴C′F′=CF=2268-=27cm ,F∴CD=2CD=47cm .故选:D . 【点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握. 31. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.2【分析】作OE ⊥AC 交⊙O 于F ,交AC 于E ,根据折叠的性质得到OE=12OF ,求出∠ACB 的度数即可解决问题.【解答】解:作OE ⊥AC 交⊙O 于F ,交AC 于E .连接OB ,BC .由折叠的性质可知,EF=OE=12OF , ∴OE=12OA ,在Rt △AOE 中,OE=12OA , ∴∠CAB=30°,∵AB 是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=3BC=23, ∴线段AB 、AC 和弧BC 所围成的曲边三角形的面积为S=12•AC•B C+S 扇形OBC -S △OBC =12×23×2+60π•22360-43×22=3+23π≈3.8,故选:C .【点评】本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .130【分析】连接CA 、CD ,根据翻折的性质可得弧CD 所对的圆周角是∠CBD ,再根据AC 弧所得的圆周角也是∠CBA ,然后求出AC=CD ,过点C 作CE ⊥AB 于E ,根据等腰三角形三线合一的性质可得AE=ED=12AD ,根据直径所对的圆周角是直角可得∠ACB=90°,然后求出△ACE 和△CBE 相似,根据相似三角形对应边成比例求出CE 2,再求出BE ,然后利用勾股定理列式计算即可求出BC .【解答】解:如图,连接CA 、CD , 根据折叠的性质,弧CD 所对的圆周角是∠CBD , ∵弧AC 所对的圆周角是∠CBA ,∠CBA=∠CBD ,∴AC=CD (相等的圆周角所对的弦相等),过点C 作CE ⊥AB 于E , 则AE=ED=12AD=12×6=3, ∴BE=BD+DE=7+3=10, ∵AB 是直径,∴∠ACB=90°, ∵CE ⊥AB ,∴∠ACB=∠AEC=90°,∴∠A+∠ACE=∠ACE+∠BCE=90°,∴∠A=∠BCE ,∴△ACE ∽△CBE ,∴AE CE = CE BE, 即CE 2=AE•BE=3×10=30, 在Rt △BCE 中,BC=22CE BE + =30102+= 130,故选:D .【点评】本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅助线并求出AC=CD 是解题的关键.33. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB【分析】A 、作辅助线,构建折叠的性质可得AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断.【解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD ,故①正确;B 、∵AC=CD',∴︵ AC =︵ CD′ ,由折叠得:︵ BD =︵ BD ′,∴︵ AC+︵ BD=︵ BC ,故②正确;C 、∵D 为AB 的中点,∴OD ⊥AB ,故③正确;D 、延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE=∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:D .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .53【分析】作OD ⊥AB 于点D ,连接AO ,BO ,CO ,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S 扇形AOC 得出阴影部分的面积是⊙O 面积的13,即可得出答案.【解答】解:作OD ⊥AB 于点D ,连接AO ,BO ,CO ,如图所示:∵OD=12AO ∴∠OAD=30°, ∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形BOC =13×⊙O 面积=13×π×32=3π,故选:B . 【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.35. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .8【分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M ″,根据折叠的性质得到点M ′,M ″在圆周上,连接M ′M ″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM ′,AM ″,OB ,OC ,根据圆周角定理得到M ′M ″是⊙O 的直径,即可得到结论.【解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB 、AC 折叠后交于点M ,∴点M′,M″在圆周上,连接M′M″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM′,AM″,OB ,OC ,则∠M′AM″=2∠BAC ,∵∠BAC=45°,∴∠M′AM″=∠BOC=90°,∵BC=22,∴OB=2,∴M′M″=2OB=4,∴△MST 的周长的最小值为4,故选:B .【点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=12AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到︵ AC=︵CD ,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=32.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,∵D 为AB 的中点,∴OD ⊥AB ,∴AD=BD=12AB=2, 在Rt △OBD 中,OD=22BD OB -=222)5(-=1,∵将弧︵ BC 沿BC 折叠后刚好经过AB 的中点D .∴︵ AC 和︵ CD 所在的圆为等圆,∴︵ AC=︵CD ,∴AC=DC ,∴AE=DE=1,易得四边形ODEF 为正方形,∴OF=EF=1,在Rt △OCF 中,CF=22OF CO -=221)5(-=2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=32.故答案为32.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵ AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住E 在什么轨迹上运动,便可解决问题.【解答】解:如图1,连接OA 和OB ,作OF ⊥AB .由题知:︵AB 沿着弦AB 折叠,正好经过圆心O ∴OF=OA=12OB∴∠AOF=∠BOF=60° ∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD 是等边三角形(有两个角是60°的三角形是等边三角形) 故,①②正确下面研究问题EO 的最小值是否是1 如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点 ∴AE ⊥BD (三线合一) 又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E 点在以AB 为直径的圆上运动. 所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小 此时,AE=EF ,AE ⊥EF∵⊙O的半径是2,即OA=2,OF=1∴AF=3(勾股定理)∴OE=EF-OF=AF-OF=3-1所以,③不正确综上所述:①②正确,③不正确.故答案为①②.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.38.如图,将︵AB沿着弦AB翻折,C为翻折后的弧上任意一点,延长AC交圆于D,连接BC.(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.【分析】(1)作点C关于AB的对称点C′,连接AC′,BC′.利用翻折不变性,以及圆周角定理即可解决问题;(2)连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.解直角三角形求出AB,OA即可;【解答】(1)证明:作点C关于AB的对称点C′,连接AC′,BC′.由翻折不变性可知:BC=BC′,∠CAB=∠BAC′,∴︵BD=︵BC′,∴BD=BC′,∴BC=BD.(2)解:连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.∵︵AB=120°,∴∠D=12×120°=60°,∴∠AOB=∠ACB=2∠D=120°, ∵BC=BD ,∴△BCD 是等边三角形, ∴BC=DC=4,在Rt △ACH 中, ∵∠H=90°,∠ACH=60°,AC=1,∴CH=12,AH=23,∴AB=22BH AH +=22)29()23(+=21, ∵OM ⊥AB , ∴AM=BM=221,在Rt △AOM 中, ∵∠OAM=30°,∠AMO=90°, ∴OA=AMcos30°=7【点评】本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.39. 如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将︵CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为︵ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交︵BC 于点F (F 与B 、C 不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC ,根据翻折的性质求出OM ,CD ⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC ,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA 、AF 、GB ,根据等弧所对的圆周角相等可得∠BAG=∠AFG ,然后根据两组角对应相等两三角相似求出△AGE 和△FGA 相似,根据相似三角形对应边成比例可得AG GE =FGAG ,从而得到GE•GF=AG 2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC ,∵︵CD 沿CD 翻折后,点A 与圆心O 重合, ∴OM=12OA=12×2=1,CD ⊥OA ,∵OC=2,∴CD=2CM=222OM OC -=22212-=23;(2)证明:∵PA=OA=2,AM=OM=1,CM=12CD=3,∠CMP=∠OMC=90°,∴PC=22PM MC +=223)3(+=23,∵OC=2,PO=2+2=4,∴PC 2+OC 2=(23)2+22=16=PO 2, ∴∠PCO=90°, ∴PC 是⊙O 的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为︵ADB 的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH ∴△OGE∽△FGH∴OGGF=GEGH∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.【分析】(1)如图所示:将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,然后证明︵AC =︵CD =︵BD ,则可得到︵AC 的弧度,从而可求得∠B的度数;(2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠CEB=∠E′,依据圆内接四边形的性质可得到E′=∠BDE,故此可证明∠CEB=∠BDE ;②连接OE .先证明∠BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据△DBE 的面积=12BD•OE 求解即可;(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明︵AC =︵CD =︵ DF=︵FB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【解答】解:(1)如图所示:将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵︵AC 与︵CD 所对的角均为∠CBA ,⊙O 与⊙O′为等圆, ∴︵AC =︵ CD . 又∵CD=BC , ∴︵CD =︵ BD .又∵︵ CDB =︵CO′B ,∴︵ AC =13︵ ACB ,∴∠ADC=13×180°=60°.∴∠B=30°.(2)①将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:︵ CFB=︵ CDB ,∴∠CEB=∠E′.∵四边形CDBE′是圆内接四边形, ∴∠E′=∠BDE . ∴∠CEB=∠BDE . ∴BE=BD .∴△BDE 为等腰三角形.②如图2所示:连接OE .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CE 是∠ACB 的角平分线, ∴∠BCE=45°. ∴∠BOE=90°.在Rt △OBE 中,BE=22OB OE =52. ∴BD=52.∴△DBE 的面积=12BD•OE=12×52×5=2225.(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴︵AC =︵CD . 同理:︵DF =︵CD .又∵F 是劣弧BD 的中点, ∴︵DF =︵ BF . ∴︵AC =︵CD =︵ DF =︵FB .∴弧AC 的度数=180°÷4=45°. ∴∠B=12×45°=22.5°.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8.(1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将︵CE 沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG=12AB=4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=-1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M ,∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°, ∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO•sin60°=5×23=235, ∴S 阴影=S 扇形OMC -S △OMC =120×π×52360 −12×5×235=25π3−435, 即图中阴影部分的面积是:25π3−435. 【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.42.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.【分析】【解答】【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。
2022河南数学中考总复习--题型二 与动点有关的几何图形折叠题型(试题、含解析)
2022河南数学中考总复习--题型二 与动点有关的几何图形折叠题型题型专练1.(2020广东深圳,12,3分)如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点 K ,FG 交CD 于点H.给出以下结论:①EF ⊥BG ;②GE =GF ;③△GDK 和△GKH 的面积相等;④当点F 与点C 重合时,∠DEF =75°,其中正确的结论共有( )A.1个B.2个C.3个D.4个答案 C 由折叠可知,点G 是点B 关于折痕EF 的对称点.设EF 交BG 于点O ,根据对称点的连线被对称轴垂直平分,可知EF ⊥BG ,BO =GO ,故①正确.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EGO =∠FBO.又∵BO =GO ,∠EOG =∠FOB =90°,∴△EGO ≌△FBO ,∴GE =BF.又由折叠可知BF =GF ,∴GE =GF ,故②正确.过点K 作KM ⊥HG 于M ,∵∠DGB =∠GBC ,BF =FG ,∴∠DGB =∠GBC =∠HGK ,即GB 是∠AGF 的平分线.又∵CD ⊥AD ,KM ⊥HG ,∴DK =KM.在Rt △DGH 中,HG >DG ,∴△HGK 的面积大于△DGK 的面积,故③错误.在Rt △CDG 中,CD =AB =6,CG =BC =12,∴∠CGD =30°.由②知GE =BC ,∴四边形BCGE 为平行四边形.又∵BC =GC ,∴四边形BCGE 为菱形,∴∠BEG =180°-∠CGD =150°.根据菱形的对角线平分一组对角,可知∠DEF =12∠BEG =12×150°=75°,故④正确.正确的结论有①②④,故选C .2.(2019黑龙江鹤岗,9,3分)一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,CD 的长为 .答案 3或247 解析 分两种情况:①当∠DEB =90°时,如图,则∠AED =90°=∠C ,CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED , ∴AE =AC =6,BE =10-6=4, 设CD =DE =x ,则BD =8-x , ∵在Rt △BDE 中,DE 2+BE 2=BD 2,∴x 2+42=(8-x )2,解得x =3,∴CD =3;②当∠BDE =90°时,如图,则∠CDE =∠DEF =∠C =90°,CD =DE ,∴四边形CDEF 是正方形,∴∠AFE =∠EDB =90°,EF ∥BC ,∴∠AEF =∠B , ∴△AEF ∽△EBD ,∴AF ED =EFBD , 设CD =x ,则EF =CF =x ,AF =6-x ,BD =8-x , ∴6-x x =x8-x,解得x =247,∴CD =247.综上所述,CD 的长为3或24.3.(2019南阳镇平三模,15)如图,在平行四边形ABCD 中,AB =4,BC =4√3,∠D =30°,点E 是BC 边的中点,F 是射线BA 上一动点,将△BEF 沿直线EF 折叠,得到△PEF ,连接PC ,当△PCE 为等边三角形时,BF 的长为 .答案 3或6 解析 分情况讨论:①当点P 在EC 的上方时,如图,连接BP ,则EF ⊥BP ,BE =PE ,∴∠PBE =∠BPE.∵四边形ABCD 是平行四边形, ∴∠ABC =∠D =30°, ∵△PCE 是等边三角形, ∴∠PEC =60°, ∵∠PEC =∠PBE +∠BPE , ∴∠PBE =30°, ∴∠ABC =∠PBC =30°, ∴B 、F 、A 、P 在同一直线上,∴BF =BE ·cos 30°=12BC ·cos 30°=12×4√3×√32=3;②当点P 在CE 下方P'处时,点F 处于F'处,如图,连接BP',设BP'与直线F'E 交于点Q.由题意知EF'⊥BP',BE=EP',∴∠EBP'=∠BP'E.∵△P'CE是等边三角形,∴∠P'EC=60°,∵∠P'EC=∠P'BE+∠BP'E,∴∠P'BE=30°,∴∠ABP'=60°,∴BQ=BE cos30°=2√3×√3=3,=6.∴BF'=BQcos60°综上所述,BF的长为3或6.4.(2019辽宁葫芦岛,17,3分)如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB',AB'与边BC交于点E.若△DEB'为直角三角形,则BD的长是.答案7或263解析在Rt△ABC中,BC=√AB2-AC2=√132-52=12.①当∠EDB'=90°时,如图1,过点B'作B'F⊥AC,交AC的延长线于点F,则四边形CFB'D是矩形.由折叠得:AB=AB'=13,BD=B'D=CF,设BD=x,则B'D=CF=x,B'F=CD=12-x,在Rt△AFB'中,由勾股定理得:(5+x)2+(12-x)2=132,即x2-7x=0,解得x1=0(舍去),x2=7,即BD=7;图1②当∠DEB'=90°时,如图2,此时点E与点C重合,由折叠得:AB=AB'=13,则B'C=13-5=8,设BD=x,则B'D=x,CD=12-x,在Rt△B'CD中,由勾股定理得:(12-x)2+82=x2,解得x=26,即BD=26.综上所述,BD的长为7或26.3图25.(2019许昌禹州二模,15,3分)如图,在矩形ABCD中,AB=2√3,AD=2,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C',当点C'恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为.答案1或2+√33解析分两种情况:①如图1,当点C'落在对角线BD上时,连接CC',由题意得CC'⊥EF,∵点E为线段CD的中点,∴CE=ED=EC',∴∠CC'D=90°,即CC'⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=2,∴BC=AD=2,∴CF=1,∴点F运动的距离为1;图1②如图2,当点C'落在对角线AC上时,CC'⊥EF,作FH⊥CD于H,则四边形CBFH为矩形,在矩形ABCD中,AD=2,AB=2√3,∠B=∠BCD=90°,AB∥CD,∴BC=AD=2,tan∠BAC=BCAB =23=√33,图2∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH 为矩形, ∴HF =BC =2, ∴EH =HFtan60°=2√3=2√33, ∵EC =12CD =√3, ∴BF =CH =CE -EH =√3-2√33=√33, ∴点F 运动的距离为2+√33.综上所述,点F 运动的距离为1或2+√3.6.(2021四川成都,24,4分)如图,在矩形ABCD 中,AB =4,AD =8,点E ,F 分别在边AD ,BC 上,且AE =3,按以下步骤操作: 第一步,沿直线EF 翻折,点A 的对应点A'恰好落在对角线AC 上,点B 的对应点为B',则线段BF 的长为 ; 第二步,分别在EF ,A'B'上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为 .答案 1;√5解析 ①设EF 与AA'的交点为H ,由折叠可知,EF 垂直平分AA',∴∠AHE =90°. 又在矩形ABCD 中,∠D =90°,AC =√42+82=4√5,∴tan∠DAC =DC AD =12, cos ∠DAC =AD AC =25 √5, sin ∠DAC =CD AC =√55, ∴在Rt △AEH 中,AH =2√55×AE =65 √5,EH =35 √5,∴HC =AC -AH =145 √5.又AD ∥BC ,∴∠ACB =∠DAC , ∴在Rt △CFH 中,HCFC =cos ∠ACB =2√55, ∴FC =14√55×2√5=7,FH =75 √5,∴BF =BC -FC =1.②如图,延长NM 交AB 于P ,过P 作PQ ⊥AC 于Q ,过N 作NR ⊥AC 于R.∵折叠后F 与E 重合, ∴M 为EF 中点,MN ⊥EF. 又AC ⊥EF , ∴MN ∥AC.易得四边形PQRN 为矩形,P 的对应点为N.∴PQ =NR ,AP =A'N. ∴△APQ ≌△A'NR. ∴AQ =A'R.由①得HE =35 √5,FH =75 √5, ∴FE =EH +FH =2√5, ∴FM =EM =12EF =√5,∴HM =HF -MF =75 √5-√5=25√5, ∴PQ =2√5.易证△APQ ∽△ACB , ∴AQ PQ =AB BC =12,∴AQ =√55,∴QH =AH -AQ =65 √5-√55=√5. ∴HR =√5,∴MN =√5.思路点拨 本题重点考查了轴对称的性质,相似与三角函数.解题的关键在于转化.第一空求FB ,可转化为求FC,此时只需解Rt△CFH,而解直角三角形至少需要一条已知边,于是通过解Rt△AEH得到AH后求得HC.第二空将MN转化为HR与HQ,通过解Rt△APQ得以求解.。
2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)
专题:折叠类题目中的动点问题折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。
此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。
类型一、求折叠中动点运动距离或线段长度的最值例1. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .图例1-1【答案】2.【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.图例1-2 图例1-3由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,A C==='4②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'PA的角平分线,与AD的交点即为点Q.由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形.所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【点睛】此类问题难度较大,主要考察学生的分析能力,作图能力。
河南省2020年中考考前名师押题压轴卷 数学试题+答案+全解全析
河南省2020年中考考前名师押题压轴卷数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.12的相反数等于A.2B.–2C.2D.–22.2020年是具有里程碑意义的一年,我们将全面建成小康社会,全面建设小康社会的基本标准包括:人均国内生产总值超过3000美元、城镇居民人均可支配收入1.8万元等十个方面.数据“1.8万元”用科学技术法表示为.A.1.8×103元B.1.8×104元C.0.18×105元D.18000元3.如图所示为一个几何体的三视图,那么这个几何体是A .B .C .D .4.下列计算正确的是A .235x y xy +=B .()2239m m +=+C .()326xy xy =D .1055a a a ÷= 5.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是年龄13 14 15 16 人数2 3 4 1 A .15,14.5 B .14,15 C .14,14.5 D .15,156.关于x 的方程220--=x x k 有实数根,则k 的值的范围是A .1k >-B .1k ≥-C .1k <-D .1k ≤-7.抛物线y =4(x +3)2+12的顶点坐标是A .(4,12)B .(3,12)C .(﹣3,12)D .(﹣3,﹣12)8.如图,4×2的正方形的网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为A .12B .13C .14D .19.某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元,求该小区新建1个地上停车位和1个地下停车位各需多少万元?设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,列二元一次方程组得 A .632 1.3x y x y +=⎧⎨+=⎩ B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩10.如图①,在矩形ABCD 中,AB AD <,对角线,AC BD 相交于点O ,动点P 由点A 出发,沿AB BC CD →→向点D 运动.设点P 的运动路程为x ,AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为A .3B .4C .5D .6第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:()02180.52----=___________________.12.一副直角三角板如上图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,则∠DBC =_____°.13.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 14.⊙O 的半径OA =4,以OA 为直径作⊙O 1交⊙O 的另一半径OB 于点C ,当C 为OB 的中点时,图中阴影部分的面积S =________.15.如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)。
2020中考数学压轴专题:图形折叠(含答案)
2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。
【精编版】2020年(河南)中考数学压轴题全揭秘精品专题02 折叠与图形存在性
专题02 折叠与图形存在性【例1】(2019·郑州外国语模拟)如图,在Rt △ABC 中,△ACB =90°,AC =2,BC =4,CD 是△ABC 的中线,E 是边BC 上一动点,将△BED 沿ED 折叠,点B 落在点F 处,EF 交线段CD 于G ,当△DFG 是直角三角形时,则CE = .【答案】1. 【解析】解:在Rt △ABC 中,由勾股定理得:AB由折叠性质知△F =△B ≠90°,分两种情况讨论,(1)当△FDG =90°时,C△D是Rt△ABC斜边AB的中点,△CD=BD=AD△△B=△DCE=△F,△△DCE+△GEC=△F+△FDG,△△GEC=90°,在Rt△DFG中,tan△F=DG DF,△DG,△CG=CD-DG=2,在Rt△CEG中,CE=CG·cos△GCE;(2)当△FGD=90°时,由(1)知△B=△F=△DCB,由BD=DF△DG=DF·sin△F,△CG=CD-DG1,△CE=CG÷cos△DCB=1),故答案为:1【变式1-1】(2018·洛阳三模)如图,在菱形ABCD 中,∠DAB =45°,AB =8,点P 为线段AB 上一动点,过点P 作PE ⊥AB 交直线AD 于E ,沿PE 将∠A 折叠,点A 的对称点为点F ,连接EF 、DF 、CF ,当△CDF 是直角三角形时,AP = .【答案】4【解析】解:①如图,当DF ⊥AB 时,△CDF 是直角三角形,∵在菱形ABCD 中,AB =8,∴CD =AD =AB =8,在Rt △ADF 中,AD =8,∠DAN =45°,DF =AF ,∴AP ;②如图,当CF ⊥AB 时,△DCF 是直角三角形,在Rt △CBF 中,∠CFB =90°,∠CBF =∠A =45°,BC =8,∴BF =CF ,∴AF =AB +BF ,∴AP =12AF ,故答案为:4或.【例2】(2019·河南南阳一模)如图,矩形ABCD 中,AB =2,AD =4,点E 在边BC 上,将△DEC 沿DE 翻折后,点C 落在点C ’处. 若△ABC ’是等腰三角形,则CE 的长为.【分析】根据△ABC ’是等腰三角形,分△AB =AC ’=2;△AC ’=BC ’,即C ’落在AB 的垂直平分线上时;△AB =BC ’=2,三种情况讨论,逐一作出图形求解即可.【答案】2【解析】解:分三种情况讨论:△AB =AC ’=2,如图所示,可得:四边形CDC ’E 是正方形,即CE =2;△AC ’=BC ’,即C ’落在AB 的垂直平分线MN 上时,如图所示,△DM =1,C ’D =2,△△C ’DM =30°,即得:△C ’DC =60°,△EDC =30°,△CE =CD ·tan △EDC=2×3△AB =BC ’=2,DDD N此时作出C ’的运动轨迹,及以B 为圆心,2为半径的圆,发现二者不相交,如图所示,即此种情况不存在;综上所述,答案为:2或3. 【变式2-1】(2019·郑州外外国语测试)如图所示,在△ABC 中,△C =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、F ,如果折叠后△CDF 和△BDE 均为等腰三角形,那么△B = .【答案】45°或30°.【解析】解:若△CDF 是等腰三角形,△△C =90°,△△CDF =△CFD =45°,由折叠性质知,△A =△FDE ,△B =△EFD ,若△BDE 是等腰三角形,则:(1)若DE =BD ,设△B =△DEB =x °,则△A =△FDE =90-x ,△△CDE =△B +△DEB ,△45+90-x =x +x ,解得:x =45,即△B =45°,(2)若DE =BE ,△CDE =180°-△BDE =180°-△B ,△CDE =45°+△FDE =45°+△A =45°+90°-△B =135°-△B ,△不符合题意,(3)若BD =BE ,设△B =x ,则△BDE =△BED =90°-12x , △CDE =45°+△A =135°-x ,△CDE =△B +△DEB =90°+12x , △135°-x =90°+12x ,解得:x =30, 即△B =30°,综上所述,△B 的度数为:45°或30°.【例3】(2019·商丘二模)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E 为斜边AB 的中点,点P 是射线BC 上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EP A ′,当折叠后△EP A ′与△BEP 的重叠部分的面积恰好为△ABP 面积的四分之一,则此时BP 的长为 .【答案】2或【解析】解:∵∠ACB =90°,∠B =30°,AC =2,E 为AB 的中点,∴AB =4,AE =12AB =2,BC = (1)若点A ’落在BC 上方时,连接A ′B ,由折叠可得S △A ′EP =S △AEP ,A ′E =AE =2,.∵点E 是AB 的中点,∴S △BEP =S △AEP =12S △ABP . 由题可得:S △EFP =14S △ABP , ∴S △EFP =12S △BEP =12S △AEP =12S △A ′EP , ∴EF =BF ,PF =A ′F .∴四边形A′EPB是平行四边形,∴BP=A′E=2;②若点A’落在直线BC下方时,连接AA′,交EP与H,.可得:GP=BG,EG=1.∵BE=AE,∴EG=12AP=1,∴AP=2∴AP=AC,即此时点P与点C重合,∴BP=BC=.故答案为:2或【变式3-1】(2019·安阳二模)如图,在△ABC中,∠C=90°,AB=5,BC=4.点D是边AC的中点,点E在边AB上,将△ADE沿DE翻折,使点A落在点A′处,当线段AE的长为时,A′E∥BC.【答案】12或92.【解析】解:分两种情况:(1)当A'E∥BC时,∠A'EG=∠B,由折叠可得,∠A=∠A',∵∠B+∠A=90°,∴∠A'EG+∠A'=90°,∴∠A'GE=90°,∴△ABC∽△ADG,∴AG AD DG AC AB BC==,∵AD=12AC=32,∴AG=910,DG=65,A'G=310,设AE=A'E=x,则EG=910﹣x,则cos∠GEA’=4 '5 EGA E=,∴x=12,即AE=12;(2)当A'E∥BC时,∠AHE=∠C=90°,A'H⊥CD,设AE=y,由△AHE∽△ACB,得:AH AE EH AC AB BC==∴AH=35y,HE=45y,由折叠可得,A'E=AE=y,AD=A'D=32,∴A'H=15y,DH=35y﹣32,sin∠DA’H=4 '5 DHA D,可得:y=92,即AE=92,故答案为:12或92.1.(2017·郑州一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为.【答案】32或34.【解析】解:(1)当点E与点C′重合时,△BC′D是直角三角形,在Rt△ABC中,由勾股定理得:BC=4.由翻折的性质可知;AE=AC=3,DC=DE,EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,由勾股定理得:DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=32.(2)当∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.可得:四边形ACDC′为矩形.∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.DB=BC﹣DC=1.∵DE∥AC,∴14DE BDAC BC==,134DE=.解得:DE=34.(3)∵点D在BC上运动,∴∠DBC′<90°,即∠DBC′不可能为直角.故答案为:32或34.2.(2019·洛阳三模)如图,已知Rt△ABC中,△B=90°,△A=60°,AB=3,点M,N分别在线段AC,AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,若△DCM为直角三角形时,则AM的长为.【答案】2或3.【解析】解:△在△CDM中,△C=30°,△分两种情况讨论△CDM为直角三角形的情况,(1)当△CMD =90°时,如图所示,设AM =x ,则DM =x ,CM,△x=6,解得:x=3;(2)当△CDM =90°时,如图所示,设AM =x ,则CM =2x ,DM =x ,△x +2x =6,解得x =2,综上所述,答案为:3或2.3.(2019·周口二模)如图,在矩形纸片ABCD 中,已知AB =6,BC =8,E 是边AD 上的点,以CE 为折痕折叠纸片,使点D 落在点F 处,连接FC ,当△AEF 为直角三角形时,DE 的长为_________.【答案】3或6. 【解析】解:由题意知,△EAF ≠90°,(1)当△AEF =90°时,如下图所示,ACDA CDE DC BA由折叠知,CD =CF =DE =EF =6,即DE =6;(2)当△AFE =90°时,如下图所示,此时点F 落在对角线AC 上,AC =10,CF =6,AF =4,设DE =x ,则EF =x ,AE =8-x ,在Rt △AEF 中,由勾股定理得:x 2+42=(8-x )2,解得:x =3,故答案为:3或6.4.(2018·焦作一模)如图,在Rt △ABC 中,△A =90°,△B =30°,BC,点E 、F 分别是BC 、AC 边上的动点,沿E 、F 所在直线折叠△C ,使点C 的落对应点C '始终落在边AB 上,若△BEC '是直角三角形时,则BC '的长为 .或2. 【解析】解:△△B =30°,△分两种情况讨论:△当△BEC '=90°时,BBBE 'E ,△CE =C 'E ,BC ,△BE C 'E =1,△Rt △BEC '中,由勾股定理得:BC '=2;△当△BC 'E =90°时,BE =2C 'E =2CE ,BC +1,△BE =23×),C 'E =13+1),在Rt △BEC ’中,由勾股定理得:BC ;综上所述,BC '或2. 5.(2019·南阳毕业测试)如图,在Rt △ABC 中,AC =8,BC =6,点D 为斜边AB 上一点,DE △AB 交AC 于点E ,将△AED 沿DE 翻折,点A 的对应点为点F .如果△EFC 是直角三角形,那么AD 的长为 .【答案】75或5. 【解析】解:在Rt △ABC 中,AC =8,BC =6,由勾股定理得:AB=10,按直角顶点位置分类讨论,△若△CFE=90°,△在Rt△ABC中,△ACB=90°,△△CFB+△EFD=△B+△A=90°,由翻折知:△A=△EFD,AE=EF,△△CFB=△B,CF=BC=6,在Rt△CEF中,有CE2=EF2+CF2,即CE2=(8﹣CE)2+62,△CE=254,△AE=74,由△ADE=△ACB=90°,得△ADE△△ACB,△AE AD AB AC,得:AD=75;△当△ECF=90°时,点F与B重合,△AD=12AB=5;△当△CEF=90°时,则EF△BC,△AFE=△B,△△A=△AFE,△△A=△B,△AC=BC(与题设矛盾),这种情况不存在,综上所述:如果△EFC是直角三角形,AD的长为75或5.故答案为:75或5.6.(2019·开封二模)在Rt△ABC中,AC=3,AB=4,D为斜边BC中点,E为AB上一个动点,将△ABC 沿直线DE折叠,A、C的对应点分别为A′、C′,EA′交BC于点F,若△BEF为直角三角形,则BE的长度为.【答案】12或54.【解析】解:△△B≠90°,△分两种情况讨论:△当△BEF=90°时,过D作DM△AB于M,则△EMD=90°,DM△AC,D为BC中点,可得:M为AB的中点,△BM=12AB=2,DM=12AC=32,由折叠可得,△MED=12△AEF=45°,△△DEM是等腰直角三角形,△EM=DM=32,△BE =2﹣32=12; △当△BFE =90°时,连接AD ,A 'D ,根据对称性可得:△EAD =△EA 'D ,AD =A 'DRt △ABC 中,AC =3,AB =4,由勾股定理得:BC =5,Rt △ABC 中,D 为BC 的中点,△AD =BD =A 'D =12BC =52, △△B =△EAD =△F A 'D ,设BE =x ,则BF =BE ·cosB =45x , △DF =BD ﹣BF =52﹣45x , 由sin △F A 'D =sinB ,得:54532525x -=⨯, 解得:x =54,即BE =54, 综上所述,BE 的长度为12或54. 7.(2019·安阳一模)如图,在Rt △ABC 中,△C =90°,AC=BC =4,点D 是AC 的中点,点F 是边AB 上一动点,沿DF 所在直线把△ADF 翻折到△A ′DF 的位置,若线段A ′D 交AB 于点E ,且△BA ′E 为直角三角形,则BF 的长为_________.A′A B C DE F【答案】285或6. 【解析】解:由分析知△EBA ’≠90°,分两种情况讨论:(1)当△BA ’E =90°时,如图所示,连接BD ,过F 作FH △AC 于H ,可得:△BCD △△BA ’D ,△BDF =90°,设FH =x ,则AF =2x ,AHx ,DH-x ,BF =8-2x ,由勾股定理得:BD 2+DF 2=BF 2,DF 2=DH 2+FH 2,即BD 2+ DH 2+FH 2= BF 2,△()()2222882xx x ++=-, 解得:x =125, 即BF =285; (2)当△BEA ’=90°时,如下图所示,AC DA C DAC D由折叠性质知,△A=△ADF=△EDF=30°,△AD△DE AE=3,△EF=3DE=1,△AF=2,即BF=6,综上所述,BF的值为285或6.8.(2019·省实验一模)如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P作PD△BC 于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC=.【答案】3532或12532.【解析】解:若△APE=90°,则△CPD=△EPD=45°,可得△C=45°,与题意不符,△△APE≠90°,在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5,△当△AEP=90°时,设PC=x,在Rt△PDC中,sinC=35,cosC=45,所以PD=35x,CD=45x,由折叠知DE=CD=45x,△BE=BC﹣CE=4﹣85 x,△△B=△PDE,△BAE+△AEB=90°,△PED+△AEB=90°,△△BAE=△PED=△C,tan△BAE=tan△C,即843534x-=,解得:x=35 32,即PC=35 32;△当△EAP=90°时,如下图,设PC=x,则PE=x,PD=35x,CD=45x,CE=85x,BE=85x-4,可证:△AEB=△C,△tan△AEB= tan△C,△34 BEAB=,即843534x-=,解得:x=125 32即PC=125 32,综上所述,答案为:3532或12532.9.(2019·叶县一模)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.【答案】1或94.ABD E【解析】解:由图可知,△ECF≠90°,所以分两种情况讨论:(1)当△CFE=90°时,由折叠可得,△PFE=△A=90°,AE=FE=DE,△△CFP=180°,即点P,F,C在一条直线上,△Rt△CDE△Rt△CFE,△CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=94,即AP=94;(2)当△CEF=90°时,过F作FH△AB于H,作FQ△AD于Q,则△FQE=△D=90°,△△FEQ+△CED=△ECD+△CED,△△FEQ=△ECD,△△FEQ△△ECD,△FQ QE EF DE CD CE==,△3 345 FQ QE==,△FQ=95,QE=125,△AQ=HF=3-QE=35,AH=QE=95,设AP=FP=x,则HP=95﹣x,在Rt△PFH中,HP2+HF2=PF2,即(95﹣x)2+(35)2=x2,解得x=1,即AP=1.综上所述,AP的长为1或94.10.(2019·濮阳二模)如图,已知Rt△ABC中,△B=90°,△A=60°,AC=,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.【解析】解:△△C=30°,即C不可能是直角顶点,△分两种情况讨论:(1)当△CDM=90°时,在Rt△ABC中,△B=90°,△A=60°,AC=,△△C=30°,AB+2,由折叠性质知,△MDN=△A=60°,△△BDN =30°,△BN =12DN =12AN ,△BN =13AB△AN =2BN =43, 由△DNB =60°,得:△ANM =△DNM =60°,△△AMN 是等边三角形,△AN =MN ; (2)当△CMD =90°时,由题可得,△CDM =60°,△A =△MDN =60°,△△BDN =60°,△BND =30°,△BD =12DN =12AN ,BN ,△AN =2,BN ,BD =1,△CD =BC -BD -BD ,△DM =AM =12CD ,△在Rt △ANH 中,AH =12AN =1,NH△HM =AM -AH ,在Rt △HNM 中,由勾股定理得:MN11.(2019·郑州联考)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.【答案】16或【解析】解:分三种情况讨论,(1)当B′D=B′C时,过B′作GH△AD交AB、CD于点G、H,则△B′GE=90°,可得:GH是CD、AB的垂直平分线,△AG=DH=12DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.△EG=AG﹣AE=8﹣3=5,在Rt△B’EG中,由勾股定理得:B′G=12,△B′H=GH﹣B′G=16﹣12=4,在Rt△DB’H中,由勾股定理得:DB′=(2)当DB′=CD时,则DB′=16.(3)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,△EC垂直平分BB′,△EF是线段BB′的垂直平分线,△点F与点C重合,此种情况不存在;故答案为:16或12.(2019·西华县二模)如图,在Rt△ABC中,△C=90°,BC=AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为.【答案】3或14 5.【解析】解:△△C=90°,BC=AC=2,△△B=30°,AB=2AC=4,△点D是BC的中点,△DB=DC,EB′=EB,△DB′E=△B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,由题意知∠B’AF≠90°,分两种情况讨论:(1)当△AFB′=90°时,BF=32,EF=32﹣(4﹣x)=x﹣52,在Rt△B′EF中,△EB′F=30°,△EB′=2EF,即4﹣x=2(x﹣52),解得:x=3,即AE=3;(2)当∠AB’F=90°时,过E作EH⊥AB’于H,△DC=DB′,AD=AD,△Rt △ADB ′△Rt △ADC ,△AB ′=AC =2,△△AB ′E =△AB ′F +△EB ′F =90°+30°=120°,△△EB ′H =60°,∠HEB ’=30°,∴B ′H =12B ′E =12(4﹣x ),EH ′H (4﹣x ), 在Rt △AEH 中,EH 2+AH 2=AE 2, △34(4﹣x )2+[12(4﹣x )+2]2=x 2,解得x =145, AE =145. 故答案为3或145.。
2020年(河南)中考数学压轴题全揭秘精品专题19 动点问题与几何图形综合题型(带答案解析)
专题19 动点问题与几何图形综合题型题型一、动点问题与几何图形最值问题主要有:线段最值;点到直线距离的最值;周长最值;面积最值等等.题型二、动点问题与几何问题相结合主要有:相似三角形的存在性;角平分线存在性;角度间的关系问题;面积关系问题等等.【例1】(2018·河南第一次大联考)如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为().A.4B.13C.7D.8【答案】D.【分析】如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,利用勾股定理及直角三角形中斜边上的中线等于斜边的一半分别求出PE与AE的长,由AE+EP求出AP的最大值即可.【解析】解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=12MN=3,根据勾股定理得:PE=5,在Rt△AMN中,AE为斜边MN上的中线,△AE =12MN =3, 则AP 的最大值为:AE +PE =3+5=8, 故选D .【点评】此题考查了勾股定理,直角三角形斜边上的中线性质,以及矩形的性质,熟练掌握勾股定理是解本题的关键.【变式1-1】(2019·济源一模)如图,△ABC 是等边三角形,AB =3,E 在 AC 上且 AE =23AC ,D 是直线 BC 上一动点,线段 ED 绕点 E 逆时针旋转 90°,得到线段 EF ,当点 D 运动时, 则线段 AF 的最小值是.【答案】322. 【解析】解:先确定F 点的轨迹,过E 作的直线BC 的平行线,分别过D 、F 作该平行线的垂线,垂足为G ,H , 如图所示,BCDEG由折叠性质,知△DEG △△EFH , △EH =DG ,△△ABC 是等边三角形,AE =2,CE =1,△DG =CE ·sin 3, 即EH 为定值,△点F 落在直线FH 上,且FH △BC ,根据垂线段最短,当AF △FH 时,AF 的值最小, 如下图所示,过A 作AN △FH ,延长AC 交FH 于点M ,AN 的长即为所求线段AF 的最小值,△EH =DG 3,△AMN =30°, △EM =2EH 3,△AM 3+2,△AN =12AM 32+,32+. ABCDEGNM【例2】(2019·开封二模)如图1,在平面直角坐标系中,直线y=43x﹣4与抛物线y=43x2+bx+c交于坐标轴上两点A、C,抛物线与x轴另一交点为点B;(1)求抛物线解析式;(2)若动点D在直线AC下方的抛物线上,如图2,作DM△直线AC,垂足为点M,是否存在点D,使△CDM 中某个角恰好是△ACO的一半?若存在,直接写出点D的横坐标;若不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)在y=43x﹣4中,当x=0,y=﹣4,即C(0,﹣4);当y=0,x=3,即A(3,0);把点A、C坐标代入y=43x2+bx+c,并解得:b=83-,c=-4,△抛物线解析式为:y=43x283-x-4;(2)存在,作△ACO的平分线CP交x轴于点P,过P作PH△AC于点H,则CH=CO=4,OP=PH,设OP=PH=x,则P A=3﹣x,△OC=4,OA=3,△AC=5,AH=1,在Rt△PHA中,PH2+AH2=AP2,即x2+12=(3﹣x)2,解得:x=43,△tan△PCH=tan△PCO=13,△过点D作DG△x轴于点G,过点M作ME△x轴,与y轴交于点E,与DG交于点F.设M(m,43m﹣4),则ME=m,FG=OE=4﹣43m,CE=43m,可得:△CEM△△MFD,△当△DCM=12△ACO时,可得:3CE ME CMMF DF DM ===, 即MF =49m ,DF =13m , △DG =DF +GF =13m +4﹣43m =4-m ,EF =EM +FM =139m ,即点D (139m , m -4),将其坐标代入y =43x 283-x -4得: 2413813443939m m m ⎛⎫⨯-⨯-=- ⎪⎝⎭, 解得:m =0(舍)或m =1179676, △D 点横坐标为:139m =13152. △当△MDC =12△ACO =△PCH 时, 同理可得:MF =4m ,DF =3m , △EF =EM +MF =m +4m =5m , DG =DF +FG =3m ﹣43m +4=53m +4, △D (5m ,﹣53m ﹣4), △﹣53m ﹣4=()()24855433m m ⨯-⨯-,解得m =0(舍去)或m =720, 此时D 点横坐标为:5m =74; 综上所述,点D 横坐标为13152或74. 【变式2-1】(2019·洛阳模拟)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标和四边形AECP 的最大面积;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (0,1),B (9,10)代入y =13x 2+bx +c 得: 127810c b c =⎧⎨++=⎩,解得:12c b =⎧⎨=-⎩∴抛物线的解析式为:y =13x 2-2x +1. (2)由y =13x 2-2x +1知,抛物线的对称轴是x =3,l∵AC∥x轴,A(0,1),∴A与C关于对称轴对称,C(6,0),AC=6由A(0,1),B(9,10)得直线AB的解析式为:y=x+1,设P(m,13m2-2m+1),则E(m,m+1),∴PE=-13m2+3m,∴S四边形AECP=S△AEC+S△APC=12·AC·EF+12·AC·PF=12×6×(-13m2+3m)=298124m⎛⎫--+⎪⎝⎭,∴当m=92时,四边形AECP的面积取最大值814,此时点P(92,54-).(3)存在,点Q坐标为(4,1)或(-3,1).由y=13x2-2x+1知点P(3, -2),∴PF=3,CF=3,∴∠PCF=45°,同理,∠EAF=45°,即∠PCF=∠EAF,由勾股定理得:AB=92AC=6,PC=32,设Q(n,1),①当△CPQ∽△ABC时,CQ PC AC AB=,即632692n-=,解得:t=4,即Q(4,1).②当△CQP∽△ABC时,CQ PC AB AC=,即3292=,解得:t=-3,即Q(-3,1).综上所述,符合题意的点Q坐标为:(4,1)或(-3,1).1.(2019·济源一模)如图1,在平面直角坐标系中,直线3944y x=-+与x轴交于点A,与y轴交于点B;抛物线29 4y ax bx=++(a≠0)过A,B两点,与x轴交于另一点C(-1,0),抛物线的顶点为D.(1)求抛物线的解析式;(2)在直线AB上方的抛物线上有一动点E,求出点E到直线AB的距离的最大值;(3)如图2,直线AB与抛物线的对称轴相交于点F,点P在坐标轴上,且点P到直线BD,DF的距离相等,请直接写出点P的坐标.图1 图2【答案】见解析.【解析】解:(1)在3944y x =-+中,当x =0时,y =94;当y =0时,x =3,即A (3,0),B (0,94), 将A (3,0),C (-1,0)代入294y ax bx =++得: 99304904a b a b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,△抛物线的解析式为:2339424y x x =-++.(2)过点E 作EM △x 轴交AB 于M ,过E 作EN △AB 于N ,点E 到AB 的距离为EN , 可得△ENM △△AOB ,△EN EMOA AB=, 在Rt △AOB 中,OA =3,OB =94, 由勾股定理得:AB =154, △1534EN EM=, 即EN =45EM ,设E (m ,2339424m m -++),M (m ,3944m -+),则EM =2339424m m -++-(3944m -+)=23944m m -+,△EN =45EM =2439544m m ⎛⎫-+ ⎪⎝⎭=233275220m ⎛⎫--+ ⎪⎝⎭, △当m =32时,E 到直线AB 的距离的最大值为2720. (3)△点P 到直线BD ,DF 的距离相等,△点P 在△BDF 或△BDF 邻补角的平分线上,如图所示,由2339424y x x =-++知D 点坐标为(1,3),△B (0,94), △BD =54, △DP 平分△BDF ,△△BDP=△PDF,△DF△y轴,△△BPD=△PDF,△△BPD=△BDP,△BD=DP,△P(0,1),设直线PD的解析式为:y=kx+n,△n=1,k+n=3,即直线PD的解析式为:y=2x+1,当y=0时,x=12 -,△当P在△BDF的角平分线上时,坐标为(0,1)或(12-,0);同理可得:当P在△BDF邻补角的平分线上时,坐标为:(0,72)或(7,0),综上所述,点P的坐标为:(0,1),(12-,0),(0,72),(7,0).2.(2019·洛阳二模)如图,抛物线y=ax2+5x+c交x轴于A,B两点,交y轴于点C.直线y=x-4经过点B,C. 点P是直线BC上方抛物线上一动点,直线PC交x轴于点D.(1)直接写出a,c的值;(2)当△PBD的面积等于△BDC面积的一半时,求点P的坐标;(3)当△PBA= 12△CBP时,直接写出直线BP的解析式.【答案】见解析.【解析】解:(1)△直线y=x-4经过点B,C,△B(4,0),C(0,-4),将B(4,0),C(0,-4)代入y=ax2+5x+c得:c=-4,a=-1,(2)抛物线解析式为:y=-x2+5x-4,过点P作PH△x轴于H,如图所示,设P(m, -m2+5m-4),△△PBD的面积等于△BDC面积的一半,△PH=12OC=2,即-m2+5m-4=2,或-m2+5m-4=-2,解得:m=2或m=3或m 517+或m517-,△0<m<4,△m=2或m=3或m 517 -(3)y=-x+4或y=(23)x38,理由如下:△当点P在x轴上方时,此时由△PBA= 12△CBP可得:△PBA=△ABC=45°,可得直线BP的解析式为:y=-x+4;△当点P在x轴下方时,此时△PBA= 13△ABC=15°,△CBP=30°,设直线BP交y轴于点Q,过点Q作QE△BC于E,如图所示,设Q(0,m),则OQ=-m,QC=4+m,△QE=CE=22(4+m),BE36(4+m),△CE+BE2,2(4+m)6(4+m)2,解得:m38,即Q(0,38),由B(4,0),可得直线BP的解析式为:y=(23)x38,综上所述,直线BP的解析式为:y=-x+4或y=(23x3-8.3.(2019·洛阳三模)在平面直角坐标系中,直线y=12x-2与x轴交于点B,与y轴交于点C,二次函数y=12x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的解析式;(2)如图1,点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.过点D作DM△BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;【答案】见解析.【解析】解:(1)△直线y=12x-2与x轴交于点B,与y轴交于点C,△B(4,0),C(0,-2),△B、C在抛物线y=12x2+bx+c上,△8402b cc++=⎧⎨=-⎩,解得:b=32-,c=-2,即抛物线解析式为:y=12x232-x-2.(2)过点D作DF△x轴于F,交BC于E,△D(m, 12m232-m-2),E(m,12m-2),F(m,0),其中0<m<4,△DE=12-m2+2m,△DM△BC,△△DME=△BFD=90°,△△BOC=△DME=90°,△△OBC△△MDE,△DM OB DE BC=,即25 DM OBDE BC==△DM25=)2545255m -+, △5<0, △当m =2时,DM 454.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)若D (2,m )在该抛物线上,连接CD ,DB ,求四边形OCDB 的面积;(3)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH △x 轴于点H ,再过点F 作FG △x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)△抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,△4016440a b a b -+=⎧⎨++=⎩,CBA O xy解得:a=-1,b=3,即抛物线的解析式为:y=-x2+3x+4.(2)△抛物线y=-x2+3x+4与y轴交于点C △C(0,4),△D(2,m)在抛物线上,△m=6,即D(2,6),S四边形OCDB=S△OCD+S△OBD= 12×4×2+12×4×6=16,即四边形OCDB的面积为16.(3292292,理由如下:△EFGH为正方形,△EF=EH,设E(n,-n2+3n+4),则F(3-n,-n2+3n+4),△抛物线的对称轴为x=32,△n>3 2 ,△n-(3-n)=-n2+3n+4或n-(3-n)=-(-n2+3n+4),解得:n= 129+或n=129-(舍)或n=529+或n=529-(舍)△边长EF=2n-3,得:EF292292.5.(2019·濮阳二模)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的动点,当S△P AB=2S△AOB时,求点P的坐标.【答案】见解析.【解析】解:(1)将A(1,0)代入y=﹣3x+c,得:c=3,即B(0,3),将A(1,0),B(0,3)代入y=﹣x2+bx+c,得:-1+b+c=0,c=3,解得:b=-2,c=3,△抛物线解析式为:y=﹣x2﹣2x+3;(2)连接OP,抛物线的对称轴为:x =﹣1,设P (m ,﹣m 2﹣2m +3),其中m <﹣1, S △P AB =S △POB +S △ABO ﹣S △POA , △S △P AB =2S △AOB , △S △POB ﹣S △POA =S △ABO ,△()2111312313222m m m ⨯⨯--⨯⨯--+=⨯⨯, 解得:m =-2或m =3(舍), 即P 点坐标为(-2,3).6.(2019·商丘二模)如图.在平面直角坐标系中.抛物线y =12x 2+bx +c 与x 轴交于A 两点,与y 轴交于点C ,点A 的坐标为(﹣1,0),点C 的坐标为(0,﹣2).已知点E (m ,0)是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE △x 轴交抛物线于点P .交BC 于点F .(1)求该抛物线的表达式;(2)当线段EF ,PF 的长度比为1:2时,请求出m 的值;(3)是否存在这样的m ,使得△BEP 与△ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将点A (﹣1,0)、C (0,﹣2)代入y =12x 2+bx +c 得: 2102c b c =-⎧⎪⎨-+=⎪⎩,解得:b =32-,c =-2, △抛物线的表达式为:y =12x 232-x ﹣2; (2)在y =12x 232-x ﹣2中,当y =0时,x =-1或x =4, 即B (4,0),设直线BC 的解析式为:y =kx +n ,将点C (0,﹣2)、B (4,0)代入y =kx +n ,得:2420n k =-⎧⎨-=⎩,解得:212n k =-⎧⎪⎨=⎪⎩△直线BC 的表达式为:y =12x ﹣2, △E (m ,0),△P (m ,12m 232-m ﹣2),F (m ,12m ﹣2) △当E 在线段AO 上时,EF >PF ,不符合题意; △当E 在线段OB 上时, EF =2-12m ,PF =12m ﹣2-(12m 232-m ﹣2)=-12m 2+2m ,△2EF =PF , △2(2-12m )=-12m 2+2m , 解得:m =2或m =4, △E 不与A 、B 重合, △m ≠4, 即m =2;(3)△A (﹣1,0)、C (0,﹣2)、B (4,0), △AB 2=25,AC 2=5,BC 2=20, △AB 2=AC 2+BC 2△△ABC 是直角三角形, 当△BEP 与△ABC 相似,则△EPB =△CAB 或△EPB =△ABC ,△tan △EPB =tan △CAB ,或tan △EPB =tan △ABC , △当tan △EPB =tan △CAB 时, 即:24213222mm m -=⎛⎫--- ⎪⎝⎭,解得:m =0或4(舍去), △当tan △EPB =tan △ABC , 即:241132222m m m -=⎛⎫--- ⎪⎝⎭,解得:m =3或4(舍去),综上所述,m 的值为0或3.7.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC △x 轴.(1)求抛物线的解析式;(2)点P 是直线y =﹣x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G ,作PH △EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC △x 轴 △点E 的纵坐标为2, △点E 在直线y =﹣x 上, △点E (﹣2,2),△将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩ 抛物线的解析式为:224233y x x =--+;(2)△OC =CE =2,△△ECO =△CEO =45°, △PG △x 轴,PH △EO , △△PGH =45°,即△PGH 为等腰直角三角形,P (m ,224233m m --+),G (m ,﹣m ),△l 2PG 2(224233m m --++m ) =2214923448m ⎫-++⎪⎝⎭ △2<0, △当m =-14时,l 取最大值,最大值为:248.8.(2019·西华县一模)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,P A =QA ?【答案】见解析.【解析】解:(1)△直线y=﹣2x+10与x轴,y轴相交于A,B两点,△A(5,0),B(0,10),设抛物线解析式为y=ax2+bx+c,△抛物线过点B(0,10),C(8,4),O(0,0),△c=0,25a+5b=0,64a+8b=4,△a=16,b=56-,c=0抛物线解析式为y=16x256-x,△A(5,0),B(0,10),C(8,4),△AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,△AC2+BC2=AB2,△△ABC是直角三角形.(2)由(1)知BC=10,AC=5,OA=5,OP=2t,BQ=t,CQ=10﹣t,△AC=OA,△ACQ=△AOP=90°,在Rt△AOP和Rt△ACQ中,AC=OA,P A=QA,△Rt△AOP△Rt△ACQ,△OP=CQ,即2t=10﹣t,解得:t=103,即当运动时间为103s时,P A=QA.9.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)(1)求抛物线的解析式;(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时,x=﹣1或5,△A(﹣1,0),OB=OC=2,∴△OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,△△OCB=45°,∴CD″△x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).10.(2019·郑州模拟)如图,二次函数y=x2+bx+c 的图象与x 轴交于A,B 两点,与y 轴交于点C,OB=OC.点D 在函数图象上,CD∥x 轴,且CD=2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b,c的值.(2)如图1,连接BE,线段OC 上的点F 关于直线l 的对称点F′恰好在线段BE 上,求点 F 的坐标.(3)如图2,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)∵CD∥x轴,CD=2,C在y轴上,∴抛物线的对称轴为:x=1,即b=-2,∵OB=OC,C(0,c),∴B(-c,0),即c2+2c+c=0,解得:c=0(舍)或c=-3,即b=-2,c=-3,(2)抛物线的解析式为:y= x2-2x-3,可得:E(1,-4),A(-1,0),B(3,0),C(0,-3),则直线BE的解析式为:y=2x-6,设F(0,m),则其关于直线l对称点为F’(2,m),∵F’在直线BE上,∴m=-2,即F(0,-2).(3)存在,理由如下:过点Q作QD⊥PN于D,连接PQ、NQ,设点P(x,0),由B(3,0),C(0,-3)得直线BC的解析式为:y=x-3则M(x,x-3),N(x,x2-2x-3),AP=x+1,PM=3-x,PN= -x2+2x+3∵S△PQN=S△APM,∴PN·DQ=AP·PM,∴(-x2+2x+3)DQ=(x+1)(3-x),即DQ=1,①当点D在直线PN右侧时,D(x,x2-4),Q(x+1,x2-4),则DN=|2x-1|,在Rt△DNQ中,由勾股定理得:NQ2=(2x-1)2+12=4212x⎛⎫-⎪⎝⎭+1,当x=12时,NQ取最小值,此时Q(32,154-);②当点Q在直线PN的左侧时,由对称性求得:此时Q(12,154-);11.(2019·郑州模拟)如图,抛物线y=-x2+bx+c和直线y=x+1交于A、B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式.(2)点P从点A出发,以每秒2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【答案】见解析.【解析】解:(1)∵B 点横坐标为3,在y =x +1上,∴B (3,4),∵A 点在y =x +1上,∴A (﹣1,0),将A (﹣1,0),B (3,4)代入y =﹣x 2+bx +c 得:10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+3x +4(2)①过点P 作PE ⊥x 轴于点E ,由题意得:E (﹣1+t ,0),Q (3﹣2t ,0),∴EQ =4﹣3t ,PE =t∵∠PQE +∠NQC =90°,∠PQE +∠EPQ =90°,∴∠EPQ =∠NQC ,∴△PQE ∽△QNC ,∴12 PQ PENQ CQ==,∴S矩形PQNM=PQ•NQ=2PQ2∵PQ2=PE2+EQ2∴S=20t2﹣36t+18=2616 2055t⎛⎫-+ ⎪⎝⎭当t=65时,S最小为165.②由①知:△PQE∽△QNC,C(3﹣2t,0),P(﹣1+t,t),∴NC=2QO=8﹣6t,∴N(3,8﹣6t),∴M(3t﹣1,8﹣5t),(i)当M在抛物线上时,可得:8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得:t 1027+或t1027-;(ii)当点Q到A时,Q在抛物线上,此时t=2,(iii)当N在抛物线上时,8﹣6t=4,∴t=23,综上所述,当t 1027+1027-,2,23时,矩形PQNM的顶点落在抛物线上.12.(2019·郑州模拟)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是【答案】14-≤b≤1.【解析】解:当点A与点N重合时,MN⊥AC,B、M、N共线,∵N(3,1)∴b=1;当点A与点M重合时,延长NM交y轴于E,易知∠CAN=∠BAE,即tan∠CAN=tan∠BAE,∴11252BE=,∴BE=54,即b=14-,∴b 的取值范围是:14 ≤b ≤1.。
2020年中考数学动态问题-折叠中有关计算题型(含答案)
专题04 动点折叠类问题中有关计算题型一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.通过研究历年中考真题并结合2019年各省(市)的中考真题,特总结出此专题. 期望能给各位老师及同学以学习教学一些启发,一些指引,培养出学生的解题素养.下面我们从几个例题中展开论述,逐层拨开它的神秘面纱.二、精品例题解析题型一:图形折叠中的计算例1.(2019·青岛)如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长为cm .例2. 如图,矩形ABCD中,AB=36BC=12,E为AD的中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落在CF上的点G处,则折痕EF的长是例3.(2019·连云港)如图,在矩形ABCD中,AD=22AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=62MP;④BP=22AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个例4.(2019·潍坊)如图,在矩形ABCD中,AD=2,将∠A向内折叠,点A落在BC上,记为A’,折痕为DE. 若将∠B沿EA’向内折叠,点B恰好落在DE上,记为B’,则AB=例5.(2019·天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上. 若DE=5,则GE的长为例6.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( ) A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD例7.(2019·金华)如图,将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线减去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF 的值是( )A. 522B. 21-C. 12D. 22例8.(2019·重庆)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC',DC ’与AB 交于点A ’,连结AC',若AD =AC ’=2,BD =3,则点D 到BC 的距离为( )A .233B .7213C .7D .13例9.(2019·重庆)如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1. 连接DE ,将△ADE 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G. 则四边形DFEG 的周长为() A. 8 B. 42 C. 224+ D. 322+题型二:图形折叠中证明、计算题例10.(2019·滨州) 如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG.(1)求证:四边形CEFG 是菱形;(2)若AB=6,AD=10,求四边形CEFG 的面积.二、精品例题解析题型一:图形折叠中的计算例1.(2019·青岛)如图,在正方形纸片 ABCD 中, E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD =4 cm ,则 CF 的长为 cm .【答案】625-【分析】要求CF 的长,观察图形,发现CF 在Rt △CEF 中,想到用勾股定理求解,然而EF 的长度是未知的,求解难度较大;再观察图形,发现CF=BC -BF ,只要求出BF 长度即可,而BF=GF ,进而想到利用面积法来求解,设CF=x ,BF=GF=4-x ,列方程求解x 即可.【解析】解:∵四边形ABCD 是正方形,∴AD=CD=BC=4,∠C=∠D=90°,设CF=x ,由折叠知:BF=GF=4-x ,∵E 是CD 中点,∴DE=2,在Rt △ADE 中,由勾股定理得:AE=5ADE ABF AEF CEF ABCD S S S S S =+++△△△△正方形 即:()()111116424425422222x x x =⨯⨯+⨯⨯-+⨯-+⨯⨯ 解得:x=65-,故答案为:65-. 例2. 如图,矩形ABCD 中,AB=36BC=12,E 为AD 的中点,F 为AB 上一点,将△AEF 沿EF折叠后,点A 恰好落在CF 上的点G 处,则折痕EF 的长是【分析】EF 在Rt △AEF 中,求出AF 的长即可利用勾股定理求解折痕EF 的长度;连接CE ,可证△CEG ≌△CED ,得EF ⊥CE ,设AF=x ,利用CF 2=BF 2+BC 2,CF 2=EF 2+CE 2,列出方程求解AF 的长. 【答案】215.【解析】解:∵E 是AD 的中点,∴AE=ED ,由折叠知:AE=EG ,∴EG=DE,连接CE ,在Rt △CDE 和Rt △CDG 中,CE=CE ,EG=AE=DE∴Rt △CDE ≌Rt △CDG∴∠GEC=∠DEC ,∴∠FEC=90°,设AF=x ,则BF=36x ,BC=AD=12,在Rt △EFC 和Rt △BFC 中,由勾股定理得:222222AE AF DE CD BF BC +++=+即:(()22222266363612x x +++=-+,解得:x=26, ∴()22626215+=故:答案为215.例3.(2019·连云港)如图,在矩形ABCD中,AD=22AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=6MP;④BP=2AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】B.【解析】解:由折叠性质知:∠DMC=∠EMC,∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=12×180°=90°,∴△CMP是直角三角形;故①正确;由折叠知:∠D=∠MEC=90°,∠MEG=∠A=90°,∴∠GEC=180°,即点C、E、G在同一条直线上,故②错误;∵AD=2,设AB=x,则AD=2,由折叠知:DM=12AD2x,由勾股定理得:CM3x,∵∠PMC =90°,MN ⊥PC ,∴△CMN ∽△CPM ,∴CM 2=CN •CP ,∴CP 22x =,∴PN =CP ﹣CN =2x ,由勾股定理得:PM x ,∴PC PM=即PC MP ,故③错误;PB x ,AB PB=∴PB =2AB ,故④正确, 由折叠知:CD =CE ,EG =AB ,AB =CD ,∴CE =EG ,∵∠CEM =∠G =90°,∴FE ∥PG ,∴CF =PF ,∵∠PMC =90°,∴CF =PF =MF ,∴点F 是△CMP 外接圆的圆心,故⑤正确;故答案为:B .例4.(2019·潍坊)如图,在矩形ABCD 中,AD=2,将∠A 向内折叠,点A 落在BC 上,记为A ’,折痕为DE. 若将∠B 沿EA ’向内折叠,点B 恰好落在DE 上,记为B ’,则AB=【答案】232 33+.【解析】解:由折叠知:∠AED=∠DEA’=∠BEA’,而∠AED+∠DEA’+∠BEA’=180°,∴∠AED=∠DEA’=∠BEA’=60°,∴∠EDA=∠EDA’=∠CDA’=30°,∵AD=2,∴A’E=AE=323 33AD=,∴BE=32'33A E=,即AB=AE+BE=2323+.例5.(2019·天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上. 若DE=5,则GE的长为【答案】49 13.【解析】解:∵四边形ABCD 是正方形,∴∠D=∠DAB=90°,AD=AB ,由折叠性质知:AE ⊥BF ,∴∠DAE+∠BAE=∠ABF+∠BAE=90°,即∠DAE=∠ABF ,∴△ADE ≌△BAF ,∴AF=DE=5,由勾股定理得:AE=BF=13,∴AG=2×51213⨯=12013, ∴GE=AE -AG=4913. 故答案为:4913. 例6.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( ) A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD【答案】D.【解析】解:由折叠知:四边形BADH 为菱形,∴EH=BE+BH在Rt △ABE 中,由勾股定理得:225BE AE +=∴5,5,在Rt △AEH 中,由勾股定理,得:AH 2=()2222512=1025EH AE +=+++, 故A 正确;CD=AD -AC=5-1,BC=2,∴51CD BC -=,故B 正确; BC 2=4,CD ×EH=(5-1)×(5+1)=4, 故C 正确;∵∠AHD=∠AHE ,∴515sin sin +≠=∠=∠AH AE AHE AHD 故D 错误,即答案为D.例7.(2019·金华)如图,将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线减去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF 的值是( )A. 52-B. 21C. 12D. 22【答案】A.【解析】解:设正方形ABCD 的边长为a ,连接HF ,GE 交于点O ,则GE ⊥HF ,∠GFH=45°,∴2, 由题意知:正方形EFGH 、与其它四个五边形的面积均相等,∴正方形EFGE 面积为:25a , 即GF=55a , ∴FO=2251022GF a a =⨯= FM=OM -FO=102a a - ∴105221025a a FM GF a --==, 故答案为A.例8.(2019·重庆)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC',DC ’与AB 交于点A ’,连结AC',若AD =AC ’=2,BD =3,则点D 到BC 的距离为( )A .233 B .7213 C .7 D .13【答案】B.【解析】解:如图,连接CC ’,交BD 于M ,过D 作DH ⊥BC ’于H ,∵AD=AC ’=2,AD=CD=2,由翻折知:CD=DC ’=2,∠DBC=∠BDC ’,∴△ADC ’为等边三角形,DH 即为所求,∴∠ACC ’=∠DC ’C=30°,∴DM=1,C ’M= 3 ∵BD=3, ∴BM=BD -DM=2,在Rt △BMC ’中,由勾股定理得:BC ’= 22'7C M BM +=,∵'11''22BC D S BD MC BC DF =⋅=⋅△ ∴DH=3217, 故答案为:B.例9.(2019·重庆)如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1. 连接DE ,将△ADE 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G. 则四边形DFEG 的周长为() A. 8 B. 42 C. 224+ D. 322+【答案】B.【解析】解:∵∠ABC =45°,AD ⊥BC 于点D ,∴∠BAD =90°﹣∠ABC =45°,∴△ABD 是等腰直角三角形,∴AD =BD ,∴∠GBD+∠C =90°,∵∠EAD+∠C =90°,∴∠GBD =∠EAD ,∵∠ADB =∠EDG =90°,∴∠ADB ﹣∠ADG =∠EDG ﹣∠ADG ,即∠BDG =∠ADE ,∴△BDG ≌△ADE ,∴BG =AE =1,DG =DE ,∵∠EDG =90°,∴△EDG 为等腰直角三角形,∴∠AED =∠AEB+∠DEG =90°+45°=135°,∵△AED 沿直线AE 翻折得△AEF ,∴△AED ≌△AEF ,∴∠AED =∠AEF =135°,ED =EF ,∴∠DEF =360°﹣∠AED ﹣∠AEF =90°,∴△DEF 为等腰直角三角形,∴EF =DE =DG ,在Rt △AEB 中,由勾股定理得:BE =,∴GE =BE ﹣BG =﹣1,在Rt △DGE 中,DG =DE=2GE =2﹣2,∴EF =DE =2﹣2, 在Rt △DEF 中,DF =DE =﹣1,∴四边形DFEG 的周长为:GD+EF+GE+DF =2(2)+2(1)=+2,题型二:图形折叠中证明、计算题例10.(2019·滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.【分析】(1)由翻折性质并借助全等三角形的性质和菱形的判定方法证明结论成立;(2)由勾股定理,可以求得AF的长,并求得EF和DF的值,从而可以得到四边形CEFG的面积.【答案】见解析.【解析】(1)证明:由题意可得:△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,专题04 动点折叠类问题中有关计算题型∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,在Rt△FDE中,由勾股定理得:22+(6﹣x)2=x2,解得,x=10 3,即CE=10 3,∴四边形CEFG的面积是:CE•DF=103×2=203.。
2020年中考数学动态问题-折叠中图形存在性问题(含答案)
专题06 动点折叠类问题中图形存在性问题一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.存在性问题主要有等腰三角形存在性、直角三角形存在性、特殊落点存在性等问题,常用的数学解题模型有“一线三直角”等模型,作图方法是借助圆规化动为静找落点.解题思路:分析题目→依据落点定折痕→建立模型→设出未知数列方程求解→得到结论.解题核心知识点:折叠性质;①折叠前后图形大小、形状不变;②折痕是折叠前后对应点连线的垂直平分线;勾股定理;相似图形的性质、三角函数等.★等腰三角形存在性问题解题思路:依据圆规等先确定落点,再确定折痕;★直角三角形存在性问题解题思路:依据不同直角顶点位置分类讨论,作出图形求解.二、精品例题解析题型一:折叠问题中等腰三角形存在性问题例1.(2019·金水区校级模拟)如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM= ,点M与点M’关于射线OP对称,且直线MM’与射线OA交于点N,当△ONM’为等腰三角形时,ON的长为例2.(2017·蜀山区期末)如图所示,△ABC 中,∠ACB =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、点F ,如果折叠后△CDF 与△BDE 均为等腰三角形,则∠B =.题型二:折叠问题中直角三角形存在性问题例3.(2017·营口)在矩形纸片ABCD 中,AD =8,AB =6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为 .例4.(2019·唐河县三模)矩形ABCD 中,AB =4,AD =6,点E 为AD 的中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,CF ,当△CEF 为直角三角形时,AP 的长为.例5.(2019·许昌二模)如图,已知平行四边形ABCD 中,AB =16, AD =10,sinA =, 点M 为AB 边上35一动点,过点M 作MN ⊥AB 交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处. 当△CDE 为直角三角形时,AM 的长为.例6.(2019·金水区校级一模)如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P 作PD⊥BC于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC =.例7.(2019·卧龙区一模)如图,在Rt△ABC中,AC=8,BC=6,点D为斜边AB上一点,DE⊥AB 交AC于点E,将△AED沿DE翻折,点A的对应点为点F.如果△EFC是直角三角形,那么AD的长为.例8.(2019·河南模拟)在矩形ABCD中,AB=3,BC=4,点E,F分别为BC,AC上的两个动点,将△CEF沿EF折叠,点C的对应点为G,若点G落在射线AB上,且△AGF恰为直角三角形,则线段CF 的长为 二、精品例题解析题型一:折叠问题中等腰三角形存在性问题例1.(2019·金水区校级模拟)如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=M与点M’关于射线OP对称,且直线MM’与射线OA交于点N,当△ONM’为等腰三角形时,ON的长为.【分析】分三种情况讨论:①当M’落在线段ON的垂直平分线上时,即M’N=M’O,设∠ONM=x°,通过三角形外角定理及三角形内角和定理求得x=30°,进而利用三角函数求得ON的长;②当M’N=ON时,作出图形,得到∠ONM’度数,利用三角函数求解;③当M’O=ON=OM,此时M、M’、N点不在一条直线上,与题意不符,此种情况不存在.【答案】1或3.【解析】解:由△ONM’为等腰三角形,分以下三种情况讨论:①当M’落在线段ON的垂直平分线上时,即M’N=M’O,如图所示,ANH设∠ONM’=x°,则∠OM’M=∠OMM’ =2x°,∵∠AOB=90°,∴x+2x=90,解得:x=30,在Rt △NOM 中,ON =;°=3tan 30OM ②当M ’N =ON 时,如下图所示,NH由①知:∠NOM ’=30°,过M ’作M ’H ⊥OA 于H ,∴HM ’=,12在Rt △HNM ’中,NM ’=,°'=1cos30HM 即ON =1;③当M ’O =ON =OM ,N 此时M 、M ’、N 点不在一条直线上,与题意不符,此种情况不存在.故答案为:1或3.例2.(2017·蜀山区期末)如图所示,△ABC 中,∠ACB =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、点F ,如果折叠后△CDF 与△BDE 均为等腰三角形,则∠B =.【分析】由题意知,△CDF 是等腰三角形,则CD =CF ,△BDE 是等腰三角形时,分三种情况讨论:①当DE =BD 时,设∠B =x °,通过翻折性质及三角形内角和定理求得x =45;②当BD =BE 时,作出图形,设∠B =x °,通过翻折性质及三角形内角和定理求得x =30;③当BE =DE 时,得∠FDB =90°,∠FDB +∠CDF =135°≠180°,此时C 、D 、B 点不在一条直线上,与题意不符,此种情况不存在.【答案】45°或30°.【解析】解:由题意知,△CDF 是等腰三角形,则CD =CF ,∠CDF =∠CFD =45°,∴∠FDB =135°,△BDE 是等腰三角形时,分以下三种情况讨论:①当DE =BD 时,见下图,A设∠B =x °,则∠DEB =x ,∠EDB =180°-2x ,由折叠知:∠A =∠FDE =90°-x ,∴180-2x +90-x =135,解得:x =45,即∠B =45°;②当BD =BE时,如下图所示,A设∠B =x °,则∠EDB = ,°1802x 由折叠知:∠A =∠FDE =90°-x ,∴+90-x =135,解得:x =30,1802x -即∠B =30°;③当BE =DE 时,得∠B =∠EDB ,∴∠FDB =∠FDE +∠EDB =∠A +∠B =90°,∠FDB +∠CDF =135°≠180°,此时C 、D 、B 点不在一条直线上,与题意不符,此种情况不存在.故答案为:45°或30°.题型二:折叠问题中直角三角形存在性问题例3.(2017·营口)在矩形纸片ABCD 中,AD =8,AB =6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为 .【分析】根据题意作出图形,通过分析可知:点E 、F 均可为直角顶点,因此分两种情况讨论,作出图形后,根据勾股定理等知识求得结果.【答案】3或6.【解析】解:∵AD =8,AB =6,四边形ABCD 为矩形,∴BC =AD =8,∠B =90°,根据勾股定理得:AC =10.由分析知,△EFC 为直角三角形分下面两种情况:①当∠EFC =90°时,如下图所示,由折叠性质知:∠AFE =∠B =90°,∠EFC =90°,AF =AB =6,∴A 、F 、C 三点共线,又AE 平分∠BAC ,∴CF =AC -AF =4,设BE =x ,则EF =x ,EC =8-x ,在Rt △EFC 中,由勾股定理得:,()22248x x +=-解得:x =3,即BE =3;②当∠FEC =90°时,如下图所示.由题意知:∠FEC =90°,∠FEB =90°,∴∠AEF =∠BEA =45°,∴四边形ABEF 为正方形,∴BE =AB =6.综上所述:BE 的长为3或6.故答案为:3或6.例4.(2019·唐河县三模)矩形ABCD 中,AB =4,AD =6,点E 为AD 的中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,CF ,当△CEF 为直角三角形时,AP 的长为.【分析】当△CEF 为直角三角形时,通过分析知:∠FCE <90°,不可能为直角顶点,故分两种情况讨论:∠EFC =90°或∠FEC =90°,作出图形求解;【答案】或1.94【解析】解:分以下两种情况讨论:(1)∠EFC =90°,如下图所示,由折叠性质知:∠A =∠PFE =90°,AP =PF所以点P 、F 、C 在一条直线上,∵EF =ED =3,∴Rt △CEF ≌Rt △CED ,由勾股定理得:CE =5,∴CD =CF =4,设AP =x ,则PF =x ,PC =x +4,BP =4-x ,在Rt △BCP 中,由勾股定理得:,()()222446x x +=-+解得:x =,即AP =;9494(2)∠FEC =90°,如下图所示,过F 作FH ⊥AD 于H ,过P 作PG ⊥FH 于G ,易知∠EFH =∠ECD ,∴,FH DE EF CE=∴,335FH =即FH =, ∴EH =,AH =PG =,9512535由∠FPG =∠HFE ,∴cos ∠FPG = cos ∠HFE ,即,PG FH PF EF=,39553PF =解得:PF =1;故答案为:或1.94例5.(2019·许昌二模)如图,已知平行四边形ABCD 中,AB =16, AD =10,sinA =, 点M 为AB 35边上一动点,过点M 作MN ⊥AB 交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处. 当△CDE 为直角三角形时,AM 的长为.【分析】分两种情况讨论:当∠CDE =90°,根据折叠的性质及勾股定理求解;当∠DEC =90°,过D 作DH ⊥AB 于H ,根据相似三角形的性质:得到DH =6,AH =8,设EH =x ,根据勾股定理得到x =8﹣,x =(舍去),得AE =AH +HE =16﹣,于是得到AM =8.【答案】4或8.【解析】解:当△CDE 为直角三角形时,①当∠CDE =90°,如下图所示,在平行四边形ABCD 中,AB ∥CD ,∴DE ⊥AB ,由折叠知:MN ⊥AB ,AM =EM ,∴MN ∥DE ,∴AN =DN =AD =5,12由sinA ==,MN AN 35∴MN =3,AM =4;②当∠DEC =90°,如下图所示,过D 作DH ⊥AB 于H ,由题意知:∠HDC =90°,∴∠HDC +∠CDE =∠CDE +∠DCE =90°,∴∠HDE =∠DCE ,∴△DHE ∽△CED ,∴,DE CD EH DE∵sinA =,AD =10,∴DH =6,AH =8,35设EH =x ,∴DE =,由勾股定理得:DH 2+HE 2=DE 2,62+x 2=16x ,解得:x =8﹣,x =(不合题意舍去),∴AE =AH +HE =16﹣,∴AM =8,故答案为:4或8.例6.(2019·金水区校级一模)如图,在Rt △ABC 中,AB =3,BC =4,点P 为AC 上一点,过点P 作PD ⊥BC 于点D ,将△PCD 沿PD 折叠,得到△PED ,连接AE .若△APE 为直角三角形,则PC = .【答案】.1516【解析】解:当∠AEP =90°时,设PC =x ,在Rt △PDC 中,sinC =,cosC =,3545所以PD =x ,CD =x .3545由折叠知:DE =CD =x .45∴BE =BC ﹣CE =x .125在△ABE 和△EDP 中,∠B =∠PDE ,∠BAE +∠AEB =90°,∠PED +∠AEB =90°,∴∠BAE =∠PED .∴△ABE ∽△EPD .∴,即,解得x =.BE DP AB DE =123534x =1516故答案为:.1516例7.(2019·卧龙区一模)如图,在Rt △ABC 中,AC =8,BC =6,点D 为斜边AB 上一点,DE ⊥AB 交AC 于点E ,将△AED 沿DE 翻折,点A 的对应点为点F .如果△EFC 是直角三角形,那么AD 的长为 .【分析】根据勾股定理得到AB =10,分三种情况讨论:∠CFE =90°,∠ECF =90°,∠CEF =90°时,得到结论.【答案】或5.75【解析】解:在Rt △ABC 中,AC =8,BC =6,由勾股定理得:AB =10,(1)若∠CFE =90°,在Rt △ABC 中,∠ACB =90°,∴∠1+∠2=∠B +∠A =90°,由折叠知:∠A =∠2,AE =EF ,∴∠1=∠B ,即CF =BC =6,在Rt △CEF 中,由勾股定理得:CE 2=EF 2+CF 2,CE 2=(8﹣CE )2+62,∴CE =,254∴AE =,74由△ADE ∽△ACB ,得:AE AD AB AC ∴AD =;75(2)当∠ECF =90°时,点F 与B 重合,AD =5;(3)当∠CEF =90°时,则EF ∥BC ,∠AFE =∠B ,∵∠A =∠AFE ,∴∠A =∠B ,∴AC =BC (与题设矛盾),∴这种情况不存在,故答案为:或5.75例8.(2019·河南模拟)在矩形ABCD 中,AB =3,BC =4,点E ,F 分别为BC ,AC 上的两个动点,将△CEF 沿EF 折叠,点C 的对应点为G ,若点G 落在射线AB 上,且△AGF 恰为直角三角形,则线段CF 的长为 【答案】.202079或【解析】解:(1)当∠AFG =90°时,如下图所示,设CF =y可得:△AFG ∽△ABC ∴AF GF AB BC=即534y y -=解得:x =;207(2)当∠AGF =90°时,如下图,设CF =x在Rt △ABC 中,AB =3,BC =4,由勾股定理得:AC =5由折叠知:GF =FC .∵∠AGF =∠ABC =90°∴GF ∥EC∴△AGF ∽△ABC ∴AF GF AC BC =即554x x -=解得:x =;209故答案为:.202079或。
【精编版】2020年(河南)中考数学压轴题全揭秘精品专题06 图形面积计算
专题06图形面积计算【例1】(2019·南阳模拟)如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π﹣9B.9π﹣C.9π﹣18 D.9π﹣【答案】D.【解析】解:连接OD,由折叠的性质知:CD=CO,BD=BO,∠DBC=∠OBC,∠OB=OD=BD,即∠OBD是等边三角形,∠∠DBO=60°,∠∠CBO =30°,∠OC OB = ∠S 阴影=S 扇形AOB ﹣S ∠BDC ﹣S ∠OBCS ∠BDC =S ∠OBC =12×OB ×OC =12, S 扇形AOB =9π,∠S 阴影=S 扇形AOB ﹣S ∠BDC ﹣S ∠OBC=9π﹣=9π﹣所以答案为:D .【变式1-1】(2019·开封模拟)如图,把半径为2的∠O 沿弦AB ,AC 折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A B C . D .【答案】C .【解析】解:过O 作OD ∠AC 于D ,连接AO 、BO 、CO ,∠OD =12AO =1,AD =12AC , ∠∠OAD =30°,∠∠AOC =2∠AOD =120°,同理∠AOB =120°,∠BOC =120°,∠S 阴=2S ∠AOC=×22= 所以答案为:C .【变式1-2】(2017·郑州一模)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .【答案】26π-. 【解析】解:设折痕为AB ,连接OM 交AB 于点C ,连接OA 、OB ,由题意知,OM ⊥AB ,且OC =MC =12, 在RT △AOC 中,OA =1,OC =12,∴∠AOC =60°,AC ,AB =2AC ∴∠AOB =2∠AOC =120°,S 阴影=S 半圆﹣2S 弓形ABM=12π×12﹣2(212011136022π⨯-⨯6π-.故答案为:26π-. 【例2】(2019·郑州外外国语测试)如图所示,在Rt △ABC 中,∠ACB =90°,AC =BC ,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,若图中阴影部分面积为3π,则AB =【答案】2.【解析】S 阴影=S ∠ADE +S 扇形BAD -S ∠ABC∠S ∠ADE = S ∠ABC∠S 阴影= S 扇形BAD =3π, ∠230360AB π⨯=3π, 解得:AB =2,故答案为:2.【变式2-1】(2019·河南南阳一模)如图,在正方形ABCD 中,AB =3,点M 在CD 边上,且DM =1,∠AEM 与∠ADM 关于AM 所在直线对称,将∠ADM 按顺时针方向绕点A 旋转90°得到∠ABF ,连接EF ,则线段EF 的长为()A . 3 B. C. D. 【分析】求线段的长度,常用方法是将所求线段放在直角三角形中借助勾股定理求解,如图作出辅助线,通过分析可知,∠ADM ∠∠ABF ∠∠AEM ,可得DM =EM =1,AE =AD =AB =3,进而利用∠AEK ∠∠EMH ,求得EH ,MH 的长,再计算出EG ,FG 的长,在Rt ∠EFG 中,利用勾股定理求EF 的长度即可.【解析】过点E 作EG ∠BC 于G ,作EH ∠CD 于H ,延长HE 交AB 于K ,如图所示,由题意知,∠ADM ∠∠ABF ∠∠AEM ,∠DM =EM =1,AE =AD =AB =3,由∠AEK ∠∠EMH ,DF MDMH得:AE AK EK EM EH MH===3, ∠设EH =x ,则AK =3x ,即DH =3x ,MH =3x -1,在Rt ∠EMH 中,由勾股定理得:()22311x x -+=,解得:x =0(舍)或x =35, ∠MH =45,AK =DH =95,CH =3-DH =65, KE =BG =3MH =125, ∠FG =BF +BG =175,EG =CH =65, 在Rt ∠EFG 中,由勾股定理得:EF ==, 故答案为:C .【变式2-2】(2019·洛阳二模)如图,矩形 ABCD 中,AB =2,BC =1,将矩形 ABCD 绕点 A 旋转得到矩形AB ′C ′D ′,点 C 的运动路径为弧 CC ′,当点 B ′落在 CD 上时,则图中阴影部分的面积为 .【答案】5212π. 【解析】解:连接AC ’,AC ,过点B ’作B ’E ∠AB 于E ,如图图所示,由旋转性质,得:AC =AC ’, AB ’=AB =2,∠CAB =∠C ’AB ’,∠BC =B ’E =1,∠∠B ’AB =30°,∠∠C ’AC =30°,∠AE B ’C =2在Rt ∠ABC 中,由勾股定理得:AC∠S 阴影=S 扇形C ’AC -S ∠AB ’C ’-S ∠B ’CA=(23011212136022π⨯-⨯⨯-⨯⨯=5212π+-.故答案为:52122π+-. 【例3】(2019·河南南阳一模)如图,在∠ABC 中,AB =BC ,∠ABC =90°,CA =4,D 为AC 的中点,以D 为圆心,以DB 的长为半径作圆心角为90°的扇形EDF ,则图中阴影部分的面积为 .【分析】设DE 与BC 交于M ,DF 与AB 交于N ,S 阴影=S 扇形EDF -S 四边形DMBN ,根据∠DBM ∠∠DAN ,得S 四边形DMBN =S ∠BDA ,再利用扇形面积公式及三角形面积公式求解即可.【解析】解:设DE 与BC 交于M ,DF 与AB 交于N ,∠AB =BC ,∠ABC =90°,D 是AC 中点,∠∠A =∠C =∠CBD =∠DBA =45°,AD =BD =2,∠BDA =90°,∠∠EDF =90°,∠∠BDM =∠ADF ,∠∠DBM ∠∠DAN ,即S ∠DBM =S ∠DAN ,∠S 四边形DMBN =S ∠BDA ,S 阴影=S 扇形EDF -S 四边形DMBN=213602n r AD BD π-⋅⋅ =29021223602π⨯-⨯⨯=π-2,故答案为:π-2.【变式3-1】(2018·洛阳三模)如图,在扇形OAB 中,C 是OA 的中点,CD ∠OA ,CD 与弧AB 交于点D ,以O 为圆心,OC 的长为半径作弧CE 交OB 于点E ,若OA =6,∠AOB =120°,则图中阴影部分的面积为 .【答案】32π+. 【解析】解:连接OD ,交弧CE 于F ,连接AD ,∠OC =AC =3,CD ∠OA ,∠CD 是线段OA 的垂直平分线,∠OD =AD ,∠OD =OA ,∠∠OAD 是等边三角形,∠∠AOB =120°,∠∠DOA =∠BOD =60°,∠CD ,∠S 阴影=S 扇形BOD -S 扇形EOF +S ∠COD -S 扇形COF=222606603160333603602360πππ⨯⨯⨯-+⨯⨯=3π.即答案为:3π+2. 【变式3-2】(2018·河南第一次大联考)如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,则正方形ABCD 被纸板覆盖部分的面积为( )A .13a 2B .14a 2C .12a 2D .14a 【答案】B .【解析】解:如图,过O 作OE ∠AD 于E ,OF ∠CD 于F ,∠OE =OF ,∠EOF =90°,∠四边形OEDF 是正方形,OF =12a , ∠扇形的圆心角为直角,∠∠OME ∠∠ONF ,∠S 阴影=S 正方形OEDF =214a , 故答案为:B .1.(2018·河南师大附中模拟)如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分(∠BDF )的面积等于 .【解析】解:由题意得:S ∠BDF =S 菱形ABCD +S 菱形ECGF -S ∠BGF -S ∠EDF -S ∠ABD菱形ECGF 边CG 边上的高为:GF ·sin ,菱形ECGF 边CE 边上的高为:EF ·sin ,∠S ∠BDF 222112351222+-⨯-⨯2.(2019·济源一模)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,中间的小正方形 ABCD 的边长为 1,分别以A ,C 为圆心,1为半径作圆弧,则图中阴影部分的面积为【答案】12π-.【解析】解:连接BD ,S 阴影=2(S 扇形BAD -S ∠ABD )=2(29011113602π⨯-⨯⨯) =12π-, 故答案为:12π-. 3.(2019·偃师一模)如图,正方形ABCD 中,AB =1,将线段 CD 绕点 C 顺时针旋转 90°得到线段CE ,线段 BD 绕点 B 顺时针旋转 90°得到线段 BF ,连接 EF ,则图中阴影部分的面积是【答案】32-4π. 【解析】解:过F 作FM ∠BE 于M ,则∠FME =∠FMB =90°,∠四边形ABCD 是正方形,AB =1,∠∠DCB =90°,DC =BC =AB =1,∠DCB =45°,由勾股定理得:BD由旋转性质得:∠DCE =90°,BF =BD ,∠FBE =90°-45°=45°,∠BM =FM =1,即C 点与M 点重合,ME =1,∠阴影部分的面积:S =S ∠BCD +S ∠BFE +S 扇形DCE -S 扇形DBF=12+1+2901360π⨯-290360π⨯ =32-4π, 故答案为:32-4π.4.(2019·洛阳三模)如图,已知矩形 ABCD 的两条边 AB =1,AD B 为旋转中心,将对角线BD 顺时针旋转60°得到线段BE ,再以C 为圆心将线段CD 顺时针旋转90°得到线段CF ,连接EF ,则图中阴影部分面积为 .15212π-. 【解析】解:连接CE ,由CD =AB =1,AD BD =2,∠∠DBC =30°,由旋转知∠DBE =60°,BE =BD =2,∠∠DBC =∠EBC =30°,此时D 、C 、E 共线,∠S 阴影=S 扇形DCF +S ∠BCD +S ∠BEF -S 扇形DBE=(229011601111236022360ππ⨯+⨯⨯⨯-⨯15212π-.15212π-. 5.(2019·周口二模)如图,∠AOB 中,∠AOB =90°,AO =3,BO =6,∠AOB 绕点O 逆时针旋转到∠A ′OB ′处,此时线段A ′B ′与BO 的交点E 为BO 的中点,则线段B ′E 的长度为( )A. BCD【答案】B . 【解析】解:过O 作OF ∠A ’B ’于F ,由旋转性质得:OA =OA ’=3,OB =OB ’=6,∠F 为A ’E 的中点,∠E 为OB 中点,A′B′OB AE在Rt ∠A ’OB ’中,由勾股定理得:A ’B’=∠OF=, 在Rt ∠A ’OF 中,由勾股定理得:A ’F, ∠A ’E∠B ’E =A ’B ’-A ’E, 故答案为:B .6.(2019·周口二模)如图,等腰直角三角形ABC ,绕点C 顺时针旋转得到∠A ′B ′C ,AB ′所在的直线经过A ′C 的中点时,若AB =2,则阴影部分的面积为_________.【答案】413π. 【解析】解:延长AB ’交A ’C 于E ,由题意知E 为A ’C 的中点,∠A ’B ’=B ’C =AB =BC =2,∠B ’E ∠A ’C ,在Rt ∠ABC 中,由勾股定理得:AC,∠CE =A ’E,∠∠CAE =30°,∠ACE =60°,A′∠S 阴影=S 扇形ACA ’-S ∠ACE -S ∠A ’B ’E=(2601136022π⨯-=413π-.故答案为:413π-.7.(2017·新野一模)如图,在扇形OAB 中,∠O =60°,OA OECF 是扇形OAB 中最大的菱形,其中点E ,C ,F 分别在OA ,弧AB ,OB 上,则图中阴影部分的面积为 .【答案】8π﹣【解析】解:连接EF 、OC 交于点H ,则OH =12OC ∠FOH =∠AOC =30°, 在Rt ∠FOH 中,FH =OH ×tan 30°=2,∠菱形FOEC 的面积=12扇形OAB 的面积=(260360π⨯=8π,则阴影部分的面积为8π﹣故答案为:8π﹣8.(2019·开封二模)如图,在圆心角为120°的扇形OAB 中,半径OA =2,C 为弧AB 的中点,D 为OA 上任意一点(不与点O 、A 重合),则图中阴影部分的面积为 .【答案】23π.【解析】解:连接OC,BC,由题意知∠BOC=∠AOC=60°,∠OB=OC,∠∠BOC为等边三角形,∠∠OCB=∠COA=60°,∠BC∠OA,∠S∠BOC=S∠BCD,∠S阴影=S弓形BC+S∠BCD=S弓形BC+S∠BOC=S扇形BOC=23π,故答案为:2 3π.9.(2019·安阳一模)如图,在正方形ABCD中,AD=3,将线段AB绕点B逆时针旋转90°得到线段BE,将线段AC绕点C逆时针旋转90°得到线段CF,连接EF,则图中阴影部分的面积是___________.【答案】279 24π-.E【解析】解:由图知:S 阴影=S 扇形ABE +S ∠BEF -S 弓形AFS 弓形AF =S 扇形ACF -S ∠ACF由题意知,AD =3,AC =CF AB =BC =BF =BE =3,∠EBA =∠ACF =90°,∠S 弓形AF =S 扇形ACF -S ∠ACF=(290360π⨯-12⨯ =92π-9, S 阴影=S 扇形ABE +S ∠BEF -S 弓形AF=2903360π⨯+1332⨯⨯-(92π-9) =27924π-. 10.(2019·省实验一模)如图,将半径为1的半圆O ,绕着其直径的一端点A 顺时针旋转30°,直径的另一端点B 的对应点为B ',O 的对应点为O ',则图中阴影部分的面积是 .【答案】2π【解析】解:连接O ′D 、B ′D ,∠∠B ′AB =30°,∠∠AO ′D =120°,∠AB ′是直径,∠∠ADB ′=90°,由∠B ′AB =30°,得B ′D =12AB ′=1,在Rt ∠ADB ’中,由勾股定理得,AD∠S 阴影=S 扇形BAB ’-S ∠AO ’D -S 扇形DO ’B ’+S 扇形AO ’D -S ∠AO ’D=2222230260112011143603604πππ⨯⨯⨯-⨯-+-=2π故答案为:2π. 11.(2019·叶县一模)如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与∠A 相交于点F .若弧EF 的长为2π,则图中阴影部分的面积为 .【答案】22π-.【解析】解:连接AC ,∠DC 是∠A 的切线,∠AC ∠CD ,∠AB =AC =CD ,∠∠ACD 是等腰直角三角形,∠∠CAD =45°,∠四边形ABCD 是平行四边形,∠AD ∠BC ,∠∠CAD =∠ACB =45°,∠∠ACB =∠B =45°,∠∠F AD =∠B =45°,∠弧EF 的长为2π, ∠45=2180r ππ, 解得:r =2,∠S 阴影=S ∠ACD ﹣S 扇形ACE =21452222360π⨯⨯⨯- =22π-. 故答案为:22π-.12.(2019·濮阳二模)如图,在Rt ∠ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作弧CE 交AB 于点E ,以点B 为圆心,BC 的长为半径作弧CD 交AB 于点D ,则阴影部分的面积为 .【答案】π﹣2.【解析】解:S 阴影=S ∠ABC ﹣S 空白,∠∠ACB =90°,AC =BC =2,∠S ∠ABC =12×2×2=2, S 扇形BCD =2452360π⨯=12π, S 空白=2×(2﹣12π)=4﹣π, S 阴影=S ∠ABC ﹣S 空白=2﹣4+π=π﹣2,故答案为:π﹣2.13.(2019·南阳模拟)如图,在∠ABC 中,BC =4,以点A 为圆心,2为半径的∠A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是∠A 上的一点,且∠EPF =45°,则图中阴影部分的面积为 .【答案】4﹣π.【解析】解:连接AD∠∠A 与BC 相切于点D ,∠AD ∠BC ,∠∠EPF =45°,∠∠BAC =2∠EPF =90°.∠S 阴影=S ∠ABC ﹣S 扇形AEF =12×4×2﹣2902360π⨯ =4﹣π.故答案是:4﹣π.14.(2019·商丘二模)如图,在扇形OAB 中,∠AOB =90°,点C 为OB 的中点,CD ∠OB 交弧AB 于点D .若OA =2,则阴影部分的面积为 .【答案】23π 【解析】解:连接DO ,则OD =OA =OB =2,∠CD ∠OA ,∠AOB =90°,∠∠OCD =90°,∠C 为OB 的中点,∠CO =12OB =12DO , ∠∠CDO =30°,∠COD =60°,则CD∠S 阴影=S 扇形BOD -S ∠OCD=2602113602π⨯-⨯=23π-故答案为:23π 15.(2019·开封二模)如图,在∠ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与∠O 相交于点F .若弧EF 的长为π,则图中阴影部分的面积为 .【答案】8﹣2π.【解析】解:连结AC ,∠CD 是圆A 的切线,∠AC ∠CD ,即∠ACD =90°,∠四边形ABCD 为平行四边形,∠AB ∠CD ,AD ∠BC ,∠∠CAF =90°,∠F AE =∠B ,∠EAC =∠ACB ,∠AB =AC ,∠∠B =∠ACB ,∠∠F AE =∠EAC =45°,∠弧EF 的长为π,设圆A 的半径为r , ∠45180r ππ⨯=,得: r =4, ∠S 阴影=S ∠ACD ﹣S 扇形CAE =12×4×4﹣2454360π⨯ =8﹣2π.故答案为:8﹣2π.16.(2019·安阳二模)如图,点C 为弧AB 的三等分点(弧BC <弧AC ),∠AOB =90°,OA =3,CD ∠OB ,则图中阴影部分的面积为 .【答案】32π-. 【解析】解:连接OC ,AC ,由题意知:∠COD =30°,∠AOC =60°,∠CD ∠OB ,∠S ∠OCD =S ∠ACD ,∠∠CDO =90°, OC =OA =3,∠COD =30°,∠CD =32,OD , S 阴影=S ∠ACD +S 弓形AC=S ∠OCD +S 弓形AC=12×32+2603360π⨯×32=32π.故答案为:328π-. 17.(2019·平顶山三模)如图,长方形纸片ABCD 的长AB =3,宽BC =2,以点A 为圆心,以AB 的长为半径作弧;以点C 为圆心,以BC 的长为半径作弧.则图中阴影部分的面积是 .【答案】134π-6. 【解析】解:由图可知:S 阴影=2903360π⨯+2902360π⨯-S 矩形ABCD = 94π+π-6 =134π-6, 故答案为:134π-6. 18.(2019·名校模考)如图,在∠ABC 中,∠ABC =45°,∠ACB =30°,AB =2,将∠ABC 绕点C 顺时针旋转60°得∠CDE ,则图中线段AB 扫过的阴影部分的面积为 .. 【解析】解:过A 作AF ∠BC 于F ,∠∠ABC =45°,∠AF =BF =2AB ,在Rt ∠AFC 中,∠ACB =30°,AC =2AF =FC由旋转的性质可知,S ∠ABC =S ∠EDC ,S 阴影=S 扇形DCB +S ∠EDC ﹣S ∠ABC ﹣S 扇形ACE=S 扇形DCB ﹣S 扇形ACE=(226060360360ππ⨯⨯-,. 19.(2019·枫杨外国语三模)如图,在矩形 ABCD 中,AB =3,AD =4,将矩形 ABCD 绕点 D 顺时针旋转 90°得到矩形 A ′B ′C ′D ,连接 A ′B ,则图中阴影部分的面积为 .【答案】25144π-. 【解析】解:连接BD ,B ’D ,由题意知:∠BDB ’=90°,A ’C =A ’D -CD =1,由勾股定理得:BD =B ’D =5,∠S 阴影=S 扇形DBB ’-S ∠BCD -S ∠A ’B ’D -S ∠A ’BC =2905111343414360222π⨯-⨯⨯-⨯⨯-⨯⨯ =25144π-. 故答案为:25144π-. 20.(2019·中原名校大联考)如图,在菱形ABCD 中,AB =2,∠BAC =30°,将菱形ABCD 绕点A 逆时针旋转120°,点B 的对应点为点B ′,点C 的对应点为点C ′,点D 的对应点为点D ′,则图中阴影部分的面积为 .【答案】83π. 【解析】解:连接BD ,与AC 相交于点O ,则BD =2BO =2,AC AD =S 扇形=S 扇形CAC ′+S ∠ABC +S ∠AC ′D ′﹣S 菱形ABCD ﹣S 扇形DAD ′=S 扇形CAC ′﹣S 扇形DAD ′=(221201202360360ππ⨯⨯- =83π. 故答案为:83π. 21.(2019·三门峡一模)如图,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是__________.【答案】3π.【解析】解:∵∠A=30°,AD=2,∴平行四边形AB边上的高为:AD·sin30°,∵AB=4,∴BE=2,S阴影=S平行四边形ABCD-S扇形AED-S△BEC2302360π⨯-122⨯3π故答案为:-3π.22.(2019·周口二模)如图,P A、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是(结果保留π).【答案】6π.【解析】解:∵P A、PB是⊙O的切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,∵∠APB=60°,∴∠APO=30°,∠POA=60°,由AP=BP,OA=OB得:OP垂直平分AB,∴AC=BC,∴S△AOC=S△BOC,∴S阴影部分=S扇形OAD=26013606ππ⨯=.AE故答案为:.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上学期期末考试
一年级数学试卷 姓名 班级 成绩
一、我会算
1、 直接写出得数。
5+8= 9-0= 6+9= 16-2=
8-4= 10-7= 19-9= 7+7=
7-3= 0+12= 9-8= 12+3=
7-1= 8+3= 7+10= 4+8=
11+4+2= 5+8-3= 9-4+5= 13-3-9=
2、填一填
4+( )=9 ( )+3=12 7-( )=4
6+( )=11 2+( )=12 18-( )=10
二、我会填
2、按规律填数
15 12 11 3、在○里填上“>”、“<”或“=”。
12○20 17-5○12 17○8+8 6+3○19-10
4、
(1)一共有( )张数字卡片 1 3 5
16 20 11 19
7 8 0 2
(2)这些卡片上最大数是(),最小的数是()。
(3)从右往左数,第()个数是20,它是由()个十组成的。
(4)从左数第3张卡片是(),它是由()个十和()个一组成的。
(5)在从右数第3张卡片下面画一个“√”。
把左边5张卡片圈起来。
5、笑笑和同学排成一条队做游戏,他前面有5人,后面有2人,这条队一
共有()人。
三、我会选。
将正确答案的序号填在()里。
1、一个数是由5个一,1个十组成的,这个数是()。
①51 ②5 ③15
2、比多少,( )。
①
3、11时再过1小时是()。
①12时②11时过一会儿③10时
4、小明今天从第13页读到17页,明天该读第18页了。
小明今天读了()页。
①4 ②5 ③6
四、我会画
1、画△,使△比☆少2个
☆☆☆☆☆☆
2、找规律,认一认,画一画。
五、我会认
2、哪两个堆积木可以拼成,用线连一连。
六、我会用
1. 2.
□○□=□(个)
□○□=□(个)□○□=□(个)
3. 4.
□○□○□=□(只)
5.
他们一共折了多少只小鸟?
□○□=□(只)6. 一共要种15棵树,已经种了10棵,还需要种几棵?
□○□=□(棵)
图书角原来有多少本图书?
□○□=□(本)。