分水岭算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分水岭算法的概念及原理

分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。

分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。

分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即

g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5

式中,f(x,y)表示原始图像,grad{.}表示梯度运算。

分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。

为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。

为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即

g(x,y)=max(grad(f(x,y)),gθ)

式中,gθ表示阈值。

程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。

分水岭算法(Watershed Algorithm)

所谓分水岭算法有好多种实现算法,拓扑学,形态学,浸水模拟和降水模拟等方式。要搞懂就不容易了。Watershed Algorithm(分水岭算法),顾名思义,就是根据分水岭的构成来考虑图像的分割。现实中我们可以或者说可以想象有山有湖的景象,那么那一定是水绕山,山围水的情形。当然在需要的时候,要人工构筑分水岭,以防集水盆之间的互相穿透。而区分高山(plateaus)与水的界线,以及湖与湖之间的间隔或都是连通的关系,就是我们可爱的分水岭(watershed)。为了得到一个相对集中的集水盆,那么让水涨到都接近周围的最高

的山顶就可以了,再涨就要漏水到邻居了,而邻居,嘿嘿,水质不同诶,会混淆自我的。那么这样的话,我们就可以用来获取边界灰阶大,中间灰阶小的物体区域了,它就是集水盆。

浸水法,就是先通过一个适当小的阈值得到起点,即集水盆的底;然后是向周围淹没也就是浸水的过程,直到得到分水岭。当然如果我们要一直淹没到山顶,即是一直处理到图像灰阶最高片,那么,当中就会出现筑坝的情况,不同的集水盆在这里想相遇了,我们要洁身自爱,到这里为止,因为都碰到边界了;那么即使在相遇时没有碰到最高灰阶的地方,也需要人工构筑分水岭,区分不同的区域。不再上山。构筑属于自己的分水岭

在计算机图形学中,可利用灰度表征地貌高。图像中我们可以利用灰度高与地貌高的相似性来研究图像的灰度在空间上的变化。这是空域分析,比如还可以通过各种形式的梯度计算以得到算法的输入,进行浸水处理。分水岭具有很强的边缘检测能力,对微弱的边缘也有较好的效果。这与分水岭扩张的阈值的设置有关系,阈值可以决定集水盆扩张的范围。但自我构筑的能力却不受影响。

为会么这么说呢?为什么有很强的边缘检测能力,而又能得到相对集中的连通的集水盆?现实中很好办,我们在往凹地加水的时候,直到它涨到这一块紧凑的山岭边缘就不加了;但是如果有一条小山沟存在,那没办法,在初始阈值分割的时候,也就是山沟与集水盆有同样的极小值,而且它们之间是以这个高度一直连接的。那没关系,我们将它连通。在图像上呢?如何实现?

看看算法,算法思想是这样的:

首先准备好山和初始的水。这山就是我们的初始图像了,比如用自然获取的图像的梯度来表征山地的每一点的高度吧;而初始的水就是在阈值记为Thre底下,所有的低于这个高度的整个山地都加水,直到这个阈值Thre高度。从而有三个初始量:unsigned char** Ori_image、char** Seed_image和int** Label_image。最后一个是为最终的结果做准备的。当然要做好初始化,比如,Ora_image赋值为原图像(256色灰度图)的梯度值,Seed_image则是初始状态下有水的置位,无水的复位,而Label_image则全初始化为0,最终得到的是各点对应的区域号。

接下来是考虑将已加的水进行记录,记录成连通的区域,也就是看看有多少个互不相关的集水盆,有五个,那么我们就涨出五个湖,而且尽可能的高,只要大家想到不溢出。在算法上,有多少个连通的区域就记录成多少个数据结构,工夫就在于如何将这些连通的区域连接成一块,并由一个数据结构来表达了。很好,我们准备用一个向量容器来实现初始保存,保存所有标记区域种子队列的数组,里面放的是种子队列的指针vector*> vque; ,而且这个队列是由一系列属于同一个区域的图像点组成,我们来自一个集水盆:);其保存方式是这样的:queue *pque=new queue[256];vque.push_back(pque),这样便将一个成员放进到这个区域来了,即容器--集水盆的保管都,容器中的每个指针,都指向一个集水盆,也就是我们要的连通区域;所以我们可以方便地由这个容器数据结构直接读值的方便性进行操作,一个脚标就可以得到一个区域(队列指针)的指针;而每个队列还不简单,并不是一列整形数那么易搞,所以说啊,这个算法,真头痛,这个队列的一个成员是一个点;而注意到vque里存放的一256个队列的的起始指针,真够残忍的。也就是说vque [m] [n]就表达了一个队列,这个队列里可以存储操作一系

相关文档
最新文档