电磁场与微波技术实验

合集下载

电磁场与微波实验报告(极化波)

电磁场与微波实验报告(极化波)

实验报告 课程名称: 电磁场与微波技术实验 指导老师: 谢银芳、王子立 成绩:
实验名称: 极化波 实验类型: 验证型实验 同组学生姓名:
一、实验目的和要求(必填) 二、实验内容和原理(必填)
三、主要仪器设备(必填) 四、操作方法和实验步骤
波都可由两个同频率的正交线极化波组合而成。设同频率的两个正交线极化波为:
Ex?Exme?j(kz??x)
Ey?xm??Eym时,是线极化波
当?x??y???
2,Exm??Eym时,是圆极化波
当?x??y介于线极化波与圆极化波时,是椭圆极化波
内容:1.圆极化波的调整与测量
2.线极化波的调整与测量
3.椭圆极化波的调整与测量
三、主要仪器设备
如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。其中固态信号源工
作频率为f=9375MHz。接收喇叭由矩形喇叭,检波器,,微安表等组成。其它装置基本上
与实验一相同。
五、实验数据记录和处理 六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。
2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。
3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。
二、实验内容和原理
原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。
若 E的末端轨迹在一条直线上时,称为线极化波; 若E末端的轨迹是圆(或椭圆),称为
圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称
为右旋(或左旋)圆极化波。而椭圆极化波末端为椭圆形。线极化波、圆极化波和椭圆极化

电磁场与微波实验

电磁场与微波实验
� Microwave Office 2003完全构建在微软 Windows环境下,在执行仿真、版图设计以及 电磁分析时的速度比一些同类工具要快很多.
Page � 24
内置丰富的元件库 � MWO引入了许多微波元器件模型,包括集总元件
、分布参数元件,各种同轴、波导转接头,有源、 无源等器件模型等等。所以,该软件涵盖内容十分 广泛,几乎包括了微波设计的所有内容。MWO是 通过两个模拟器来对微波平面电路进行模拟和仿真 的。对于由集总元件构成的电路,用电路的方法来 处理较为简便。
创建一个新的电路原理图:右键单击Project View界面下的Circuit Schematics,点击New Schematics,建立一个空白的原理图;选择Elem Browser,按下图完成原理图。
左键单击Elem标签,在Nonlinear中选择 Diode,此时下方窗口将出现一些Diode元件;选 择窗口中的Sdiode元件,将其拖入原理图;重复 上面步骤,将Sources中的ACVS,Lumped Element中的RES,MeasDevice中的V_meter拖进 原理图。最后如图进行连线;在原理图的任何图 表符号上,双击左键可编辑参变量,完成原理图 中元件参数设置。
System Blocks:用于通信系统的仿真。
Page � 30
TXLine(传输线阻抗计算器)的使用
� 射频、微波电路与低频电路很重要的区别在于金属 线间耦合会对电路参数产生显著的影响,其影响主 要与金属线的线长与线宽有关 。此软件可以算出固 定基板的情况下各类微带结构的特性阻抗对应的金 属线的宽度和长度,为实际器件设计提供 等效元件 。
采用1 λ线匹配,有
4
Zin
=
Z
n

电磁场与微波技术实验报告.

电磁场与微波技术实验报告.

电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。

匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。

然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。

电磁场与微波实验实验

电磁场与微波实验实验

λg/mm
41.6
38.9
39.5
40
λg/mm 均值
40.0
λ0/mm
30.1
6. 用直接发测量计算电压驻波比(实际测量时,读取的是电压值)
1
2
3
4
Vmax/mV
210
208
200
200
Vmin/mV
50
48
50
40
ρ
2.09
7. 按照实验原理测量计算 lmin,并求出归一化阻抗值和实际阻抗值。
DT DA l������������������ 电长度
ρ
=
Emax ������min
=
√������������mmainx
在电压驻波系数1 < ρ < 1.5时,可以测量几个节点,取平均值。
ρ = √������m������amxi1n1++������m������maxin22++⋯⋯+������m������minanxn
当驻波系数1.5 < ρ < 5,直接读出������max和������min即可。 3. 测量阻抗
2. 预热信号源。设置信号源。载波设置:频率 10GHz,功率 15dBm;调制方式设置:AM,1KHz 方 波调制,调制深度>90%。
3. 预热选频放大器。
4. 插入驻波测量线探针,将探针移到两个波节点的中点,调节谐振回路使测量放大器指示最大。
5. 将波导测量线插入终端短路,用两点法测量导波波长
1
99.25 107.60 8.35 0.208
归一化阻抗
1.54 − 0.7i
实际阻抗
77 − 35i

电磁场与微波技术实验心得(优秀范文五篇)

电磁场与微波技术实验心得(优秀范文五篇)

电磁场与微波技术实验心得(优秀范文五篇)第一篇:电磁场与微波技术实验心得电磁场与微波技术实验报告我们班连续观摩了三个《电磁场与微波技术》课程的实验,通过观看视频,老师讲解和演示,以及自己的一些操作,使我们加深了对这三个实验的一些了解。

实验一、电磁波极化在这个实验我们主要了解电磁波极化、天线极化的概念;了解电磁波的分解与合成原理;了解圆极化波产生的基本原理。

这个实验主要用到的仪器是微波分光仪,里面包含支座、分度转台、喇叭天线、可变衰减器、晶体检波器、视频电缆及微安表、读书机构、栅网组件、三厘米信号源、分光介质板。

实验内容:首先连接好实验仪器,三厘米固态信号源工作在等幅状态,按下电压按键使三位半数字表显示电压的示数,信号源的输出端通过同轴线连接到微波分光仪,此时的电信号通过同轴转波导经过隔离器、可变衰减器到达辐射天线的辐射喇叭(Pr0),辐射喇叭辐射出的波经过栅网组件的反射和吸收到达接收喇叭(Pr3),经由晶体检波器,通过同轴线与微安表相连。

垂直栅网(Pr1)与辐射喇叭在同一条水平线上,通过长铝质支柱固定在基座上;水平栅网(Pr2)正对着辐射喇叭,并与垂直栅网成直角,通过读数机构和短铝质支柱固定在基座上。

接收喇叭与辐射喇叭成45º角。

然后开始实验,打开信号源开关,这时转动接收喇叭Pr3,当Pr3喇叭E面与垂直栅网平行时收到E⊥波,经几次调整辐射喇叭Pr0的转角使Pr3接收到的|E∥|=|E⊥|,实现圆极化的幅度相等要求。

然后接收喇叭Pr3在E∥和E⊥之间转动,将出现任意转角下的|Eα|≤|E∥|(或E⊥)。

这时改变Pr2水平栅网位置,使Pr3接收的波具有|Eα|=|E∥|=|E⊥|,从而实现了E∥和E⊥两个波的相位差为±90º,得到圆极化波。

实验心得:通过老师的细心讲解以及在老师的指导下,我们进行了一些简单的操作,熟悉了实验仪器的名称,以及一些仪器的作用以及工作原理,如三厘米信号源, 它是一种使用体效应管作振荡源的微波信号源,能输出等幅信号及方波调制信号。

电磁场与微波技术实验二

电磁场与微波技术实验二

电磁场与微波技术实验报告实验题目:基于ADS软件的传输线理论仿真设计与分析学号:学生姓名:专业:班级:指导教师:一:实验目的:1、熟悉ADS软件的基本使用方法2、了解基本传输线、微带线的特性3、利用ADS软件进行基本传输线和微带线的电路设计和仿真二:实验原理:对无耗均匀传输线,线上各点电压U(z),电流I(z)与终端电压U1,终端电流I1的关系为:U(z)=U1cos(βz)+jI1Z0sin(βz)I(z)=I1cos(βz)+j(U1/Z0)sin(βz)其中Z0为无耗传输线的特性阻抗;β为相移常数。

定义传输线上任意一点z处的输入电压和输入电流之比为该点的输入阻抗,记作Zin,即:Zin(z)=U(z)/I(z)由此可以得:Zin==Z0其中,Z1为终端负载阻抗。

Zin=Z0(Z1+jZ0)/(Z0+jZ1),β=2π/λ,若已知Z0、Z1就可以知道任意一点的Zin,=(Zin-Z0)/(Zin)+Z0)1、当Z1=0,即负载短路时,||=1,全反射,此时为纯驻波状态,Zin= jZ02、当Z1为无穷大,即负载开路时,||=1,也发生全反射,为纯驻波状态,此时Zin= Z0/j3、当Z1为复阻抗时,即Z1=R1+jX1,此时为行驻波状态4、当Z1为纯电抗时,因为负载不消耗能量,所以任将产生全反射。

5、当负载为匹配时,即Z1=Z0,此时Zin=Z0三:软件仿真1、负载短路情况下的特性负载短路原理图实验仿真任务:1)绘制频率响应线2)终端负载短路时smith圆图s参数分布3)终端短路时输入阻抗分布列表4)终端短路是s参数分布仿真结果分析:2、负载开路情况下的特性负载开路原理图实验仿真任务:1)绘制频率响应线2)终端负载开路时smith圆图s参数分布3)终端开路时输入阻抗分布列表4)终端开路是s参数分布仿真结果分析:3、负载为复阻抗下的特性负载为复阻抗时原理图实验仿真任务:1)绘制频率响应线2)终端负载复阻抗时smith圆图s参数分布3)终端复阻抗时输入阻抗分布列表4)终端复阻抗是s参数分布仿真结果分析:4、负载为纯电抗下的特性负载为纯电抗时原理图实验仿真任务:1)绘制频率响应线2)终端负载纯电抗时smith圆图s参数分布3)终端纯电抗时输入阻抗分布列表4)终端纯电抗是s参数分布仿真结果分析:5、负载为匹配下的特性负载为匹配时的原理图实验仿真任务:1)绘制频率响应线2)终端负载匹配时smith圆图s参数分布3)终端纯电抗时输入阻抗分布列表4)终端纯电抗是s参数分布仿真结果分析:当负载匹配时,传输线上任一点的输入阻抗为50ohm,符合Zin=Z0。

电磁场与微波技术znjn完整版

电磁场与微波技术znjn完整版

电磁场与微波技术z n j n Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】——电磁场与微波技术实验报告班级:06姓名:张妮竞男学号:84序号: 31#日期:2014年5月31日邮箱实验二:分支线匹配器一、实验目的1、掌握支节匹配器的工作原理2、掌握微带线的基本概念和元件模型3、掌握微带分支线匹配器的设计与仿真二、实验原理1、支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

此电纳或电抗元件常用一终端短路或开路段构成。

2、微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。

微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。

L为微带线的长度。

微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。

微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。

微带线元件模型3、元器件库里包括有:MLIN:标准微带线MLEF:终端开路微带线MLSC:终端短路微带线MSUB:微带线衬底材料MSTEP:宽度阶梯变换MTEE:T型接头MBENDA:折弯微带线的不均匀性上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。

电磁场与微波技术实验教程 第1章

电磁场与微波技术实验教程 第1章

如果入射波波长为λ, 两波的波程差为δ, 当δ=kλ(k=0, ±1, ±2, …)时, 接收天线检波后电流 表有极大指示; 当δ=(2k+1)/2λ(k=±1, ±2, ±3, …)时, 接收天线检 波后电流表有极小指示。
B板固定不变, 从端点移动A板改变波程差δ, 当出现 电流表指示极小时, A板位置在某处(由千分尺读出), 再同 方向继续移动A板又再次出现电流表指示极小时, A板的移 动位置改变恰好为λ/2。 继续同方向移动A板, 当出现m+1 个电流表指示极小时, 移动距离就为m/2个波长, 由此可测 出微波源的波长。
图1.1.2 静电场测试电路
五、 1.
2. 本实验方法很简单, 但它是工程上很有效的一种方法。 因此, 除测出所需点电位分布外, 还要深入理解有关的一 些问题。 在做实验报告时除一般要求内容数据外, 还要回 答下列问题: (1) 将平行板电容器的被测模型所测的数据画成距离- 电位图, 与平行板电容器理论上的距离-电位比较, 并解 释为什么在Y=0及Y=10 cm附近(“电极”附近)电位有急剧变 化。 (2) 若要模拟有边缘效应的情况, 其被测模型应如何改
(3) 调节可移动反射板A, 测出电流表指示极小点时A板 的位置S0、 S1、 S2、 S3、 S4, 求出电磁波的波长λ。
在实验时也可以测量其极大点, 但通常测量极小点比 测量极大点准确。
使用微波干涉仪也可以测量介质的相对介电常数Er。 在图1.2.1中, 固定反射板B前插入一块介电常数为Er、 厚度 为d的介质板。 这时在这一路径中电磁波传播的波程改变了, 由于插有介质板的这一路电磁波波程增加了Δδ, 即
Δ 2d ( r 1) (1.2.1)
(1.1.1)
在恒定电流场中, 电场强度E、 电流密度J及电位Ф满 足下列方程:

电磁场与微波技术实验报告(全)

电磁场与微波技术实验报告(全)

信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。

二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。

匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。

并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。

双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。

而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。

三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。

2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。

电磁场与微波实验报告

电磁场与微波实验报告

电磁场与微波实验报告电磁场与微波实验报告引言:电磁场是物质世界中一种重要的物理现象,它在我们的日常生活中无处不在。

微波则是一种特殊波长的电磁波,广泛应用于通信、烹饪等领域。

本次实验旨在通过探究电磁场与微波的关系,加深对电磁场的理解,并验证微波的特性。

实验目的:1. 了解电磁场的基本概念和特性;2. 探究电磁场与微波的关系;3. 验证微波的特性。

实验材料:1. 微波炉;2. 金属网格;3. 纸片;4. 木棒;5. 电磁场探测器。

实验步骤:1. 将纸片放置在微波炉的底部,然后打开微波炉并设定一定的时间;2. 观察纸片在微波炉中的变化,并记录下来;3. 在微波炉中放置金属网格,然后再次打开微波炉并设定一定的时间;4. 观察金属网格在微波炉中的变化,并记录下来;5. 使用木棒在微波炉中进行搅拌,并观察木棒的变化;6. 使用电磁场探测器测量微波炉中的电磁场强度,并记录下来。

实验结果与分析:1. 纸片在微波炉中变热、变焦;通过观察纸片在微波炉中的变化,我们可以看到纸片在微波炉中变得热乎乎的,并且在一定时间后出现了焦黑的现象。

这说明微波炉中的微波能够加热物体,使其发生物理变化。

2. 金属网格在微波炉中产生火花;当我们将金属网格放置在微波炉中时,观察到金属网格上出现了明亮的火花。

这是因为金属具有良好的导电性,当微波炉中的微波与金属网格相互作用时,产生了电流,从而导致了火花的产生。

3. 木棒在微波炉中没有明显变化;与纸片和金属网格不同,木棒在微波炉中并没有出现明显的变化。

这是因为木材是绝缘体,无法导电,微波无法对其产生明显的作用。

4. 微波炉中的电磁场强度较高;通过使用电磁场探测器测量微波炉中的电磁场强度,我们可以发现微波炉中的电磁场强度相当高。

这也是微波炉能够迅速加热食物的原因之一。

结论:通过本次实验,我们深入了解了电磁场的基本概念和特性,并验证了微波的特性。

微波能够加热物体,使其发生物理变化;金属具有良好的导电性,当微波与金属相互作用时会产生火花;木材是绝缘体,无法导电,因此在微波炉中没有明显变化。

电磁场与微波实验实验

电磁场与微波实验实验

电磁场与微波实验实验电磁场与微波实验一(一)动画演示:电磁波在矩形波导、平行双线、同轴线中的传播特性(二)自由空间电磁波波长的测量和矩形波导截止特性的研究一.实验目的1. 了解电磁波综合测试仪的结构,掌握其工作原理。

2. 在学习均匀平面电磁波特性的基础上,观察与了解电磁波传播特性。

3. 熟悉并利用相干波原理,测量自由空间内电磁波波长,并确定相位常数。

4. 研究电磁波在矩形波导中的截止特性。

二.实验原理1. 自由空间电磁波波长测量两路等幅、同频率的均匀平面电磁波,在自由空间内以相同或相反方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。

本实验利用相干波原理,使得接收喇叭处的两路电磁波分别为:Er1=T0??c??0ijΦ1,Er2=T0??c??0ijΦ2。

其中Φ1=KL1,Φ2=KL2。

通过移动一个活动金属板B,改变两路光线的光程差,看最后的合成光的强度变化。

当=??2(2??+1)时接受指示为0,则B0值。

一般测试4~5个接受零值,再求22πλ??出测量波长的平均值。

测量移动的距离即可获得自由空间电磁波波长λ值,再根据??=波的传播常数。

2. 矩形波导的截止特性研究得到电磁实验通过观察电磁波通过开缝金属板及开孔金属板的效果来研究矩形波导的截止特性。

将发射喇叭和接收喇叭调整到同一轴线上,在两个喇叭中间安装开缝金属板和开孔金属板,金属板的法线与喇叭轴线一致。

当发射喇叭的电磁波照射到开缝金属板时,开缝金属板对于电磁波来说,相当于多个矩形波导并列的口面。

设缝宽为a,相当于波导的宽边。

点磁场方向平行于缝隙。

根据矩形波导理论,当满足工作波长λ&lt;2a时,波能通过缝隙传播;当λ&gt;2a时,出现截止衰减,电磁波被反射。

a越小,截止衰减越明显,反射越大,同样,对于开孔金属板,当孔径a满足2&gt;a时,不用极化方向的电磁波截止衰减,被反射。

实验中,分别观察不同尺不同方向的开缝金属板及开孔金属板对电磁波的反射与透射效果。

四川大学电磁场与微波技术实验

四川大学电磁场与微波技术实验

电磁场与微波技术实验任课老师:陈倩魏念东学生:笔墨东韵微波实验部分一、实验目的:1.了解波导系统的几种工作状态,掌握波导元件的使用方法。

2.掌握用驻波测量线测量波导波长的方法。

3.掌握微波频率的测量方法。

4.分析和计算波导波长及微波频率。

二、实验原理进行微波测量,首先必须正确安装与调整微波测量系统。

如图给出了实验室常用的微波测试系统。

1.测量线的调整测量线是微波系统的一种常用测量仪器,他在微博测量中用途很广,可测驻波、阻抗、相位、波长等。

测量线通常由一段开槽传输线、探头(耦合探针、探针的调谐腔体和输出指示)、传动装置三部分组成。

由于耦合探针深入传入而引入不均匀性,其作用相当于在线上并联一个导纳,从而影响系统工作状态。

为了减少其影响,测试前必须仔细调整测量线实验中测量线的调整一般包括探针深度调整和耦合输出匹配(即调谐探头)。

2. 晶体检波器的工作原理在微波测量系统中,送至指示器的微波能量通常是经过晶体二极管检波后的直流或低频电流,指示器的读数是检波电流的有效值。

在测量线中,晶体检波电流与高频电压之间关系是非线性的,因此要准确测出驻波 (行波) 系数必须知道晶体检波器的检波特性曲线。

晶体二极管的电流I 与检波电压 U 的一般关系为 I=CUn式中, C 为常数, n 为检波律, U 为检波电压。

检波电压 U 与探针的耦合电场成正比。

晶体管的检波律 n 随检波电压 U 改变。

在弱信号工作(检波电流不大于10μA )情况下,近似为平方律检波,即n=2;在大信号范围, n 近似等于1,即直线律。

测量晶体检波器校准曲线最简便的方法是将测量线输出端短路, 此时测量线上载纯驻波,其相对电压按正弦律分布, 即:max 2sin g U d U πλ⎛⎫= ⎪ ⎪⎝⎭2-2 式中,d 为离波节点的距离,Umax 为波腹点电压,λg 为传输线上波长。

因此,传输线上晶体检波电流的表达式为2sin ng d I C πλ⎡⎤⎛⎫=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦ 2-3根据式(2-3)就可以用实验的方法得到图2-1所示的晶体检波器的校准曲线3. 波导波长的测量原理测量线的基本测量原理是基于无耗均匀传输线理论,当负载与测量线匹配时测量线内是行波;当负载为短路或开路时,传输线上为纯驻波,能量全部反射。

四川大学电磁场与微波技术实验

四川大学电磁场与微波技术实验

电磁场与微波技术实验报告实验题目微波频率和波长的测量阻抗匹配实验分支线型耦合器实验滤波器实验任课教师张*老师实验时间2019年12月18日下午实验地点望江校区基础教学楼B522姓名学号陈**(20171414*****)吕**(20171414*****)柳**(20171414*****)林**(20171414*****)二0一九年·十二月目录实验一微波频率及波长测量 (1)一、实验目的 (1)二、实验仪器 (1)三、实验原理 (1)四、实验内容 (4)五、实验数据及结果分析 (5)六、实验心得 (6)实验二阻抗匹配实验 (7)一、实验目的 (7)二、实验内容 (7)三、实验仪器 (7)四、实验原理 (7)五、实验步骤及实验数据 (8)六、实验结果分析 (12)七、实验心得体会 (13)实验三分支线型耦合器 (14)一、实验目的 (14)二、实验内容 (14)三、实验仪器 (14)四、实验原理 (14)五、实验步骤及实验数据 (15)六、实验结果分析 (19)七、实验心得体会 (19)实验四滤波器实验 (20)一、实验目的 (20)二、实验内容 (20)三、实验仪器 (20)四、实验原理 (20)五、实验步骤及实验数据 (21)六、实验数据分析 (25)七、实验心得体会 (25)实验一微波频率及波长测量一、实验目的1、学会使用基本的测频仪器和信号发生器。

2、掌握基本的测量频率和波长的方法。

3、利用波导测试系统,使用吸收式频率计作频率测量电磁波频率;使用测量线来测量波长和频率。

二、实验仪器三、实验原理1、系统构成本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。

如图1所示,该系统由以下十一个部分组成:图1. 系统构成1)微波信号源DH1121C型微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

电磁场与微波技术实验报告

电磁场与微波技术实验报告

电磁场与微波技术实验报告实验题目:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真学号:学生姓名:专业:班级:指导教师:一、实验目的1、熟悉ADS软件的基本使用方法2、了解基本传输线、微带线的特性3、利用ADS软件进行基本传输线和微带线的电路设计和仿真二、实验仪器Advanced Design System软件。

三、实验原理滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

1、滤波器的介绍滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。

射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。

滤波的性能指标:频率范围:滤波器通过或截断信号的频率界限通带衰减:滤波器残存的反射以及滤波器元件的损耗引起阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带2、平行耦合微带线滤波器的理论当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。

平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。

当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

电磁场与微波技术实验教案

电磁场与微波技术实验教案

电磁场与微波技术实验教案第一章:电磁场基本概念1.1 电磁场的基本性质电场和磁场的基本概念电磁场的分布和边界条件电磁场的能量和动量1.2 电磁波的产生和传播电磁波的数学描述电磁波的产生和发射电磁波在自由空间和介质中的传播特性第二章:电磁场计算方法2.1 静电场的计算静电场的基本方程格林函数法求解静电场有限差分法求解静电场2.2 稳恒磁场的计算磁场的基本方程安培环路定律的应用毕奥-萨伐尔定律的应用第三章:微波技术基本概念3.1 微波的基本特性微波的频率范围和波长微波的传播特性微波的波动方程3.2 微波传输线传输线的分类和特性传输线方程和阻抗匹配传输线的设计和应用第四章:微波电路和组件4.1 微波放大器放大器的基本原理和分类放大器的稳定性和平衡性放大器的频率特性和线性度4.2 微波振荡器振荡器的基本原理和分类振荡器的稳定性和频率控制振荡器的应用和实例第五章:微波测量技术和设备5.1 微波功率测量功率测量的基本原理和仪器功率计的使用和校准功率测量的误差分析5.2 微波频率测量频率测量的基本原理和仪器频谱分析仪的使用和操作频率测量的误差分析第六章:微波天线基本原理6.1 微波天线的分类和特性天线的基本概念和参数偶极子天线、log-periodic 天线和Yagi-Uda 天线等常见天线的设计和性能天线方向图的分析和计算6.2 天线阵列和波束形成天线阵列的基本原理和分类波束形成技术及其在通信系统中的应用MIMO 技术中的天线阵列设计与优化第七章:微波通信系统7.1 微波通信基本原理微波通信的优点和缺点微波通信系统的组成和工作原理调制解调技术在微波通信中的应用7.2 微波通信链路设计与优化链路预算和信号传输分析馈线、塔放和天线的选择与配置抗干扰技术和信道编码的应用第八章:微波滤波器与振荡器8.1 微波滤波器设计滤波器的基本原理和分类微波滤波器的设计方法和技巧滤波器的频率特性和插入损耗的测量8.2 微波振荡器设计振荡器的基本原理和分类晶体振荡器和表面声波振荡器等高频振荡器的特性振荡器的频率稳定性和相位噪声第九章:微波电路仿真与设计软件9.1 微波电路仿真软件概述微波电路仿真软件的分类和功能ADS、CST 和HFSS 等微波电路仿真软件的使用方法和技巧微波电路仿真与实际测量结果的对比和分析9.2 微波电路设计与优化实例微波放大器、振荡器和滤波器等电路的设计与优化微波天线和通信系统等应用案例的分析与实践第十章:实验操作与安全注意事项10.1 实验操作流程实验前的准备工作与实验操作流程实验数据采集与处理方法10.2 实验室安全注意事项实验室电器设备的使用与维护实验室化学品的安全存放与处理实验室事故应急预案与处理措施重点和难点解析重点环节1:电磁波的产生和传播电磁波的数学描述:需要理解麦克斯韦方程组对电磁波描述的重要性,以及如何根据边界条件和初始条件求解电磁波的分布。

电磁场与微波实验报告波导波长的测量

电磁场与微波实验报告波导波长的测量

电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二 波导波长的测量一、 实验内容波导波长的测量【方法一】两点法 实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。

当矩形波导(单模传输TE10模)终端(Z =0)短路时,将形成驻波状态。

波导内部电场强度(参见图三之坐标系)表达式为:Z aXE E E Y βπsinsin 0)(==在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。

将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。

两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。

调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值1T 和2T ),就可求得波导波长为:T 2 min 'min g -=T λ由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。

记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:() 2121min T T T +=最后可得 T 2min 'min g -=T λ(参见图四)YZ【方法二】 间接法矩形波导中的 波,自由波长 和波导波长g λ满足公式:2 12⎪⎭⎫ ⎝⎛-a g λλλ=其中:f g /1038⨯=λ,cm a 286.2=通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式确定出 ,再计算出波导波长g λ。

电磁场与微波技术实验报告

电磁场与微波技术实验报告

电磁场与微波技术实验报告
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
华北电力大学
实验报告
|
|
实验名称仿真实验一:Smith圆图的仿真
课程名称电磁场与微波技术
|
|
专业班级:学生姓名:
学号:成绩:
指导教师:实验日期:
验证性、综合性实验报告应含的主要内容:
一、实验目的及要求
二、所用仪器、设备
三、实验原理
四、实验方法与步骤
五、实验结果与数据处理
六、讨论与结论<对实验现象、实验故障及处理方法、实验中存在的问题
等进行分析和讨论,对实验的进一步想法或改进意见)b5E2RGbCAP
七、所附实验输出的结果或数据
设计性实验报告应含的主要内容:
一、设计要求
二、选择的方案
三、所用仪器、设备
四、实验方法与步骤
五、实验结果与数据处理
六、结论<依据“设计要求”)
七、所附实验输出的结果或数据
* 封面左侧印痕处装订
为半径的圆。

那么不同的反射系数出,这是一个直线方程,表明在复平面上等反射系数幅角线是由将。

我们把前面所讲的四种轨迹画在一张极坐标图上,
文件下的Sch1,在右侧空白处建立电路图,如下图所New Item>Analyses>Add linear Analysis。

申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

电磁场与微波技术实验

电磁场与微波技术实验

实验三对称天线和天线阵的方向图实验目的:1、熟悉对称天线和天线阵的概念;2、熟悉不同长度对称天线的空间辐射方向图;3、理解天线阵的概念和空间辐射特性。

实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。

排列方式可以是直线阵、平面阵和立体阵。

实际的天线阵多用相似元组成。

所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。

天线阵的辐射场是各单元天线辐射场的矢量和。

只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性方向图乘积定理f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。

第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。

方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。

已知对称振子以波腹电流归算的方向函数为实验步骤:1、对称天线的二维极坐标空间辐射方向图(1)建立对称天线二维极坐标空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中不同长度对称天线的空间辐射特性E面方向函数:2、天线阵—端射阵和边射阵(1)建立端射阵和边射阵空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中两种天线阵的空间辐射特性实验报告要求:(1)抓仿真程序结果图(2)理论分析与讨论1、对称天线方向图01)clcclearlambda=1;%自由空间的波长L0=1; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180;902700 L=λ时对称阵子天线的方向图for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 02)clc clear lambda=1;%自由空间的波长L0=1/4; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180;for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 3)clc clearlambda=1;%自由空间的波长 L0=1/2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180;for i=1:length(theta0) fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图 title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 4)clcclear lambda=1;%自由空间的波长L0=3/4; %改变L0值,得到不同长度对称阵子的方向图902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图90270L=λ时对称阵子天线的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[::360];theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 5)clcclearlambda=1;%自由空间的波长 L0=3/2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数 theta0=[::360]; theta=theta0*pi/180;for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos (k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 6)clc clearlambda=1;%自由空间的波长L0=2; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[::360];theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 分析对称振子天线的方向图(以上图形)可以看出:902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图①?l <λ时,随着振子长度的增加,其方向图波瓣变尖锐,其最大辐射方向在q =90o ,无副瓣;②当l >λ时,开始出现副瓣, 但最大辐射方向仍在q =90o 的方向上; ③当l >0.625l λ时,最大辐射方向将偏离q =90o 的方向;(当l >λ,出现反向电流,场为反向叠加); ④当l =l λ时,天线上的反向电流与正向电流相同,故在q =90o 上场将完全抵消,其总场为零,但在q =60o 的方向上,由于场的行程差引起的相位差和电流的相位差互相抵消,从而形成场的最大值。

电磁场与微波技术实验教案

电磁场与微波技术实验教案

电磁场与微波技术实验教案一、实验目的1. 理解电磁场的基本概念和特性2. 掌握电磁波的产生、传播和接收原理3. 学习微波技术的应用及其在通信、雷达等方面的基本原理4. 培养实验操作能力和实验数据分析能力。

二、实验原理1. 电磁场的基本方程和边界条件2. 麦克斯韦方程组的时域和频域表示3. 电磁波的传播特性:波速、波长、频率、相位等4. 微波的基本概念:微波的产生、传输、辐射和检测5. 微波器件的基本原理和工作特性:放大器、振荡器、滤波器、混频器等三、实验设备与器材1. 电磁场与微波技术实验装置2. 信号发生器3. 示波器4. 网络分析仪5. 频谱分析仪6. 微波天线7. 测量仪器与工具:电压表、电流表、功率计等四、实验内容与步骤1. 实验一:静电场的测量a. 建立静电场模型b. 使用电场测量仪器进行场强测量c. 分析实验数据,验证库仑定律2. 实验二:电磁波的产生与接收a. 使用信号发生器产生电磁波b. 通过天线发射并接收电磁波c. 分析接收到的电磁波信号,研究其传播特性3. 实验三:微波传输特性测试a. 搭建微波传输线路b. 使用网络分析仪测量传输特性c. 分析实验数据,研究微波传输的损耗和反射特性4. 实验四:微波放大器的设计与测试a. 设计微波放大器电路b. 搭建放大器并进行测试c. 分析测试结果,研究放大器的性能指标5. 实验五:微波振荡器的设计与测试a. 设计微波振荡器电路b. 搭建振荡器并进行测试c. 分析测试结果,研究振荡器的频率稳定性和幅度特性五、实验报告要求1. 实验目的、原理、内容与步骤的描述2. 实验数据的采集、处理与分析3. 实验结果的图表展示4. 实验结论与思考题5. 参考文献列表六、实验六:微波谐振腔的特性测量1. 实验目的了解微波谐振腔的基本原理和特性学习使用频谱分析仪进行谐振腔的测量分析谐振频率、Q值等参数2. 实验原理微波谐振腔的TE和TM模式谐振频率与Q值的关系谐振腔的驻波比和匹配特性3. 实验设备与器材微波谐振腔频谱分析仪匹配网络测量仪器与工具4. 实验内容与步骤搭建微波谐振腔测试系统调整匹配网络,实现谐振腔的匹配使用频谱分析仪测量谐振频率和Q值分析实验数据,研究谐振腔的特性5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论谐振腔的匹配和特性七、实验七:微波滤波器的设计与测试1. 实验目的学习微波滤波器的设计方法掌握微波滤波器的测试技术分析滤波器的频率响应和阻带特性2. 实验原理微波滤波器的设计原则和方法滤波器的频率响应和阻带特性滤波器的插入损耗和带外抑制3. 实验设备与器材微波滤波器设计软件网络分析仪微波无源器件测量仪器与工具4. 实验内容与步骤使用微波滤波器设计软件设计滤波器搭建滤波器测试系统使用网络分析仪测量滤波器的性能参数分析实验数据,验证滤波器的设计效果5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论滤波器的性能和应用八、实验八:微波振荡器的设计与测试1. 实验目的学习微波振荡器的设计原理掌握微波振荡器的测试技术分析振荡器的频率稳定性和幅度特性2. 实验原理微波振荡器的工作原理振荡器的频率稳定性和幅度特性晶体振荡器的选用和测试3. 实验设备与器材微波振荡器设计软件网络分析仪微波无源器件测量仪器与工具4. 实验内容与步骤使用微波振荡器设计软件设计振荡器搭建振荡器测试系统使用网络分析仪测量振荡器的性能参数分析实验数据,验证振荡器的性能5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论振荡器的性能和应用九、实验九:微波通信系统的性能测试1. 实验目的了解微波通信系统的基本组成学习微波通信系统的性能测试方法分析通信系统的传输损耗和误码率2. 实验原理微波通信系统的基本组成和工作原理通信系统的性能指标:传输损耗、误码率等通信系统的测试方法和测试仪器3. 实验设备与器材微波通信系统装置网络分析仪误码率测试仪测量仪器与工具4. 实验内容与步骤搭建微波通信系统测试平台使用网络分析仪测量传输损耗使用误码率测试仪进行误码率测试分析实验数据,评估通信系统的性能5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论通信系统的性能和改善方法十、实验十:微波雷达系统的原理与实验1. 实验目的了解微波雷达系统的基本原理学习微波雷达系统的十一、实验十:微波雷达系统的原理与实验1. 实验目的了解微波雷达系统的基本原理学习微波雷达系统的工作方式和应用进行微波雷达实验,验证雷达原理2. 实验原理微波雷达系统的工作原理:发射、反射、接收雷达信号的处理:距离、速度、方位的确定脉冲多普勒雷达和连续波雷达的原理3. 实验设备与器材微波雷达实验装置雷达天线信号处理设备示波器测量仪器与工具4. 实验内容与步骤搭建微波雷达实验系统进行雷达发射和接收实验分析雷达信号,确定目标的位置和速度讨论雷达系统的性能和应用5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论雷达系统的原理和应用十二、实验十一:卫星通信系统的原理与实验1. 实验目的了解卫星通信系统的基本原理学习卫星通信系统的组成和工作方式进行卫星通信实验,验证通信效果2. 实验原理卫星通信系统的基本原理和组成卫星信号的传输和接收卫星通信系统的性能指标和优化3. 实验设备与器材卫星通信实验装置卫星天线信号处理设备示波器测量仪器与工具4. 实验内容与步骤搭建卫星通信实验系统进行卫星信号的发射和接收实验分析卫星通信信号,评估通信效果讨论卫星通信系统的性能和应用5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论卫星通信系统的原理和应用十三、实验十二:光纤通信系统的原理与实验1. 实验目的了解光纤通信系统的基本原理学习光纤通信系统的组成和工作方式进行光纤通信实验,验证通信效果2. 实验原理光纤通信系统的基本原理和组成光纤信号的传输和衰减光纤通信系统的性能指标和优化3. 实验设备与器材光纤通信实验装置光纤信号处理设备示波器测量仪器与工具4. 实验内容与步骤搭建光纤通信实验系统进行光纤信号的发射和接收实验分析光纤通信信号,评估通信效果讨论光纤通信系统的性能和应用5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论光纤通信系统的原理和应用十四、实验十三:射频识别系统的原理与实验1. 实验目的了解射频识别(RFID)系统的基本原理学习射频识别系统的组成和工作方式进行射频识别实验,验证识别效果2. 实验原理射频识别系统的基本原理和组成RFID标签和读写器的通信过程射频识别系统的性能指标和优化3. 实验设备与器材射频识别实验装置RFID标签和读写器信号处理设备示波器测量仪器与工具4. 实验内容与步骤搭建射频识别实验系统进行RFID标签的读取和写入实验分析射频识别信号,验证识别效果讨论射频识别系统的性能和应用5. 实验报告要求描述实验目的、原理、内容与步骤给出实验测量数据和图表分析实验结果,讨论射频识别系统的原理和应用十五、实验十四:无线传感网络的原理与实验1. 实验目的了解无线传感网络的基本原理学习无线传感网络的组成和工作方式重点和难点解析本文主要介绍了电磁场与微波技术实验教案,共包含了十五个章节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三对称天线和天线阵的方向图实验目的:1、熟悉对称天线和天线阵的概念;2、熟悉不同长度对称天线的空间辐射方向图;3、理解天线阵的概念和空间辐射特性。

实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。

排列方式可以是直线阵、平面阵和立体阵。

实际的天线阵多用相似元组成。

所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。

天线阵的辐射场是各单元天线辐射场的矢量和。

只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性方向图乘积定理f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。

第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。

方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。

已知对称振子以波腹电流归算的方向函数为实验步骤:1、对称天线的二维极坐标空间辐射方向图(1)建立对称天线二维极坐标空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中不同长度对称天线的空间辐射特性E面方向函数:2、天线阵—端射阵和边射阵(1)建立端射阵和边射阵空间辐射方向函数的数学模型(2)利用matlab软件进行仿真(3)观察并分析仿真图中两种天线阵的空间辐射特性实验报告要求:(1)抓仿真程序结果图(2)理论分析与讨论1、对称天线方向图01)clcclearlambda=1;%自由空间的波长L0=1; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360];theta=theta0*pi/180;902700 L=λ时对称阵子天线的方向图for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 02)clc clear lambda=1;%自由空间的波长L0=1/4; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360];theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 3)clc clearlambda=1;%自由空间的波长 L0=1/2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180;for i=1:length(theta0) fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图 title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同4)clc clear lambda=1;%自由空间的波长 L0=3/4; %改变L0值,得到不同长度对称阵子的方向图902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图90270L=λ时对称阵子天线的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数 theta0=[0.0001:0.1:360]; theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 5)clcclearlambda=1;%自由空间的波长 L0=3/2; %改变L0值,得到不同长度对称阵子的方向图L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λk=2*pi/lambda;%自由空间的相移常数 theta0=[0.0001:0.1:360]; theta=theta0*pi/180;for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos (k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 6)clc clearlambda=1;%自由空间的波长L0=2; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360];theta=theta0*pi/180; for i=1:length(theta0)fe(i)=abs((cos(k*L*cos(theta(i)))-cos(k*L))/sin(theta(i))); endpolar(theta,fe/max(fe)); %画归一化方向图title('L=λ时对称阵子天线的方向图')%L 的长度不同,标题不同 分析对称振子天线的方向图(以上图形)可以看出:902700L=λ时对称阵子天线的方向图902700L=λ时对称阵子天线的方向图①?l <0.5λ时,随着振子长度的增加,其方向图波瓣变尖锐,其最大辐射方向在q =90o ,无副瓣;②当l >0.5λ时,开始出现副瓣, 但最大辐射方向仍在q =90o 的方向上;③当l >0.625l λ时,最大辐射方向将偏离q =90o 的方向;(当l >0.5λ,出现反向电流,场为反向叠加);④当l =l λ时,天线上的反向电流与正向电流相同,故在q =90o 上场将完全抵消,其总场为零,但在q =60o 的方向上,由于场的行程差引起的相位差和电流的相位差互相抵消,从而形成场的最大值。

2、十二元均匀直线阵的方向图(1)间距为/2λ的十二元均匀端射阵的分析 十二元均匀直线函数为()()1sin 6A 12sin /2ψψψ=,其中:cos kd ψϕξ=+,其零点发生在25,,,,,63236πππππψπ=±±±±±±处。

将阵间距/2d λ=代入上式,得cos ψπϕξ=+。

clear allN=12;%天线阵的元数x=0:0.01:pi;y=abs(sin(N*x./2)./sin(x/2))/N; plot(x,y)title('十二元均匀直线阵归一化方向图') xlabel('ψ') ylabel('|A(ψ)|') hold off由图形分析可得:该直线阵的频率在[0,1]之间,主瓣方向的场强比旁瓣方向的场强大许多倍,并且随着d 的增加频率逐渐的减少。

(2)十二元均匀端射阵方向图ξπ=±clear allN=12; %天线阵的元数 a=pi;%a=ξx=-pi:0.01:pi;A=abs(sin(N*(pi*cos(x)+a)./2)./sin((pi*cos(x)+ a)/2))/N; polar(x,A);title('十二元均匀端射阵方向图'); hold off从图形分析可得:振元间相位差为-kd 时形成端射阵,最大辐射方向在阵轴的方向;增加振元个数并不能把十二元均匀直线阵归一化方向图ψ|A (ψ)|902700十二元均匀端射阵方向图端射阵变成边射阵,但能增加旁瓣的个数,并且减小主瓣的宽度。

(3) 十二元均匀边射阵方向图0ξ=clear all a=0;%a=ξN=12; %天线阵的元数 x=-pi:0.01:pi;A=abs(sin(N*(pi*cos(x)-a)./2)./sin((pi*cos(x)-a)/2))/N; polar(x,A);title('十二元均匀端射阵方向图'); hold off有图形分析可得:最大的辐射方向在垂直于天线阵轴的方向上,也就是说,如果各天线单元之间没有相位差,则此天线的最大振幅方向一定在垂直于天线阵轴方向上。

902700十二元均匀端射阵方向图。

相关文档
最新文档