算法设计与分析复习资料

合集下载

最新计算机算法设计与分析期末复习资料

最新计算机算法设计与分析期末复习资料

一填空题(20x1=20分)1.当设定的问题有多种算法去解决时,其选择算法的主要原则是选择其中复杂性最低者。

2.用函数自身给出定义的函数是一种递归函数。

3.动态规划算法适用于解最优化问题。

4.贪心算法的两个基本要素是最优子结构性质、贪心选择性质。

5.回溯法在搜索解空间树的时候,为了避免无效搜索,通常使用深度优先手段来提高搜索效率。

6.依据求解目标的不同,分支界限法和回溯法分别用广度优先遍历或者最小耗费优先、深度优先的方式搜索解空间树。

7.分支界限法和回溯法主要区别在于求解目标和搜索方式不同。

8.在分支界限法实现的时候,通常采用方式来实现最大优先队列。

9.依据求解所花费的时间和所得到的结果不同,随机化算法大致分为数值随机化算法、蒙特卡罗算法、拉斯维加斯算法和舍伍德算法四类。

10.产生伪随机数最常用的方法是线性同余法。

11.线性规划算法中转轴变化的目的是将入基变量与离基变量互调位置。

12.最大网络流问题中可增广路是残留网络中一条容量大于0的路。

13.待解决问题适用于动态规划法的两个基本要素是。

14.算法必须满足的四个特征是输入、输出、确定性、有限性。

15.算法复杂性依赖于、、三个方面的复杂因素。

16.实现递归调用的关键是17.动态规划算法求解问题的重要线索是问题的性质。

18.最优子结构性质是贪心算法求解问题的关键特征。

19.分支界限法的求解目标是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

20.问题的解空间树常见的有子集树、排列树两种类型。

21.分支界限算法依据其从和节点表中选择获得下一扩展节点的不同方式被分为22.对于任何约束标准型线性规划问题,只要将所用分基本变量都设置为0,就可以获得一个解。

二判断题(20x1=20分)1.算法的描述方式有自然语言、程序语言,或者两者相结合的形式。

()2.算法满足的特性有哪些,程序有什么特征,而这有什么关系。

3.算法复杂度越高或者越低与占用计算机资源的关系是什么。

算法设计与分析复习题

算法设计与分析复习题

算法设计与分析复习题算法设计与分析是计算机科学中的一个重要领域,它涉及到如何高效地解决计算问题。

以下是一些复习题,可以帮助学生更好地理解和掌握算法设计与分析的基本概念和技巧。

1. 算法的基本概念:- 什么是算法?请列举算法的基本特性。

- 解释算法的时间复杂度和空间复杂度,并给出一个例子。

2. 算法设计策略:- 描述贪心算法的工作原理,并给出一个实际问题的例子。

- 解释分治算法的基本步骤,并用快速排序算法来说明。

3. 排序算法:- 比较选择排序、插入排序和冒泡排序的时间复杂度。

- 描述归并排序和快速排序的工作原理,并讨论它们的优缺点。

4. 搜索算法:- 解释线性搜索和二分搜索的区别。

- 描述哈希表的工作原理,并讨论其在搜索算法中的应用。

5. 图算法:- 解释深度优先搜索(DFS)和广度优先搜索(BFS)的工作原理。

- 描述迪杰斯特拉(Dijkstra)算法和贝尔曼-福特(Bellman-Ford)算法,并比较它们的使用场景。

6. 动态规划:- 解释动态规划与分治法的区别。

- 给出一个动态规划解决的问题,并描述其解决方案。

7. 复杂度分析:- 什么是大O记号、大Ω记号和大Θ记号?它们如何帮助我们分析算法的效率?- 给出一个算法,并使用大O记号来分析其时间复杂度。

8. 算法优化:- 描述一些常见的算法优化技巧,例如空间换时间或时间换空间。

- 讨论算法优化在实际应用中的重要性。

9. 算法应用:- 举例说明算法在不同领域的应用,如在网络路由、机器学习或数据压缩中。

10. 算法的局限性:- 讨论算法在解决特定问题时可能遇到的局限性。

- 解释为什么某些问题被认为是不可解的或计算上不可行的。

结束语:通过这些复习题的练习,学生应该能够加深对算法设计与分析的理解,掌握不同算法的原理和应用场景,以及如何评估和优化算法的性能。

希望这些题目能够帮助学生在考试或实际工作中更加自信和高效。

!算法设计与分析总复习

!算法设计与分析总复习

!算法设计与分析总复习算法设计与分析是计算机科学中非常重要的一个领域,它涉及到了算法的设计、性能分析和优化等方面。

在准备考试之前,我们需要对算法设计与分析的基本概念和常用算法进行全面复习。

一、算法设计与分析基本概念1.算法的定义:算法是一系列解决特定问题的有限步骤。

2.算法的特性:算法具有明确性、有限性、确定性和输入/输出。

3.算法的正确性:算法必须能够解决问题,并得到正确的答案。

4.算法的效率:算法的时间复杂度和空间复杂度是衡量算法效率的重要指标。

二、常用算法1.排序算法:常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

需要了解每种排序算法的思想、时间复杂度和空间复杂度,并能够对其进行实现和优化。

2.查找算法:常用的查找算法包括顺序查找、二分查找、哈希查找等。

需要了解每种查找算法的思想和时间复杂度,并能够对其进行实现和应用。

3. 图算法:图算法包括深度优先(DFS)、广度优先(BFS)、最短路径算法(Dijkstra算法、Floyd算法)等。

需要了解这些算法的思想、时间复杂度和应用场景,并能够对其进行实现和应用。

4.动态规划算法:动态规划算法适用于具有重叠子问题和具有最优子结构性质的问题。

需要了解动态规划算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行动态规划的设计和实现。

5.贪心算法:贪心算法常用于解决最优化问题,每一步都选择当前最优解,以期最终达到全局最优解。

需要了解贪心算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行贪心算法的设计和实现。

三、算法的时间复杂度和空间复杂度1. 时间复杂度:算法的时间复杂度表示算法的执行时间和输入数据规模之间的关系。

常见的时间复杂度有O(1)、O(logn)、O(n)、O(nlogn)、O(n^2)等。

需要掌握各种时间复杂度的计算方法和复杂度的比较。

2.空间复杂度:算法的空间复杂度表示算法的内存消耗和输入数据规模之间的关系。

《算法设计与分析》复习提纲

《算法设计与分析》复习提纲

《算法设计与分析》复习提纲一、基本概念1.算法设计与分析的基本概念和目标2.时间复杂度和空间复杂度的定义及其分析方法3.渐进符号的含义和应用4.最坏情况、平均情况和最好情况的分析方法二、排序算法1.冒泡排序、插入排序和选择排序的原理、特点和时间复杂度2.归并排序和快速排序的原理、特点和时间复杂度3.堆排序和基数排序的原理、特点和时间复杂度4.对各种排序算法的时间复杂度进行比较和分析5.排序算法的稳定性及其应用三、查找算法1.顺序查找和二分查找的原理、特点和时间复杂度2.哈希查找的原理、特点和时间复杂度3.查找算法的性能比较和选择4.查找算法在实际问题中的应用四、图算法1.图的基本概念和表示方法2.图的遍历算法:深度优先和广度优先的原理、特点和应用3. 最短路径算法:Dijkstra算法和Floyd算法的原理、特点和时间复杂度4. 最小生成树算法:Prim算法和Kruskal算法的原理、特点和时间复杂度5.图的应用:拓扑排序、关键路径和网络流问题五、动态规划算法1.动态规划算法的基本思想和特点2.最优子结构、重叠子问题和状态转移方程的定义和应用3.0-1背包问题和最长公共子序列问题的动态规划算法4.动态规划算法的时间复杂度分析和优化方法5.动态规划算法在实际问题中的应用六、贪心算法1.贪心算法的基本思想和特点2.哈夫曼编码和活动选择问题的贪心算法3.贪心算法的正确性证明和近似算法的设计4.贪心算法在实际问题中的应用七、分治算法1.分治算法的基本思想和特点2.快速排序和归并排序的分治算法3.分治算法在实际问题中的应用八、回溯算法1.回溯算法的基本思想和特点2.八皇后问题和0-1背包问题的回溯算法3.回溯算法的剪枝策略和性能优化4.回溯算法在实际问题中的应用九、随机化算法1.随机化算法的基本思想和特点2.蒙特卡罗算法和拉斯维加斯算法的原理和特点3.随机化算法在实际问题中的应用十、算法设计技巧1.分解复杂问题、找出递归公式和设计递归算法2.利用递归和迭代进行算法设计和分析3.利用动态规划、贪心算法和分治算法进行算法设计和分析4.利用回溯算法和随机化算法进行算法设计和分析5.开发和应用合适的数据结构进行算法设计和分析以上是《算法设计与分析》复习提纲的内容,涵盖了该课程的基本概念、排序算法、查找算法、图算法、动态规划算法、贪心算法、分治算法、回溯算法、随机化算法以及算法设计技巧等内容。

算法分析期末复习

算法分析期末复习

《算法设计与分析》复习考试题型填空10x1’选择15x2’简答2x5’大题5x10’1.5个重要特性:输入、输出、有穷性、确定性、可行性2.5个特性:正确性、健壮性、可理解性、抽象分级、高效性3.描述方法:自然语言、流程图、程序设计语言、伪代码4.问题类型:查找问题、排序问题、图问题、组合问题、几何问题5.输入规模:输入量的多少6.算法就是一组有穷的规则,它们规定了解决某一特定问题的一系列运算7.算法是由若干条指令组成的有序序列,解决问题的一种方法或一个过程8.基本语句:执行次数与整个算法的执行次数成正比的语句,它对算法运行时间的贡献最大,是算法最重要的操作9.算法的时间复杂性分析是一种事前分析估算方法,它是对算法所消耗资源的一种渐进分析方法。

10.算法的空间复杂性是指在算法的执行过程中需要的辅助空间数量,也就是除算法本身和输入输出数据所占用的空间外,算法临时开辟的存储空间,这个辅助空间数量也应该是输入规模的函数,通常记作:S(n)=O(f(n))。

其中n为输入规模,分析方法与算法的时间复杂性类似。

11.渐进分析是指忽略具体机器、编程语言和编译器的影响,只关注在输入规模增大时算法运行时间的增长趋势。

12.大O符号:当输入规模充分大时,算法中基本语句的执行次数在渐近意义下的阶,上界13.大Ω符号:问题的计算复杂性下界是求解这个问题所需的最少工作量,求解该问题的任何算法的时间复杂性都不会低于这个下界14.计算复杂性下界:对于任何待求解的问题,如果能找到一个尽可能大的函数g(n)(n为输入规模),使得求解该问题的所有算法都可以在Ω(g(n))的时间内完成,则函数g(n)即是下界15.下界紧密:如果已经知道一个和下界的效率类型相同的算法,则该下界紧密16.扩展递归:一种常用的求解递推关系式的基本技术,扩展就是将递推关系式中等式右边的项根据递推式进行替换,扩展后的项被再次扩展,依此下去,会得到一个求和表达式,然后就可以借助于求和技术了17.最优算法:一般情况下,如果能够证明某问题的时间下界是Ω(g(n)),那么对以时间O(g(n))来求解该问题的任何算法,都认为是求解该问题的最优算法18.平凡下界:对问题的输入中必须要处理的元素进行计数,同时对必须要输出的元素进行计数。

算法设计与分析复习要点

算法设计与分析复习要点

算法设计与分析的复习要点第一章:算法问题求解基础算法是对特定问题求解步骤的一种描述,它是指令的有限序列。

一.算法的五个特征:1.输入:算法有零个或多个输入量;2.输出:算法至少产生一个输出量;3.确定性:算法的每一条指令都有确切的定义,没有二义性;4.可行性:算法的每一条指令必须足够基本,它们可以通过已经实现的基本运算执行有限次来实现;5.有穷性:算法必须总能在执行有限步之后终止。

二.什么是算法?程序与算法的区别1.笼统地说,算法是求解一类问题的任意一种特殊的方法;较严格地说,算法是对特定问题求解步骤的一种描述,它是指令的有限序列。

2.程序是算法用某种程序设计语言的具体实现;算法必须可终止,程序却没有这一限制;即:程序可以不满足算法的第5个性质“有穷性”。

三.一个问题求解过程包括:理解问题、设计方案、实现方案、回顾复查。

四.系统生命周期或软件生命周期分为:开发期:分析、设计、编码、测试;运行期:维护。

五.算法描述方法:自然语言、流程图、伪代码、程序设计语言等。

六.算法分析:是指对算法的执行时间和所需空间的估算。

算法的效率通过算法分析来确定。

七.递归定义:是一种直接或间接引用自身的定义方法。

一个合法的递归定义包括两部分:基础情况和递归部分;基础情况:以直接形式明确列举新事物的若干简单对象;递归部分:有简单或较简单对象定义新对象的条件和方法八.常见的程序正确性证明方法:1.归纳法:由基础情况和归纳步骤组成。

归纳法是证明递归算法正确性和进行算法分析的强有力工具;2.反证法。

第二章:算法分析基础一.会计算程序步的执行次数(如书中例题程序2-1,2-2,2-3的总程序步数的计算)。

二.会证明5个渐近记法。

(如书中P22-25例2-1至例2-9)三.会计算递推式的显式。

(迭代法、代换法,主方法)四.会用主定理求T(n)=aT(n/b)+f(n)。

(主定理见P29,如例2-15至例2-18)五.一个好的算法应具备的4个重要特征:1.正确性:算法的执行结果应当满足预先规定的功能和性能要求;2.简明性:算法应思路清晰、层次分明、容易理解、利于编码和调试;3.效率:算法应有效使用存储空间,并具有高的时间效率;4.最优性:算法的执行时间已达到求解该类问题所需时间的下界。

算法设计与分析总复习

算法设计与分析总复习

算法设计与分析1、什么是算法?算法有哪些基本特征?请指出算法同程序的相同点与不同点。

答:算法是解决问题的方法或过程,是满足以下四个性质的指令序列1)输入:有0个以上的输入2)输出:至少有1个输出3)确定性:指令清晰、无歧义4)有限性:指令执行次数有限,时间有限算法和程序的相同点:两者都具有输入、输出和确定性的特征不同点:程序是算法用某种程序语言的具体实现,程序不满足算法具有的有限性性质2、请描述算法设计的一般过程。

答:算法设计的一般过程是1)提出问题2)确定数学模型3)明确目的、条件和约束关系4)设计求解步骤5)结果评估与分析如果在第5步的分析中对算法时间、空间复杂度或结果不满意,可以返回第1步或第4步进一步迭代,直至找到满意的算法。

3、什么是算法复杂性?它主要有哪两个方面构成?答:算法复杂性是算法运行时所需要的计算机资源的量,它包括两个方面:时间复杂性(需要时间资源的量)和空间复杂性(需要空间资源的量)。

4、时间复杂性分析主要分哪三种情况,哪种情况的可操作性最好,最具有实际价值?答:时间复杂性分为3种情况,最好情况、平均情况、最坏情况,可操作性最好,最具有实际价值的是最坏情况下的时间复杂性5、如果算法A由三个步骤组成,其中第一步的时间复杂性为O(n2),第二步的时间复杂性为O(nlogn),第三步的时间复杂性为O(n),请问算法A的时间复杂性是多少?答:O(n2)6、请问二分搜索算法、快速排序算法、线性时间选择算法和最近点对问题的时间复杂性各为多少?答:二分搜索算法:最坏情况O(logn)、快速排序算法:最坏情况O(n2),最好情况和平均情况均为O(nlogn)线性时间选择算法:最坏情况O(n)最近点对问题:时间复杂性O(nlogn)7、分治算法和动态规划算法都是通过对问题进行分解,通过对子问题的求解然后进行解重构,从而实现对原问题的求解。

请指出这两种算法在对问题进行分解时各自所遵循的原则。

答:分治算法对问题进行分解时所遵循的原则是将待求解问题分解为若干个规模较小、相互独立且与原问题相同的子问题(不包含公共的子问题)。

算法设计与分析 复习整理汇编

算法设计与分析 复习整理汇编

《算法设计与分析》复习要点2.算法的概念:答:算法是求解一类问题的任意一种特殊的方法。

一个算法是对特定问题求解步骤的一种描述,它是指令的有限序列。

注:算法三要素:1、操作2、控制结构3、数据结构3.算法有5大特性:答:输入、输出、确定性、能行性、有穷性。

注:输入:一个算法有0个或多个输入;输出:一个算法将产生一个或多个输出。

确定性:一个算法中每一步运算的含义必须是确切的、无二义性的;可行性:一个算法中要执行的运算都是相当基本的操作,能在有限的时间内完成;有穷性:一个算法必须在执行了有穷步运算之后终止;4.算法按计算时间可分为两类:答:多项式时间算法的渐进时间复杂度:O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3),具有此特征的问题称为P为题。

有效算法。

指数时间算法的渐进时间复杂度之间的关系为:O(2^n)<O(n!)< O(n^n),具有此特征的问题称为NP问题。

注:可以带1或2这些数字来判断它们之间的大小关系。

5.一个好算法的4大特性:答:正确性、简明性、效率、最优性。

注:正确性:算法的执行结果应当满足预先规定的功能和性能要求。

简明性:算法应思路清晰、层次分明、容易理解。

利于编码和调试。

效率:时间代价和空间代价应该尽可能的小。

最优性:算法的执行时间已经到求解该类问题所需要时间的下界。

6.影响程序运行时间的因素:1、答:程序所以来的算法。

问题规模和输入数据。

计算机系统系能。

注:算法运行的时间代价的度量不应依赖于算法运行的软件平台,算法运行的软件包括操作系统和采用的编程语言及其编译系统。

时间代价用执行基本操作(即关键操作)的次数来度量,这是进行算法分析的基础。

7.关键操作的概念答:指算法运行中起主要作用且花费最多时间的操作。

1.简述分治法是怎样的一种算法设计策略:答:将一个问题分解为若干个规模较小的子问题,且这些子问题互相独立且与原问题类型相同,递归地处理这些子问题,直到这些子问题的规模小到可以直接求解,然后将各个子问题的解合并得到原问题的解。

计算机算法设计与分析总复习

计算机算法设计与分析总复习

第三步
[13 27 38 49 65 76 97]
快速排序
private static void qSort(int p, int r) { if (p<r) { int q=partition(p,r); //以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使得a[p:q-1]中任何元素小于等于a[q],a[q+1:r]中任何元素大于等于a[q]。下标q在划分过程中确定。 qSort (p,q-1); //对左半段排序 qSort (q+1,r); //对右半段排序 } }
=时间复杂性+空间复杂性
= 算法所需要的计算机资源
算法复杂性
算法渐近复杂性
1)上界函数
定义1 如果存在两个正常数c和n0,对于所有的n≥n0,有 |f(n)| ≤ c|g(n)| 则记作f(n) = Ο(g(n)) 含义: 如果算法用n值不变的同一类数据在某台机器上运行时,所用的时间总是小于|g(n)|的一个常数倍。所以g(n)是计算时间f(n)的一个上界函数。 f(n)的数量级就是g(n)。 f(n)的增长最多像g(n)的增长那样快 试图求出最小的g(n),使得f(n) = Ο(g(n))。
3)“平均情况”限界函数
问题的计算时间下界为(f(n)),则计算时间复杂性为O(f(n))的算法是最优算法。
01
例如,排序问题的计算时间下界为(nlogn),计算时间复杂性为O(nlogn)的排序算法是最优算法。
02
最优算法
第2章 递归与分治策略
单击此处添加文本具体内容,简明扼要的阐述您的观点,以便观者准确的理解您传达的思想。
复杂度分析 T(n)=O(nlogn) 渐进意义下的最优算法

重要四川省考研计算机科学复习资料算法设计与分析

重要四川省考研计算机科学复习资料算法设计与分析

重要四川省考研计算机科学复习资料算法设计与分析重要四川省考研计算机科学复习资料:算法设计与分析算法设计与分析作为计算机科学考研的重要内容之一,具有重要的理论和实际应用价值。

本文将从算法设计与分析的基本概念、常用算法设计方法、算法分析和实际应用四个方面进行论述,旨在为考生提供一份全面且具有实际指导意义的复习资料。

一、算法设计与分析的基本概念1.1 算法的定义和特性算法指的是一系列解决特定问题的步骤和规则。

一个好的算法需满足以下特性:正确性、可读性、高效性、优化性和可扩展性。

1.2 算法设计的基本思想算法设计的基本思想包括分治法、贪心法、动态规划法、回溯法等。

不同的问题需要采用不同的算法设计方法来解决,因此考生需要熟悉各种算法设计思想的原理和应用场景。

二、常用算法设计方法2.1 分治法分治法是将一个大问题逐步划分为若干个相同或相似的子问题,通过求解子问题最后得到原问题的解。

典型的分治法算法包括归并排序和快速排序。

2.2 贪心法贪心法即每一步都选择当前状态下的最优解,最终得到全局最优解。

贪心法的应用广泛,如活动选择问题和霍夫曼编码。

2.3 动态规划法动态规划法通过构建最优子结构来解决问题,将复杂问题划分为简单的子问题求解,并将结果保存,以便之后的计算使用。

最经典的动态规划算法是背包问题和最短路径问题。

2.4 回溯法回溯法是一种通过试探和回溯的方式来求解问题的方法。

它通过不断尝试可能解的各个部分,当发现该部分无法得到有效解时,返回上一步进行调整。

典型的回溯法问题包括全排列和0-1背包问题。

三、算法分析3.1 时间复杂度时间复杂度是衡量算法执行效率的重要指标,它表示算法的运行时间与问题规模的增长关系。

常见的时间复杂度包括常数阶O(1)、线性阶O(n)、对数阶O(logn)、平方阶O(n^2)等。

3.2 空间复杂度空间复杂度是指算法在运行过程中所需的额外空间。

空间复杂度较低的算法通常更加优化,具有更好的性能。

计算机算法设计与分析-期末考试复习资料

计算机算法设计与分析-期末考试复习资料

一、算法设计实例1、快速排序(分治法)int partition(float a[],int p,int r) {int i=p,j=r+1;float x=a[p];while(1){while(a[++i]<x);while(a[--j]<x);if(i>=j)break;swap(a[i],a[j]);}a[p]=a[j];a[j]=x;return j;}void Quicksort(float a[],int p,int r){//快速排序if(p<r){int q=partition(a,p,r);Quicksort(a,p,q-1);Quicksort(a,p+1,r);}}2、归并排序(分治法)void mergesort(Type a[],int left,int right) {if(left<rigth){int mid=(left+right)/2;//取中点mergesort(a,left,mid);mergesort(a,mid+1,right);mergesort(a,b,left,right);//合并到数组bmergesort(a,b,left,right);//复制到数组a}}3、背包问题(贪心算法)void knapsack(int n,float m,float v[],float w[],float x[]) {sort(n,v,w)//非递增排序int i;for(i=1;i<=n;i++)x[i]=0;float c=m;for(i=1;i<=n;i++){if(w[i]>c)break;x[i]=1;c-=w[i];}if(i<=n)x[i]=c/w[i];}4、活动安排问题(贪心算法)void Greadyselector(int n,Type s[],Type f[],bool A[]) {//s[i]为活动结束时间,f[j]为j活动开始时间A[i]=true;int j=1;for(i=2;i<=n;i++){if(s[i]>=f[j]){A[i]=true;j=i;}elseA[i]=false;}}5、喷水装置问题(贪心算法)void knansack(int w,int d,float r[],int n){//w为草坪长度d为草坪宽度r[]为喷水装置的喷水半径,//n为n种喷水装置,喷水装置的喷水半径>=d/2sort(r[],n);//降序排序count=0;//记录装置数for(i=1;i<=n;i++)x[i]=0;//初始时,所有喷水装置没有安装x[i]=0for(i=1;w>=0;i++){x[i]=1;count++;w=w-2*sqart(r[i]*r[i]-1);}count<<装置数:<<count<<end1;for(i=1;i<=n;i++)count<<喷水装置半径:<<r[i]<<end1;}6、最优服务问题(贪心算法)double greedy(rector<int>x,int s){rector<int>st(s+1,0);rector<int>su(s+1,0);int n=x.size();//st[]是服务数组,st[j]为第j个队列上的某一个顾客的等待时间//su[]是求和数组,su[j]为第j个队列上所有顾客的等待时间sort(x.begin(),x.end());//每个顾客所需要的服务时间升序排列int i=0,j=0;while(i<n){st[j]+=x[i];//x[i]=x.begin-x.endsu[j]+=st[j];i++;j++;if(j==s)j=0;}double t=0;for(i=0;i<s;i++)t+=su[i];t/=n;return t;}7、石子合并问题(贪心算法)float bebig(int A[],int n) {m=n;sort(A,m);//升序while(m>1){for(i=3;i<=m;i++)if(p<A[i])break;elseA[i-2]=A[i];for(A[i-2]=p;i<=m;i++){A[i-1]=A[i];m--;}}count<<A[1]<<end1}8、石子合并问题(动态规划算法)best[i][j]表示i-j合并化最优值sum[i][j]表示第i个石子到第j个石子的总数量|0f(i,j)=||min{f(i,k)+f(k+1,j)}+sum(i,j)int sum[maxm]int best[maxm][maxn];int n,stme[maxn];int getbest();{//初始化,没有合并for(int i=0;i<n;i++)best[i][j]=0;//还需要进行合并for(int r=1;r<n;r++){for(i=0;i<n-r;i++){int j=i+v;best[i][j]=INT-MAX;int add=sum[j]-(i>0!sum[i-1]:0);//中间断开位置,取最优值for(int k=i;k<j;++k){best[i][j]=min(best[i][j],best[i][k]+best[k+1][j])+add;}}}return best[0][n-1];}9、最小重量机器设计问题(回溯法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void backstack(Qnode*p){if(p->ceng==n+1){if(bestw>p->wei){testw=p->wei;best=p;}}else{for(i=1;i<=m;i++)k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->val=vt;s->wei=wt;s->ceng=k+1;s->no=1;s->parent=p;backstrack(S);}}}10、最小重量机器设计问题(分支限界法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void minloading(){float wt=0;float vt=0;float bestw=Max;//最小重量Qnode*best;s=new Qnode;s->wei=0;s->val=0;s->ceng=1;s->no=0;s->parent=null;Iinit_Queue(Q); EnQueue(Q,S);do{p=OutQueue(Q);//出队if(p->ceng==n+1){if(bestw>p->wei){bestw=p->wei;best=p;}}else{for(i=1;i<=m;i++){k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->ceng=k+1;s->wt=wt;s->val=val;s->no=i;s->parent=p;EnQueue(Q,S);}}}}while(!empty(Q));p=best;while(p->parent){count<<部件:<<p->ceng-1<<end1;count<<供应商:<<p->no<<end1;p=p->parent;}}11、快速排序(随机化算法—舍伍德算法)int partion(int a[],int l,int r){key=a[l];int i=l,j=r;while(1){while(a[++i]<key&&i<=r);while(a[--j]>key&&j>=l);if(i>=j)break;if(a[i]!=a[j])swap(a[i],a[j]);}if((j!=l)&&a[l]!=a[j])swap(a[l],a[j]);return j;}int Ranpartion(int a[],int l,int r) {k=rand()%(r-1+l)+1;swap(a[k],a[l]);int ans=partion(a,l,r);return ans;}int Quick_sort(int a[],int l,int r,int k){int p=Randpartion(a,l,r);if(p==k)return a[k];else if(k<p)return Quick_sort(a,l,p-1,k);else{int j=0;for(int i=p+1;i<=r;i++)b[j++]=a[i]return Quick_sort(b,1,j,k-p);}}12、线性选择(随机化算法—舍伍德算法)二、简答题1.分治法的基本思想分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

《算法设计与分析》复习提纲

《算法设计与分析》复习提纲

《算法设计与分析》复习提纲2021.1.4 1 引言(ch1)1.什么是算法及其特征2.问题实例和问题规模2 算法初步(ch2)1.插入排序算法2.算法复杂性及其度量(1)时间复杂性和空间复杂性;(2)最坏、最好和平均情形复杂性;3.插入排序的最坏、最好和平均时间4.归并排序算法及其时间复杂性3函数增长率(ch3)1.渐近记号O、Ω、θ的定义及其使用2.标准复杂性函数及其大小关系3.和式界的证明方法4 递归关系式(ch4,Sch1)1.替换法(1)猜测解 数学归纳法证明;(2)变量变换法;2.迭代法(1)展开法;(2)递归树法;3.主定理4.补充1:递归与分治法(sch1)- 递归设计技术- 递归程序的非递归化- 算法设计(1)Fibonacci数;(2)生成全排列;(3)二分查找;(4)大整数乘法;(5)Stranssen矩阵乘法;(6)导线和开关(略);5 堆排序(ch6)1堆的概念和存储结构2.堆的性质和种类3.堆的操作:建堆;整堆;4.堆排序算法和时间复杂性5.优先队列及其维护操作6 快速排序(ch7)1.快速排序算法及其最好、最坏时间和平均时间2.随机快速排序算法及其期望时间3.Partition算法7 线性时间排序(ch8)1.基于比较的排序算法下界:Ω(nlogn)2.计数排序适应的排序对象、算法和时间3.基数排序适应的排序对象、算法和时间4.桶排序适应的排序对象、算法和时间8 中位数和顺序统计(ch9)1.最大和最小值的求解方法2.期望时间为线性的选择算法3.最坏时间为线性的选择算法及其时间分析9 红黑树(ch13)1.红黑树的定义和节点结构2.黑高概念3.一棵n个内点的红黑树的高度至多是2log(n+1)4.左旋算法5.插入算法的时间、至多使用2次旋转6.删除算法的时间、至多使用3次旋转10 数据结构的扩张(ch14)1.动态顺序统计:扩展红黑树,支持①选择问题(给定Rank求相应的元素),②Rank问题(求元素x在集合中的Rank)(1)节点结构的扩展;(2)选择问题的算法;(3)Rank问题的算法;(4)维护树的成本分析;2.如何扩张一个数据结构:扩张的步骤;扩张红黑树的定理(略);3.区间树的扩张和查找算法11 动态规划(ch15)1.方法的基本思想和基本步骤2.动态规划和分治法求解问题的区别3.最优性原理及其问题满足最优性原理的证明方法4.算法设计(1)多段图规划;(2)矩阵链乘法;(3)最大子段和;(4)最长公共子序列;12 贪心算法(ch16)1.方法的基本思想和基本步骤2.贪心算法的正确性保证:满足贪心选择性质3.贪心算法与动态规划的比较4.两种背包问题的最优性分析:最优子结构性质和贪心选择性质5.算法设计(1)小数背包;(2)活动安排;(3)找钱问题;13 回溯法(sch2)1.方法的基本思想和基本步骤2.回溯法是一种深度遍历的搜索3.术语: 三种搜索空间, 活结点, 死结点, 扩展结点, 开始结点, 终端结点4.两种解空间树和相应的算法框架5.算法设计(1)图和树的遍历;(2)n后问题;(3)0-1背包;(4)排列生成问题;(5)TSP问题;14 平摊分析(ch17)1.平摊分析方法的作用和三种平摊分析方法各自特点2.聚集分析法及应用3.记账分析法及应用4.势能法及应用15 二项堆(ch19 in textbook version 2)1.为什么需要二项堆?二项堆和二叉堆上的几个基本操作时间复杂性2.二项堆定义和存储结构3.二项堆上合并操作及过程4.二项堆应用(尤其是在哪些图论算法上有应用)16 不相交集数据结构(ch21)1.不相交数据集概念2.两种实现方式:链表表示和森林表示3.两种表示具体实现和其上操作的时间复杂性4.不相交集数据结构应用(尤其是在哪些图论算法上有应用)17 图论算法(ch22-ch25)1.BFS和DFS算法- 白色、灰色和黑色结点概念和作用- 计算过程及其时间复杂度2.最小生成树- 安全边概念和一般算法(Generic algorithm)- Kruskal算法和Prim算法的计算过程和计算复杂性- 两种贪心算法的贪心策略和贪心选择性质3.单源最短路径(略)- 单源最短路径δ(s, v)和短路径上界d[v]概念- 边松弛技术及其一些性质- 三种问题算法的计算过程及其时间复杂度:Bellman-Ford算法、DAG算法和Dijkstra算法4. 所有点对最短路径(略)- 为什么能转换为矩阵乘法?- 基于矩阵乘法的较慢和快速算法的时间复杂度- Floyd-Warshall Algorithm的思路和时间复杂度- Johnson Algorithm适应的问题及其时间复杂度(略)18 数论算法(ch31)1.gcd(a, b)及其表示成a, b线性组合方法2.Euclid’s Alg.的运行时间3.线性模方程的求解方法4.中国余数定理及其相应线性同余方程组的求解5.RSA算法过程及正确性基础6.简单素数测试算法和伪素数测试算法7.MR算法的改进措施和算法复杂性19 串匹配(ch32)1.朴素的串匹配算法及其时间复杂度2.Rabin-Karp串匹配算法及其时间复杂度3.有限自动机串匹配算法及其及其时间复杂度4.KMP串匹配算法及其时间复杂度20 模型和NPC(ch34)1.算法的严格定义2.几种计算模型的语言识别能力3.两类图灵机模型4.P问题、NP问题和NP完全问题的定义及P归约。

算法分析与设计复习大纲(全)

算法分析与设计复习大纲(全)

算法分析与设计复习大纲第1章绪论考点:1、算法的5个重要特性。

答:输入、输出、有穷性、确定性、可行性2、掌握扩展递归技术和通用分治递推式的使用。

扩展递归技术:通用分支递归式:5、使用扩展递归技术求解下列递推关系式(1)(2)第3章蛮力法1、掌握蛮力法的设计思想:蛮力法依赖的基本技术——扫描技术,即采用一定的策略将待求解问题的所有元素依次处理一次,从而找出问题的解;关键——依次处理所有元素。

2、蛮力法的代表算法及其时间复杂度:顺序查找,O(n)串匹配(BF O(n*m),KMP O(n+m)选择排序,O(n2)冒泡排序,O(n2)生成排列对象(排列问题),O(n!)生成子集(组合问题),O(2n)0/1背包属于组合问题。

任务分配,哈密顿回路,TSP问题属于排列问题。

3、掌握BF和KMP算法的原理,能够画出比较过程。

要求给出一串字符串,能够求出对应的next数组,并能使用KMP算法进行比较匹配。

4、掌握选择排序和冒泡排序算法描述和时间复杂性,要求能够写出伪代码。

选择排序算法描述:选择排序开始的时候,扫描整个序列,找到整个序列的最小记录和序列中的第一记录交换,从而将最小记录放到它在有序区的最终位置上,然后再从第二个记录开始扫描序列,找到n-1个序列中的最小记录,再和第二个记录交换位置。

一般地,第i趟排序从第i个记录开始扫描序列,在n-i+1个记录中找到关键码最小的记录,并和第i个记录交换作为有序序列的第i个记录。

时间复杂性:O(n2)伪代码:冒泡排序算法描述:冒泡排序开始的时候扫描整个序列,在扫描过程中两两比较相邻记录,如果反序则交换,最终,最大记录就能被“沉到”了序列的最后一个位置,第二趟扫描将第二大记录“沉到”了倒数第二个位置,重复上述操作,直到n-1趟扫描后,整个序列就排好序了。

冒泡排序,O(n2)5、算法设计题:假设在文本“ababcabccabccacbab”中查找模式“abccac”,求分别采用BF算法和KMP算法进行串匹配过程中的字符比较次数。

算法设计与分析复习题

算法设计与分析复习题

算法设计与分析复习题算法设计与分析复习题算法设计与分析是计算机科学中的重要课程,它涉及到设计高效算法的能力以及对算法性能进行分析和评估的技巧。

在复习这门课程时,我们可以通过解决一些典型的算法设计与分析问题来加深对这门课程的理解和掌握。

下面,我将给出一些常见的复习题,希望能够帮助大家更好地复习算法设计与分析。

1. 排序算法排序算法是算法设计与分析中最基础的内容之一。

请你简要介绍快速排序算法的原理,并给出其时间复杂度的分析。

快速排序算法的原理是通过选择一个基准元素,将待排序序列分割成两个子序列,其中一个子序列的所有元素都小于等于基准元素,另一个子序列的所有元素都大于等于基准元素。

然后对这两个子序列分别进行递归排序,最终得到一个有序序列。

快速排序算法的时间复杂度为O(nlogn),其中n是待排序序列的长度。

这是因为在每一次分割操作中,我们需要对长度为n的序列进行一次遍历,而在最坏情况下,每次分割操作只能将序列分割成长度为1和n-1的两个子序列,这样需要进行n次分割操作。

因此,快速排序的时间复杂度为O(nlogn)。

2. 图的最短路径图的最短路径是算法设计与分析中的一个重要问题。

请你简要介绍Dijkstra算法的原理,并给出其时间复杂度的分析。

Dijkstra算法是一种用于解决单源最短路径问题的算法。

它的原理是通过维护一个距离数组,记录从起始节点到每个节点的最短路径长度。

首先,将起始节点的距离设置为0,其他节点的距离设置为无穷大。

然后,从距离数组中选择一个距离最小的节点,将其标记为已访问,并更新与其相邻节点的距离。

重复这个过程,直到所有节点都被标记为已访问。

Dijkstra算法的时间复杂度为O(V^2),其中V是图的节点数。

这是因为在每一次选择最小距离节点的操作中,需要遍历所有节点来找到距离最小的节点。

在最坏情况下,需要进行V次这样的操作。

此外,更新与相邻节点的距离的操作也需要遍历所有节点,因此总的时间复杂度为O(V^2)。

算法设计与分析复习重点

算法设计与分析复习重点

0/1背包问题:给定n 个重量为{w 1,w 2,...,w n }、价值为{v 1,v 2,...,v n }的物品和一个容量为C 的背包,应选择哪些物品装入背包,才能使装入背包的物品价值最高? 蛮力法:给出所有子集,计算子集的总重量和总价值,进行比较。

动态规划法:证明0/1背包问题,满足最优性原理,分支限界法:用贪心法求得背包问题的下界,再求得上界:将背包中剩余容量全部装入第i+1个物品,并可以将背包装满,限界函数:ub=v+(W-w)*(v i+1/w i+1)。

总结:1.剪枝函数给出每个可行结点相应的子树可能获得的最大价值的上界。

2.如这个上界不会比当前最优值更大,则可以剪去相应的子树。

3.也可将上界函数确定的每个结点的上界值作为优先级,以该优先级的非增序抽取当前扩展结点。

由此可快速获得最优解。

贪心法:选择单位重量价值最大的物品。

哈密顿回路问题:共有n 个城市,要求从一个城市出发,经过每个城市恰好一次,最后回到出发城市。

蛮力法:对于给定的无向图G=(V ,E ),依次考察图中所有顶点的全排列,满足以下条件的全排列(v i1,v i2,...,v in )构成的回路就是哈密顿回路:(1)相邻顶点之间存在边,即(v ij ,v ij+1)∈E (1≤j ≤n-1)(2)最后一个顶点和第一个顶点之间存在边,即(v in ,v i1)∈E回溯法:假定图G=(V ,E )的顶点集为V={1,2,…,n },则哈密顿回路的可能解表示为n 元组X=(x 1,x 2,…,x n ),其中,xi {1,2,…,n }。

根据题意,有如下约束条件:{(x i ,x i+1)∈E(1≤i ≤n −1)(x n ,x 1)∈E x i ≠x j (1≤i,j ≤n,i ≠j )首先把所有顶点的访问标志初始化为0,然后依次为每个顶点着色。

在解空间树中,如果从根结点到当前结点对应一个部分解,即满足上述约束条件,则在当前结点处选择第一棵子树继续搜索,否则,对当前子树的兄弟子树继续搜索,即为当前顶点着下一个颜色。

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。

例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。

2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。

时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。

例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。

空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。

比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。

二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。

然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。

2、请举例说明分治法的应用。

例如归并排序算法。

将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。

其时间复杂度为 O(nlogn),空间复杂度为 O(n)。

三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。

(2)找出状态转移方程。

(3)确定初始状态。

(4)计算最终的解。

2、解释最长公共子序列问题,并给出其动态规划解法。

最长公共子序列问题是指找出两个序列的最长公共子序列的长度。

假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。

状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。

算法设计与分析期末复习题试题知识点

算法设计与分析期末复习题试题知识点

算法设计与分析期末复习题试题知识点1. 算法基础知识算法的定义、性质与特征算法的正确性算法的复杂性分析常见的算法复杂度:时间复杂度与空间复杂度递归算法与迭代算法2. 排序算法插入排序冒泡排序选择排序快速排序归并排序堆排序排序算法的比较与选择3. 查找算法顺序查找二分查找哈希查找查找算法的比较与选择4. 图算法图的遍历算法:深度优先搜索和广度优先搜索最短路径算法:Dijkstra算法和Floyd-Warshall算法最小生成树算法:Prim算法与Kruskal算法5. 动态规划动态规划的基本概念与原理最优子结构、无后效性与子问题重叠性动态规划算法的设计与实现6. 回溯法回溯法的基本概念与原理问题的解空间与状态空间回溯法算法的设计与实现剪枝策略与优化技巧7. 贪心算法贪心算法的基本概念与原理贪心选择性质与最优子结构贪心算法的设计与实现贪心算法的适用性与局限性8. 网络流与匹配算法最大流问题与最小割问题Ford-Fulkerson算法与Edmonds-Karp算法二分图匹配与匈牙利算法网络流与匹配问题的建模与求解9. 近似算法NP问题与NPC问题近似算法的定义与性能度量近似算法的设计与实现近似算法的适用性与近似比例10. 动态数据结构平衡二叉树:AVL树与红黑树并查集与路径压缩算法哈希表与散列函数动态数据结构的设计与实现以上是算法设计与分析中的一些重要知识点,希望对你的期末复习有所帮助。

在复习过程中,可以针对每个知识点进行深入学习和练习,理解其原理与应用场景,并通过解题来熟悉算法的实际应用。

祝你顺利通过期末考试!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.什么是算法?算法是一系列解决问题的指令,对符合规范的输入,能在有限时间内获得预期的输出。

2.算法的特点?有穷性-有限步内完成;确定性-每一步是确定的,不能有二义性;可行性-每一步有意义,每一步能求解;输入-须检查输入值值域合法性;输出-输出问题的解,无输出的算法没有意义。

补:排序算法的特点:稳定性,在位性。

稳定性:如果一个排序算法保留了等值元素在输入中的相对顺序,他被称为是稳定的。

换句话说,如果一个输入列表包含两个相等的元素,他们的位置分别是i和j。

i<j。

而在排好序的列表中,他们的位置分别是i`和j`,那么i`<j`肯定成立。

在位性:如果一个算法不需要额外的存储空间(除了个别存储单元外),我们称它是在位的。

3.求最大公约数的伪码?Euclid(m,n)//计算m和n最大公约数的欧式算法//输入:两个不全为0的非负整数m>=n//输出:m和n的最大公约数while n≠0 do{r←m mod nm←nn←r}return m4.问题求解过程理解问题;了解设备性能选择计算方法,精确或近似接法高效的数据结构算法的设计技术;设计算法;正确性证明;分析算法;编程实现算法。

1-2-3-4-5-6.4-3,4-2,5-3,5-2(理解问题;决定:计算方法:精确或近似方法:数据结构:算法设计技术;设计算法;正确性证明;分析算法;根据算法写代码.)5.算法分析主要步骤(框架)算法的运行效率也称为计算复杂性(计算复杂度);计算复杂性:时间复杂性(时间效率)空间复杂性(空间效率)时间效率-算法运行所耗费的时间。

空间效率-算法运行所需的存储空间。

输入规模事实:几乎所有算法对更大规模的输入都要耗费更长的时间!即算法耗时随输入规模增大而增大;增长函数定义为输入规模的函数,用它来研究算法;输入规模的选择它的选择比较直接容易。

6.n元列表查找最大值-数组实现列表MaxElement(A[0..n-1])maxval←0for i←1 to n-1 doif A[i]>maxvalmaxval←A[i]return maxval7.检查数组元素是否唯一UniqueElement(A[0..n-1])for i←0 to n-2 dofor j←i+1 to n-1 doif A[i]=A[j] return falsereturn true8.计算方阵A B的矩阵乘积MatrixMultiplication(A[0..n-1][0..n-1],B[0..n-1][0..n-1])for i←0 to n-1 do//行循环for j←0 to n-1 do//列循环M[i][j]←0.0 //积矩阵初始化for k←0 to n-1 do//用变量k表示变化的脚标M[i][j]←M[i][j]+A[i][k]*B[k][j]return M9.计算十进制正整数n的二进制位数b算法的时间复杂性分析Binary(n)count←1while n>1 docount++n←「n/2「return count10.求m,n最大公约数gcd(int m,int n)//求m,n最大公约数的欧式递归版本//输入:两个正整数m≥n//输出:最大公约数{if(n=0)//递归出口,结束递归write(M);//输出结果elsegcd(n,m mod n);}11.选择排序(每次从数组中选取最小的按顺序插入) SelectionSort(A[1..n]){for i←1 to n-1 domin←ifor j←i+1 to n doif(A[j]<A[min])min←jA[i]↔A[min]}12.冒泡排序(相邻的比较,a<b则交换,最后一位则为最大) BubbleSort(A[1..n]{ for i←1 to n-1 dofor j←1 to n-i doif(A[j]>A[j+1])A[j]↔A[j+1]}13.顺序查找SequentialSearch(A[n..n],k){ A[n]←Ki←0while(A[i]≠k) i←i+1if(i<n)return(i)else return(-1)}14.串匹配BruteForceStringMatch(T[0..n-1],P[0..m-1]){for i←0 to n-m do{ j←0while j<m and P[j]=T[i+j] doj←j+1if i=m return i}return -1}15.最近对BruteForceCloserPoints(Object P[1..n]){ dmin←∞for i←1 to n-1 dofor j←1 to n dod←sqrt((Xi-Xj)2+(Yi-Yj)2)if(d<dmin){dmin←d,index1←i,index2←j}return(index1,index2)}16.分治算法DivideandConquer(s){if(|s|≤t)then adhocery(s)else{ divide s into smaller subset s1,s2,skfor i←1 to k do{Yi←DivideandConquer(Si)}return merge(Y1,Y2,Yk)}}17.分治法查找最大元素DivideandConquerSearchMax(S){ t←2if(|S|≤t)then return max(S1,S2)else{divide S into two smaller subset S1 and S2,|S1|=|S2|}=|S|/2 max1=DivideandConquerSearchMax(S1)max2=DivideandConquerSearchMax(S2)return max(max1,max2)}}18.合并排序之分治算法MergeSort(A[0..n-1]){ if(n>1){copy A[0..」n/2」-1]to B[0..」n/2」-1]copy A[」n/2」..n-1]to C[0..」n/2」]MergeSort(B)MergeSort(C)Merge(B,C,A)}}Merge(B[0..p-1],C[0..q-1],A[0..p+q-1]){i←0,j←0,k←0while i<p and j<q doif(B[i]≤C[j])A[k]←B[i],i←i+1else A[k]←B[j],j←j+1k←k+1if(i=p)copy C[j..q-1]to A[k..p+q-1]else copy B[j..q-1]to A[k..p+q-1]}19.快速排序QuickSort(A[L..R]){ if(L<R)S←Partition(A[L..R])QuickSort(A[L..S-1])QuickSort(A[S+1..R])}Partition(A[l..r])p←A[l] i←l; j←r+1repeatrepeat i←i+1 until A[i]≥prepeat j←j-1 until A[j]≥pswap(A[i],A[j])until i≥jswap(A[i],A[j]swap(A[l],A[j]return j20.两次扫描确定分区算法Partition(A[L..R]){ p←A[L]i←L+1,j←Rwhile(true){ while(A[i]<p)and(i≤R)do i←i+1while(A[j]>q)and(j≥R)do j←j-1if(i≥j)then breakswap(A[i],A[j])}swap(A[L],A[j])return (j)}21.折半查找BinarySearch(A[0..n-1],K){L←0,R←n-1while(L<R) dom←」(L+R)/2」if(K=A[m])return melse if(K<A[m])R←m-1else L←m+1return(-1)}22.插入排序(比较两个相邻的数,依次从小到大插入) InsertionSort(A[0..n-1]){ for(i←1 to n-1) doj←i-1,V←A[i]while(j≥0 and A[j]>V)A[j+1]←A[j]j←j-1A[j+1]←V}23.DFS递归版DFSRecursion(vertex v){ count←count+1visit(v)Mark[v]←countfor each vertex w adjacent to v doif Mark[w]=0 thenDFSRecursion(w)}非递归:DFS(Graph G,Vertex v){ count←0virst(v)Initialize(S)Push(v)while(isEmpty(S)=FALSE)x←Pop(S)for each vertex w adjacent to x doif Mark[w]=0 thenvirst(w),count←count+1,Mark[w]←countPush(w)}23.BFS非递归算法BFS(Graph G,Vertex v){ count←0 virst(v) Initialize(Q) Enqueue(v)while(isEmpty(Q)=FALSE)x←Dequeue(Q)for each vertex w adjacent to x doif Mark[w]=0 then virst(w),count++,Mark[w]←count Enqueue(w)}24.预排序检验数组中元素唯一性PresortElementUniqueness(A[0..n-1])For i←0 to n-2 doif A[i]=A[i+1]return falsereturn true时间效率蛮力法:2n变治法:T(n)=Tsort(n)+Tscan(n)∈O(nlogn)+O(n)∈O(nlogn)25.变治法预排序蛮力法效率:T(n)=1+…+n-1∈Θ(n*n)变治法预排序:T(n)=n-1PresortMode_1(A[0..N-1])//行程算法,对数组排序i←0,ModeFrequency←0//最大频率while(i≤n-1)runlength←1,runvalue←A[i]while(i+runlength≤n-1 and A[i+runlength]=runvalue)runlength ++if(runlength>ModeFrequency)ModeFrequency←runlength,modeValue←runvaluei←i+runlengthreturn(ModeValue,ModeFrequency26.堆构造的值交换算法HeapValueExchange(H[1..n])For i←」n/2」downto 1 dok←I,v←H[k]heap←FALSEwhile(not heap)and(2*k≤n)doj←2*k if(j+1≤n)if(H[j]<H[j+1])j←j+1if(v≥H[j] heap←TRUEelse{H[k] ←H[j],k←j}H[k] ←v时间效率T(n)=Ε(n=o,h-1)[2(h-k)2k次方]=2hΕ(k=0,h-1)2k次方-2Ε(k=1,h-1)2k次方=2(n-log2(n+1))<2n,n>027.三种贪婪策略解决01背包的过程和结果价值最大:满足约束条件下,每次装入价值最大的物品----不一定能找到最优解(背包称重量消耗过快)重量最小:满足约束条件下,每次装入重量最轻的物品---不一定找到最优解(装入总价值增加太慢)单位价值最大:满足约束条件下,每次装入价值/重量最大的物品---能找到最优解28.连续背包的贪婪算法GreedyKnapsack(n,w[1..n],v[1..n],x[1..n],W,V)X[1..n] ←0 Wo←W V←0MergeSort(v[1..n]/w[1..n])For(i←1 to n)doIf(w[i]<Wo)then x[i]←1Wo←Wo←w[i]V←V+v[i]Else x[i]←Wo/w[i], V←V+x[i]*v[i]BreakReturn V29.贪婪算法Prim算法:PrimMST(G)Vt←{vo}Et←ΦFor(i←1 to|V|-1)do在V-Vt中选与当前树最小距离的边e*=(v*,u*)Vt←Vt∪{u*}Et←Et∪{e*}Return EtDijkstra算法伪码:Dijkstre(G,s)Initialize(Q)For(each vertex v∈V)dv←∞Isert (Q,v,dv)ds←0,Decrease(Q,s,ds)Vt←ΦFor(i←0 to |V|-1)U*←DeleteMin(Q)Vt←Vt∪{u*}For(each vertex u∈(V-Vt)adjacent to u*∈Vt)If(dn*+w(u*,u)<du)du←du*+w(u*,u)Decrease(Q,u,dn)Kruskal算法:Kruskal(G)Et←∅;ecounter←0k←0while ecounter<|V|-1 dok←k+1if Et∪{Eik}无回路ET←Et∪{Eik};ecounter←ecounter+1Return Eta.设计一个蛮力算法,对于给定的x0,计算下面多项式的值:P(x)=a n x n+a n-1x n-1+…+a1x+a0并确定该算法的最差效率类型.b.如果你设计的算法属于Θ(n2),请你为该算法设计一个线性的算法.。

相关文档
最新文档