第六章 空间力系

合集下载

理论力学课件:空间力系

理论力学课件:空间力系
空间力系
空间力系
4.1 空间汇交力系 4.2 力对点之矩及力对轴之矩 4.3 空间力偶系 4.4 空间力系向一点简化 主矢与主矩 4.5 空间力系的平衡方程及应用 4.6 物体的重心 思考题
空间力系
4.1 空间汇交力系
1.力在直角坐标轴上的投影与分解 1)直接投影法(一次投影法) 在图4-1所示的直角坐标系中,已知力F 与x 轴、y 轴、z
空间力系
2.空间力偶系的合成 作用面不共面的力偶系称为空间力偶系。由于力偶矩矢 是自由矢量,故空间力偶系合成的方法与空间汇交力系相同。 即空间力偶系合成的结果是一个合力偶,合力偶矩等于各分 力矩的矢量和,即
空间力系 将式(4-16)中的矩矢分别向x,y,z 上投影,有
即合力偶矩矢在x,y,z 轴上投影等于各分力偶矩矢在相应轴 上投影的代数和。
空间力系
图4-15
空间力系
空间力系
4)空间力系简化为力螺旋 当力系向一点简化时,R'≠0,MO ≠0,且R'与MO 不垂直而成 任一角α,这是最一般的情形。将 MO 分解为分别与R'平行、 垂直的两个分量 MO//、MO⊥ ,如图4-16(a)所示。其中, MO//=MOcosα、MO⊥ =MOsinα。 MO⊥ 与R'进一步合成为作用在A 点的一个力R, OA=MOsinα/R。由于力偶矩为自由矢量,将 MO//平移到A 点 与R重合,如图4-16(c)所示。最终的简化结果为一个力R 和一 个力偶MO//。这种由一个力和在与之垂直平面内的一力偶所 组成的力系称为力螺旋。
空间力系 合力偶矩矢的大小和方向为
式(4-18)中,α、β、γ 为M 在xyz 坐标系中的方向角。
空间力系 【例4-4】 在图4-12所示的直角三棱柱上,作用着力

空间力系

空间力系

第六章空间力系一、图示结构自重不计,已知;力Q=70kN,θ=450,β=600,A、B、C铰链联接。

试求绳索AD的拉力及杆AB、AC的内力。

二、是非题()1.在空间问题中,力对轴的矩是代数量,而对点的矩是矢量。

()2.力对于一点的矩在一轴上投影等于该力对于该轴的矩。

()3.一个空间力系向某点简化后,得主矢’、主矩o,若’与o平行,则此力系可进一步简化为一合力。

()4.某一力偶系,若其力偶矩矢构成的多边形是封闭的,则该力偶系向一点简化时,主矢一定等于零,主矩也一定等于零。

()5.某空间力系由两个力构成,此二力既不平行,又不相交,则该力系简化的最后结果必为力螺旋。

()6.一空间力系,若各力的作用线不是通过固定点A,就是通过固定点B,则其独立的平衡方程只有5个。

()7.一个空间力系,若各力作用线平行某一固定平面,则其独立的平衡方程最多有3个。

()8.某力系在任意轴上的投影都等于零,则该力系一定是平衡力系。

三、填空题1.如图所示,已知一正方体,各边长为a,沿对角线BH作用一个大小为F 的力,该力在x轴上的投影为;在y轴上的投影为;在z轴上的投影为;对x轴之矩为;对y轴之矩为;对z轴之矩为。

2.过点A点(3,4,0)的力F在轴x上的投影F x=20N,在轴y上的投影F y=20N,在轴z投影F z=202N,则该力大小为_________,对x轴之矩为;对y轴之矩为;对z轴之矩为。

3. 力F从A点(3,4,0)指向B点(0,4,4)(长度单位为米),若F=100N,则该力在x轴上的投影为;在y轴上的投影为;在z轴上的投影为;对x轴之矩为;对y轴之矩为;对z轴之矩为。

4.空间力系的合力对某轴之矩等于各分力对_______的代数和。

空间任意力系向一点简化得到的主矢与简化中心的选择______关;得到的主矩等于力系各力对简化中心的矩的______和。

5.判断空间约束目的未知约束力数的基本方法是:观察物体在空间的六种可能的运动有哪几种运动被约束阻碍,约束的阻碍作用就是约束反力。

第六章空间力系

第六章空间力系

理论力学
鉴于空间力偶区别于平面力偶的特点,可以用一个矢量 表示空间力偶,该矢量垂直于力偶作用面,指向由右手定则 确定。并且矢的长度表示力偶矩的大小,矢的方位与力偶作 用面的法线方位相同,即如以力偶的转向为右手螺旋的转动 方向,则大拇指指向即为力偶矩矢的方向,如图 6-10 所示。 此矢量称为力偶矩矢,记作 M 由此可知。
第6章 空间力系
理论力学
6.1 空间汇交力系
6.1.1 力在坐标轴上的投影
若已知力与正交坐标系 Oxyz 三轴间夹角,则用直接投影 法,如图 6-1a,力 F 可以对 x,y,z 三个方向上投影,其正 交分力分别为 Fx,Fy,Fz,则其大小为:Fx=Fcos(F,i),Fy =Fcos(F,j),Fz=Fcos(F,k)。
图 6-3
第6章 空间力系
理论力学
解:用二次投影法求解。由图 6-3b 得:
Fx=Ft=Fcosαsinβ (圆周力) Fy=Fa=-Fcosαcosβ (轴向力) Fz=Fr=-Fsinα (径向力) 如已知力在坐标轴上的投影 Fx、Fy、Fz,可按下式决定 力的大小和方向余弦:
F= Fx2+F2y+F2z(6-4) cosα=FFx,cosβ=FFy,cosγ=FFz
上的投影为 Fx=Fsinγcosφ,Fy=Fsinγsinφ,Fz=Fcosγ。若以 Fx、Fy、Fz 表示力 F 沿直角坐标轴 x、y、z 的正交分量,则 力 F 在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系
可表示为:
F=Fx+Fy+Fz=Fxi+Fyj+Fzk
(6-1)
第6章 空间力系
理论力学
第6章 空间力系
理论力学
6.2.3 力对点的矩与力对轴的矩的关系

空间力系(工程力学课件)

空间力系(工程力学课件)

空间力系平衡方程的应用
二、空间力系平衡方程 空间汇交力系和空间平行力系是空间任意力系的特殊情况,由式(5-10) 可推出空间汇交力系的平衡方程为
空间力系平衡方程的应用
例1 如图5.8(a)所示,用起重杆吊起重物。起重杆的A端用球铰链固定在地 面上,而B端则用绳子CB和DB拉住,两绳分别系在墙上的点C和D,连线CD平行于 x轴。已知:CE=EB=DE,α=30°,CDB平面与水平面间的夹角∠EBF=30°(参见 图5.8(b)),物重P=l0kN。如起重杆的重量不计,试求起重杆所受的压力和绳
Fxy在与z轴垂直的xy面内
Mz (F ) MO (Fxy ) Fxyh 为代数量
即:力对轴之矩,等于力在垂直于该轴的平面
上的投影对轴与平面交点之矩。
x
特殊情况:
Oh Bh A
1、力与轴平行,矩为零。
y
2、力与轴相交,矩为零。
即: 力与轴位于同一平面内时,矩为零。
力对轴之矩及合力矩定理
1. 力对轴之矩
解:
2.由合力矩定理求F轴之矩FzFx Fra bibliotekxyFy
2F M x (F ) M x (Fx ) M x (Fy ) M x (Fz ) 0 0 2 6 10606.6N m
M y (F ) M y (Fx ) M y (Fy ) M y (Fz ) 0 0
2F 5 8838.8N m 2
例2 图5.4(a)所示为一圆柱斜齿轮,,, 其上受啮合力F作用。已知斜齿轮 的螺旋角β和压力角α。试求啮合力F在坐标轴x、y、z的投影。
解 先将啮合力F向坐标轴z和 坐标平面Oxy投影,如图5.4(b) 所示,得
Fz F sin Fxy F cos

第6章 力系的平衡—思考题-解答

第6章 力系的平衡—思考题-解答

第6章力系的平衡——思考题——解答6-1 空间一般力系向三个相互相交的坐标平面投影,得到三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,这样力系就有九个平衡方程,那么能否求解九个未知量为什么6-1 解答:(1) 空间一般平衡力系,有六个独立的平衡方程,能求解六个未知量。

(2) 空间一般力系向三个相互相交的坐标平面投影,得到三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,这样力系就有九个平衡方程,但并非独立,因为三个相互相交的坐标平面满足一定的几何关系(每一个坐标平面之间的夹角是确定的,共有三个确定的夹角),这样得到的三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,力系就有九个平衡方程,其实独立的还是六个平衡方程,能求解六个未知量。

6-2 试问在下述情况下,空间平衡力系最多能有几个独立的平衡方程为什么(1)各力的作用线均与某直线垂直; (2)各力的作用线均与某直线相交; (3)各力的作用线均与某直线垂直且相交; (4)各力的作用线均与某一固定平面平行; (5)各力的作用线分别位于两个平行的平面内; (6)各力的作用线分别汇交于两个固定点; (7)各力的作用线分别通过不共线的三个点;(8)各力的作用线均平行于某一固定平面,且分别汇交于两个固定点; (9)各力的作用线均与某一直线相交,且分别汇交于此直线外的两个固定点; (10)由一组力螺旋构成,且各力螺旋的中心轴共面;(11)由一个平面任意力系与一个平行于此平面任意力系所在平面的空间平行力系组成;(12)由一个平面任意力系与一个力偶矩均平行于此平面任意力系所在平面的空间力偶系组成。

6-2 解答:空间的一般平衡力系共有六个独立的平衡方程0=∑xF,0=∑y F ,0=∑z F ,0=∑x M ,0=∑y M ,0=∑z M(1) 各力的作用线均与某直线垂直 —— 最多有五个独立平衡方程。

假设各力的作用线均与z 轴垂直,则0=∑z F 自动满足,独立的平衡方程有5个。

理论力学精品课程第六章空间力系

理论力学精品课程第六章空间力系
首先,我们需要明确力的合成和分解的基本原理。然后,根据题目给出的条件,我们可 以将一个力分解为若干个分力,或者将若干个分力合成为一个合力。通过这些操作,我
们可以求出物体所受的合力和分力。
习题三解析
总结词
该题考查了空间力系中力的矩和力矩 的平衡条件,通过构建力矩平衡方程, 可以求出未知的力和力矩。
详细描述
按力的分布范围分类
可分为集中力系和分布力系。
按力的方向分类
可分为同向力系、反向力系和任意方向力系。
空间力系性质
平衡性
力矩的存在性
空间力系在不受外力作用或处于平衡状态 下,合力为零。
空间力系可以产生旋转效应,即力矩。
力线平移定理
力的独立性
空间力系中,通过一定点可以作无数个平 行且等效的力,这些力的作用线均在该点 处与给定的力线重合。
力的平移
力平移定义
01
将力平行移动到刚体的任意点,同时保持力的方向和大小不变。
力平移性质
02
力的平移不改变力对刚体的作用效果,但会改变力矩的大小和
方向。
力平移实例
03
例如,在机械制造中,需要将机床的切削力平移到工件的任意
位置,以保证工件加工的精度和质量。
力在坐标轴上的投影
力在坐标轴上投影定义
将力沿坐标轴方向的分量表示为标量。
首先,我们需要明确力的矩和力矩平 衡条件的基本概念。然后,根据题目 给出的条件,我们可以构建力矩平衡 方程。通过解这个方程,我们可以求 出未知的力和力矩。
感谢您的观看
THANKS
航天器轨道
在航天器轨道分析中,空间力系 用于研究航天器的运动轨迹和受 力情况,以确保航天器的安全和 有效运行。
卫星姿态控制

工程力学

工程力学

M O ( F ) M x ( F ) i M y ( F ) j M z ( F )k Fb sin i Fa sin j ( Fb sin sin Fa sin cos ) k
例 题 3
已知: P 、 a、b、c 求: 力P 对OA轴之矩
z
解:(1)计算 MO(P)
已知:在工件四个面上同时钻5个孔,每个孔所受切削 力偶矩均为80N· m. 求:工件所受合力偶矩在 x, y, z 轴上的投影
解:把力偶用 力偶矩矢表示, 平行移到点A .
M x M ix M 3 M 4 cos 45 M 5 cos 45 193.1N m

M y M iy M 2 80N m M z M iz M 1 M 4 cos 45 M 5 cos 45 193.1N m
a 2 b2 c2
例4 6.2
如图所示,长方体棱长为 a、 b、c,力 F 沿BD,求力 F 对AC 之矩。 解: mAC (F ) mC (F ) AC
B

F
c
a
C
D

b


A
mC ( F ) F cosa
Fba a 2 b2
mAC ( F ) mC ( F ) cos
Fabc a 2 b2 a 2 b2 c 2
§4–3
空间力偶
1、力偶矩以矢量表示--力偶矩矢
F1 F2 F1 F2
空间力偶的三要素 (1) 大小:力与力偶臂的乘积;
(2) 方向:转动方向;
(3) 作用面:力偶作用面。
(1) 大小
(2) 方向

第六章空间力系

第六章空间力系
Fx Fy Fz
kr Oj
ih x
A(x,y,z) y
( yFz zFy )i (zFx xFz ) j (xFy yFx )k
4.2.1 力对点的矩以矢量表示-力矩矢
力矩矢MO(F)在三个坐标轴上的投
z
影为
[M O (F )]x yFz zFy
MO(F)
[M O (F )]y zFx xFz [M O (F )]z xFy yFx
求力F在三轴上的投影和对三轴的矩。
z
解:
Fx F cos cosj
Fa a2 b2 c2
c
Fy F cos sinj
Fb a2 b2 c2
x
Fz F sin
Fc a2 b2 c2
M x (F ) M x (Fx ) M x (Fy ) M x (Fz ) Fyc
MO F'R
= F'R
O
O
4.4.2 空间任意力系的简化结果分析
F'R ≠ 0,MO≠0 ,同时两者既不平行,又不垂直,此时 可将MO分解为两个分力偶M"O和M'O,它们分别垂直 于F'R和平行于F'R,则M"O和F'R可用作用于点O'的力 FR来代替,最终得一通过点O '的力螺旋。
MO
F'R

O
a
FB
y b Fxy
符号规定:从z轴正向看,若力使刚体逆时针转则取正号,反之 取负。也可按右手螺旋法则确定其正负号。
由定义可知:(1)当力的作用线与轴平行或相交(共面)时,力 对轴的矩等于零。(2)当力沿作用线移动时,它对于轴的矩不变。

空间力系分解课件

空间力系分解课件
定性。
科学研究
在物理、化学、生物等领域中,需 要进行空间力系的解析分解,以研 究受力对物质运动和变化的影响。
日常生活
在日常生活中,许多设备和工具都 需要考虑力的作用和影响,如车辆 、家具、玩具等,因此也需要进行 空间力系的解析分解。
04
CATALOGUE
空间力系分解的实例分析来自实例一:斜拉桥的受力分析
平衡法
根据力的平衡条件,将空 间力系分解为若干个平衡 的子力系,然后分别进行 分析。
02
CATALOGUE
空间力系的几何分解
空间力系的几何表示
空间力系
在三维空间中,力系是由多个力矢量组成的系统。这些力矢量具有大小、方向 和作用点,并且遵循牛顿第三定律。
几何表示
空间力系可以用矢量图来表示,其中每个力矢量由一个箭头表示,箭头的长度 代表力的大小,箭头的指向代表力的方向,箭头的起点代表力的作用点。
在空间力系分解时,需要明确力的方向, 以确保分力是唯一的。
力系分解的发展趋势与展望
智能化与自动化
随着人工智能和机器学习技术的发展,未来空间力系分解将更加智能 化和自动化,能够自动识别和选择最佳的分解方法。
多学科交叉融合
空间力系分解将进一步与数学、物理、工程等多个学科交叉融合,推 动相关领域的发展。
空间力系
在三维空间中,力系由三个互相垂直 的主矢和三个互相垂直的主矩组成, 主矢描述力的大小和方向,主矩描述 力矩的大小和方向。
力系分解的意义
01
02
03
简化问题
通过将复杂的力系分解为 简单、易于处理的子力系 ,可以简化问题的分析和 计算。
便于分析
分解后的力系可以更好地 揭示力的作用效果和相互 关系,便于对问题进行深 入分析。

工程力学上—空间力系

工程力学上—空间力系
1)悬挂法
2)称重法
TG
60
5m G
TH
C
D
YA 20kN ZA 69kN
60
45
ZA
A
45 YA
5m y
P
H XA
例4 用六根杆 支撑正方形板ABCD如图所 图示计解,,板: 以建水的板立平自为如力 重研图,P究坐求沿对标各水象。杆平,的方受内向力力作如。用在PA点S,A6 不S5B5B1
6
C
4
S4 S1
4.6 重心
4.6.1平行力系中心
平行力系中心是平行力系合力通过的 一个点。平行力系合力作用点的位置仅与 各平行力的大小和作用点的位置有关, 而与 各平行力的方向无关。称该点为此平行力 系的中心。
4.6.2 重心
重力是地球对物体的吸引力, 如果 将物体由无数的质点组成, 则重力便构 成空间汇交力系。由于物体的尺寸比地 球小得多, 因此可近似地认为重力是个 平行力系, 这力系的合力就是物体的重 量。不论物体如何放置, 其重力的合力 的作用线相对于物体总是通过一个确定
求两绳的拉力和支座A的约
束反力。
2m
z
B
60
G
C
D
3m 2m
45 A
P
60
45
y
Hx
解: 以立柱和臂杆组成的系统为研究对象,受力如图,建立如 图所示的坐标系。
列平衡方程:
X 0 : X A TH cos 60 sin 45 TG cos 60 sin 45 0
Y 0 : YA TH cos 60 cos 45 TG cos 60 cos 45 0
对于均质物体、均质板或均质杆,其重心坐标分别为:
xdV

第6章_空间力系

第6章_空间力系

标量
M z ( F ) M o ( Fxy )
22
x
正负规定:符合右手螺旋法则
4 性质 1)力的作用线与矩轴相交或平行,则力对该轴的矩为零。
2)力沿作用线移动,则力对某轴矩不变。
23
5 合力矩定理
M z ( FR ) M z ( Fi )
空间力系合力对某一轴之矩等于力系中各力系各分力对同一 轴之矩的代数和。
b
x F c
M x (F ) 0 M y ( F ) F c 12.5Nm M z ( F ) F a 20Nm
M x ( F ) [ M o ( F )]x M y ( F ) [ M o ( F )]y M z ( F ) [ M o ( F )]z
F , cos F 'R
Y
F , cosg F 'R
Z
根据力对点之矩与力对轴之矩的关系:
[ M O ( Fi )]x M x ( Fi ) M Ox ; [ M O ( F )] y M y ( F ) M Oy ; [ M O ( F )]z M z ( F ) M Oz
G + FOA· sin = 0

FOA = -6.25kN (压)

O
y
Fx =0 FOB· sin - FOC· sin = 0 FOB= FOC
A
z
11
G
Fy =0
-2FOB· cos - FOA· cos = 0 cos = cos
D B
x 320 FOA
C
FOC
FOB = - FOA / 2

第六章 空间力系

第六章 空间力系

求力F在三个坐标轴上的
投影。
参见动画:例题1(1)
例题
空间力系
解:
例 题 1
向x,y, z轴投影。
Fxy = Fcos30o
Fx=-Fcos30ocos45o
Fy = Fcos30osin45o
参见动画:例题1(2)
Fz =Fsin30o
mx(P) = mo(Pyz) = - Pyz d1 = -13.86 kN· cm
作和y轴垂直的平面
M2 .
z
B
5cm
D
3cm 找出交点O. 确定力P在平面M2 y o A 内的分力Pxz=P=1kN. d2 在平面M2内确定 x 力Pxz到矩心O的距 P 离即力臂d2=3.464cm 计算力Pxz对点A的矩亦即力P对y轴的矩
结论:力对平行它的轴的
矩为零。即力F与轴共面
时,力对轴之矩为零。
M z ( F ) M O ( Fxy ) Fxy h
力与轴相交或与轴平行(力与轴在同一平面内),力对该 轴的矩为零.
力对平行它的轴的矩为零。即力F与轴共面时,力对轴之矩为零。
2、力对点的矩以矢量表示 ——力矩矢
Ry Rx Rz cos ,cos ,cosg R R R
空间汇交力系的合力等于各分力的矢量和,合 力的作用线通过汇交点.
三、空间汇交力系的平衡:
空间汇交力系平衡的充要条件是:力系的合力为零,即:
R Fi 0
∴几何法平衡充要条件为该力系的力多边形封闭。
∴解析法平衡充要条件为: X 0 称为平衡方程 Y 0 空间汇交力系的平衡方程
沿各轴的分力为
Fx ( Fn cos sin ) i Fy ( Fn cos cos ) j Fz ( Fn sin ) k

《空间力系》课件

《空间力系》课件
研究人体结构和生物力学特 性时,空间力系的概念和方 法也是重要的工具。
总结
通过本课件的学习,我们了解了空间力系的定义和重要性,以及其组成要素、 分类、特点和应用领域。空间力系是研究物体运动和变形的基础,对科学和 工程具有重要意义。
《空间力系》PPT课件
本课件将介绍空间力系的定义、重要性和组成要素,分类为线性、平面和立 体空间力系,以及其特点和应用领域。
空间力系的定义
空间力的概念与性质以及对物体或系统的影响。它是研究空间中物体相互作用和力的传递的力学分支。
空间力系的重要性
1 理解物体行为
2 解决实际问题更好地理解物体 在力的作用下的运动和 变形。
空间力系中的力可以以不同的强度作用于物体。
3 力的合成与分解
空间力系中的多个力可以通过合成和分解来影响物体的运动和形态。
空间力系的应用
机械力学中的应用
空间力系理论在机械设计、 工程结构分析和机器运动研 究中起着重要作用。
工程中的应用
空间力系的知识被广泛应用 于各种工程项目的设计和施 工中。
生物力学中的应用
力的方向是指力的作用方向,可以是直线、 平面或空间中的任意方向。
空间力系的分类
线性空间力系
力和物体的运动方向在同 一直线上。
平面空间力系
力和物体的运动方向在同 一平面上。
立体空间力系
力和物体的运动方向不在 同一平面上。
空间力系的特点
1 方向性
空间力系具有明确的力的方向,指示物体受力的作用方向。
2 力的大小
应用空间力系的知识, 可以帮助解决工程、力 学和生物力学中的实际 问题。
空间力系的研究对于推 动科学和技术的发展具 有重要意义。
空间力系的组成要素

第六章空间力系

第六章空间力系

B
30
D
G E
5m
60
45
45
A
桅杆式起重机可简化为如 图 所 示 结 构 。 AC 为 立 柱 , BC , CD和CE均为钢索,AB为起重 杆。A端可简化为球铰链约束。 设B点滑轮上起吊重物的重量 G=20 kN,AD=AE=6 m,其余 尺寸如图。起重杆所在平面 ABC与对称面ACG重合。不计 立柱和起重杆的自重,求起重 杆AB、立柱AC和钢索CD,CE 所受的力。
力对轴的矩
空间力对轴的矩是个代 数量,它等于这个力在 垂直于该轴的平面内的 投影对于这平面与该轴 交点的矩。
z
B F
A
o
y
d
B
x
A Fxy
Fxy F cos
Mz (F) Mo(Fxy ) Fxy h
例题6-5
已知:F,l, a, 求:M x F , M y F , M z F
解:把力 F分解如图
F3 2 2P
力对点的矩的矢量表示
❖ 对于平面力系,力对该平面内一点的矩有大小和 转向两个要素,所以可用代数量表示;
❖ 对于空间力系,不仅要考虑力矩的大小、转向, 还要注意力与矩心所组成的平面的方位。方位不 同,即使力矩大小一样,作用效果将完全不同。
力矩的大小 力矩的转向该 力矩作用面的方位
力对点的 矩三要素
这三个要素可以用一个矢量来表示:
Fz Fn sin Fxy Fn cos Fx Fxy sin Fn cos sin Fy Fxy cos Fn cos cos
例题6-2
已知:物重P=10kN,CE=EB=DE; 300
求:杆受力及绳拉力
解:画受力图如图, 列平衡方程
Fx 0

静力学(空间力系)

静力学(空间力系)


§5-3 空间力偶
有关平面力偶的回顾

偶 : 大小相等,方向相反,不共线的 两个力所组成的力系.
F1
F2
力偶的作用面与力偶臂
力偶作用面 :
二力所在平面。
力偶臂 d:二力作
F1
用线之间的垂直距离
F2
力偶矩的大小
M F d
力偶的特点
特点一 : 力偶无合力,即主矢FR=0.

z C
A x B Fy
D
E

F
θ Fz y
本问题中
Fx F sin Fy 0 Fz F cos
x l yla z0
M x F yFz zFy F cos l a

M y F zFx xFz F cos l M z F xFy yFx F sin l a
Fx
Fxy
例题 已知:F1 =500N,F2=1000N,F3=1500N,
求:各力在坐标轴上的投影
z 4m
解: F1 、F2 可用直接投影法 Fx F cos Fy F cos F1 Fz F cos
Fx1 0 Fy1 0 Fz1 F1 500 N
Fx 2 Fy 2
FR

i 1
xi
n
Fi 0
2
由于
FR
F
Fyi Fzi
2
2
F 空间汇交力系的平衡条件: F F
x y
0 0 0
z
例题:已知: CE EB ED, 30 , P 10kN 求:起重杆AB及绳子的拉力

理论力学精品课程 第六章 空间力系

理论力学精品课程 第六章  空间力系

F
m
F′
三,空间力偶系的合成 6.3 空 间 力 偶
力偶的作用面不在同一平面内的力偶系称为 空间力偶系. 空间力偶系. 空间力偶系合成的最后结果为一个合力偶, 空间力偶系合成的最后结果为一个合力偶, 合力偶矩矢等于各力偶矩矢的矢量和. 合力偶矩矢等于各力偶矩矢的矢量和.即:
M = m1 + m2 + + M n = ∑ m
z
mz ( R ) = ∑ mz ( F )
例2 6.2 力 对 轴 之 矩 和 力 对 点 之 矩
求力 F 对三坐标轴的矩. 解:由合力矩定理:
mx ( F ) = mx ( Fx ) + mx ( Fy ) + mx ( Fz ) = yZ zY m y ( F ) = m y ( Fx ) + m y ( Fy ) + m y ( Fz )
E
D
α α
A
汇 交
β EA=24cm, = 45 ,不计杆重;求 绳索的拉力和杆所受的力. 解:以铰A为研究对象,受力 如图,建立如图坐标. ∑ X = 0 : TC sin α TD sin α = 0 ∑ Y = 0 : TC cos α TD cos α S sin β = 0 ∑ Z = 0 : S cos β P = 0 24 2 = 由几何关系:cos α = 2 2
二,空间汇交力系的合成与平衡 6.1 空 间 汇 交
1,合成 , 将平面汇交力系合成结果推广得: 将平面汇交力系合成结果推广得: 合力的大小和方向为: 合力的大小和方向为:
R = F1 + F2 + + Fn = ∑ F
2,平衡 , 空间汇交力系平衡的必要与充分条件是: 空间汇交力系平衡的必要与充分条件是: 以解析式表示为: 以解析式表示为:

理学空间力系

理学空间力系

Fy F sin sin Fz F cos
力的方向: cos = Fx
F
解析表达式: F Fx Fy Fz Fxi Fy j Fzk
cos = Fy
F
力的大小: F Fx2 Fy2 Fz2
cos = Fz
F
Copyright © byCrazytalk Studio All rights reserved.
16
理论力学
09:39
❖§4–2 空间力矩理论和力偶理论 3.空间力偶
理论力学
2、力偶的性质 (1)力偶中两力在任意坐标轴上投影的代数和为零。
(2)空间力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变
力偶矩矢 M rBA F
M o (F, F ) M o (F ) M o (F ) rA F rB F
4
09:39
❖§4–1空间汇交力系
理论力学
2、空间汇交力系的合力与平衡条件
空间汇交力系的合力 FR = F1 + F2 + + Fn = Fi
合矢量(力)投影定理
FRx Fix Fx FRy Fiy Fy FRz Fiz Fz
合力的大小 FR ( Fx )2 ( Fy )2 ( Fz )2
(3) 指向:与转向的关系服从右手螺旋定则。 或从力偶矢的末端看去,力偶的 转向为逆时针转向。
用矢量表示。
Copyright © byCrazytalk Studio All rights reserved.
8
09:39
❖§4–2 空间力矩理论和力偶理论 1、力对点的矩以矢量表示 ——力矩矢
理论力学
15
09:39
❖§4–2 空间力矩理论和力偶理论 3.空间力偶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
2 一次投影法(直接投影法)
正六面体对角线力 F ,将 F 直接 向三个坐标轴投影:
其投影计算式
Fx F cos Fy F cos Fz F cosg
γF β
α
其中αβγ分别为力与三个坐标轴正向的夹角
5
3 二次投影法(间接投影法) 先将力投影到xoy平面上,再将力投影到三个坐标轴。
其投影计算式
F' 二 空间力偶的等效定理 若两个力偶矩矢相等,则两个力偶等效。
F'
M F
M F
16
三 空间力偶系的合成与平衡
由于空间力偶是自由矢量,只要方向不变,可移至任意一 点,故可使其滑至汇交于某点,由于是矢量,它的合成符合矢 量运算法则。
1 合成:合力偶矩 = 分力偶矩的矢量和
n
M M1 M 2 M 3 M n M i
若以 Fx , Fy , Fz 表示力沿直角
坐标轴的正交分量,则
F Fx Fy Fz
Fx Fxi , Fy Fy j, Fz Fzk
F Fxi Fy j Fzk
Fzz Fxx
F FFyy
Fxy
8
§6-2 空间汇交力系的合成与平衡
一 空间汇交力系的合成
繁琐
1 几何法:合力为空间力多边形的封闭边;作用点过6–1 空间力沿坐标轴的分解与投影 §6–2 空间汇交力系的合成与平衡 §6–3 空间力偶理论 §6–4 力对点之矩与力对轴之矩 §6–5 空间任意力系向已知点的简化·主矢
与主矩·空间力系合力矩定理 §6–6 空间任意力系的平衡条件与平衡方程 §6–7 平行力系的中心与重心
2
工程中常常存在着很多各力作用线不在同一平面内的力系, 即空间力系,空间力系是最一般的力系。
迎面 风 力 Q1
Q2
P
侧面
P
风力
FN1 b
FN 2
3
§6-1 空间力沿坐标轴的分解与投影
一 力在空间轴上的投影
F
g
O
Fxy
1 力在空间的表示 三要素: 大小:F F
作用点:确定点
方向:由、、g三个方向角确定 或由仰角 与方位角 确定。
1 平面: 大小 转向
代数量表示 MO(F) F d
A
F B Od
19
一 力对点之矩
2 空间: 定位矢量
大小
转向
矢量表示
作用面方位
F d 2SAOB
转向
右手螺旋法则
作用面法线
矢径
MO(F) r F
MO(F)
z r
B
F
O
A
d
y
20
x
3 力对点之矩的解析式
若在直角坐标系下:令 r 是矩心到力作用点的矢径且有
MO
F
=
z
x·Fy
-
y
·Fx
MO F y = z·Fx - x ·Fz
为力矩矢在坐标轴上的投影。
21
二 力对轴之矩
1 意义 力对物体绕轴转动效果的度量
z
2 定义
Mz F
力对轴之矩等于此力在垂直于轴的平
B
=3.125 kN (OB杆受拉)
C
D
FOC
FOB O
320 FOA
A
GG
12
§6-3 空间力偶理论
z
F F'
d
y x
转动效应
平面力偶
平面力偶矩
M F , F ' Fd
大小
方向
空间力偶
力偶矩矢

13
空间力偶的等效条件(对平面力偶的性质进一步扩展)
作用于同一刚体上两平行平面内的两个力偶,若其力偶矩大 小相等、转向相同,则两力偶等效。
F Fxi Fy j Fzk
i
j
MO F r F x
y
Fx Fy
r xi yj zzk
B
k MO F
F
z
Od y
Fz
rA x
=( y·Fz - z ·Fy ) i + (z·Fx - x ·Fz ) j + (x·Fy - y ·Fx ) k
其中
M
O
F
=
x
y·Fz
-
z
·Fy
Fz =0 G + FOA·sin = 0
B
FOA = -6.25kN (OA杆受压)x
Fx =0 FOB·sin - FOC·sin = 0
FOB= FOC
C
D
FOC
FOB
O
320 FOA
y
A
GG
z
11
Fy =0 -2FOB·cos - FOA·cos = 0
cos = cos
FOB = - FOA / 2
Fx F cos cos Fy F cos sin Fz F sin
矢量
其中θ ,φ分别为仰角和方位角
6
二 已知坐标轴上的投影求合力
大小 F Fx2 Fy2 Fz 2
方向
cos Fx
F
cos Fy
F
cos g Fz
F
其中αβγ分别为F与三个坐标轴的夹角
γF β
α
7
三 力沿坐标轴的分解
i 1
M
M
2 x
M
2 y
M
2 z
;
cos
Mx M
,cos
My M
, cos g
Mz M
17
2 平衡:力偶系中各力偶矩的矢量和等于零。
M Mi 0
投影式:
Mx 0 My 0 Mz 0
各力偶矩矢在三个坐标轴上投影的代数和等于零。
18
§6-4 力对点之矩与力对轴之矩
一 力对点之矩 力对物体绕点转动效应的度量
面汇交力系也一定平衡。
2)投影轴可以任意选取,但三个轴不能共面, 三个轴中的任意
两个也不能相互平行。
10
[例1] 直杆OA、OB、OC用光滑球铰链连接成支架,如图所示。
平面ABC和平面AOD都是铅直的,且相互垂直。在球铰链O上挂 有重量G=5kN的重物,略去杆重。求三根杆受力。
解:分析铰链O,受力如图
2 解析法:各力在三个正交坐标轴上投影,再计算合力。
空间汇交力系的合力
FR
F i
FRx Fix Fx FRy Fiy Fy FRz Fiz Fz
大小: 方向:
FR ( Fx )2 ( Fy )2 ( Fz )2
cos(FR,i )
Fx FR
cos(FR
,
j
)
Fy FR
cos(FR ,
k
)
Fz FR
9
二 空间汇交力系的平衡
充要条件:力系的合力为零,即: FR Fi 0
1 几何条件:该力系的力多边形自行封闭。
2 解析条件: Fx = 0 Fy = 0
平衡方程 三个未知量
Fz = 0
说明:1)当空间汇交力系平衡时,该力系在任平面上的投影得到的平
F1' 平面A b a
F1
F1' 平面A b a
F1
F' F2'
F2'
d
c
F2
F2
F
平面B
F =2F1
平面B F2' d
c F2
14
z
F F'
F F'
F
=
y x
转动效应
空间力偶
一 力偶矩矢 大小
1 三要素
转向 作用面方位
F'
Fd 矢量表示 转向
作用面法线
右手螺旋法则
15
2 空间力偶矩矢是一个自由矢量 力偶可在同一平面内或平行平面内任意移动。
相关文档
最新文档