经典二次函数图像特征与a、b、c、△符号的关系

合集下载

二次函数图像与abc符号关系

二次函数图像与abc符号关系

例:已知关于x的二次函数,当x=-1时,函数值为
10,当x=1时,函数值为4,当x=2时,函数值为7,求这
个二次函数的解析试.
解:设所求的二次函数 为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是 y 2x2 3x 5
-1 O
3
A -1
x
-9
B
图13
解:(1)将x=-1,y=-1;x=3,y=-9分别代入 y ax2 4x c
得 1 a (1)2 4 (1) c, 解得 9 a 32 4 3 c.
ca
1, 6.
∴二次函数的表达式为. y x2 4x 6
x 2 (2)对称轴为
;顶点坐标为(2,-10).
对称轴在y轴左侧
a、b同号
对称轴在y轴右侧
a、b异号
对称轴是y轴
b=0
(4)b2-4ac的符号:由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0 b2-4ac<0
如果y=ax2+bx+c的图象与x轴的交点
为A(x1,0),B(x2,0);
范无围论. m为何值时, 0.
抛物线与x轴总有交点,且当=0时,即m=3时,
抛物线与x轴只有一个交点. (2)另一个交点坐标为(1,0) (3)当m>-1且m≠3时,抛物线的顶点在第四象限
用待定系数法求二次函数解析式,要根据给定条件 的特点选择合适的方法来求解
一般地,在所给条件中已知顶点坐标时,可设顶点 式y=a(x-h)2+k,在所给条件中已知抛物线与x轴 两交点坐标或已知抛物线与x轴一交点坐标与对称 轴,可设交点式y=a(x-x1)(x-x2);在所给的三个条 件是任意三点时,可设一般式y=ax2+bx+c;然后 组成三元一次方程组来求解。

二次函数的图象与系数a,b,c的关系(PPT课件)

二次函数的图象与系数a,b,c的关系(PPT课件)

与x轴交点的情况 b²-4ac=0,函数图象与x轴有一个交点; b²-4ac>0,函数图象与x轴有两个交点; b²-4ac<0,函数图象与x轴无交点.
有一个交点 b²-4ac=0
无交点 b²-4ac<0
y
x 0
有两个交点 b²-4ac>0
突破练习:已知二次函数y=ax²+bx+c的图象如 图所示,判断下列说法是否正确。
左同右异
∵对称轴在y轴 左侧,a>0
∴b>0
∵对称轴为直线x=0 ∴b=0
x
∵对称轴在y轴右 侧,a>0
∴b<0
练习 判断下列各图中的a、b、c的符号
(1)
y
(2)
y
(3)Oxx Oy xO
(1) a_>__0; b_>__0; c_<__0;
(2)a_<__0; b__>_0; c__=_0;
(3)a_<__0; b__=_0; c__>_0;
y轴交点的位置
c=0,经过原点;
c>0,与y轴正半轴相交;
c<0,与y轴负半轴相交。
c<0
y 抛物线开口 向上,a>0
x 0
c>0
y
0
x
c=0
对称轴的位置 y
①对称轴为直线x=0(y轴), b 0
2a
b=0;
②对称轴在y轴左侧,
b 2a
0
a,b同号;
0
③对称轴在y轴右侧, b 0
2a
a,b异号.
二次函数的图象与系数a,b,c的关系
安化县思源实验学校 陈雅丽
我们学过, y

初三数学二次函数知识点总结及经典习题

初三数学二次函数知识点总结及经典习题

初三数学二次函数知识点总结及经典习题【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减(自变量),上加下减(常数项)”二次函数图像间的平移可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数图像间的平移. 四.二次函数()2y a x h k =-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y axbx c=++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五.二次函数解析式的三种表示方法任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240-≥时,抛物线的解析式才b ac可以用交点式表示.二次函数解析式的这三种形式可以互化,将顶点式、交点式去括号、合并同类项就可转化为一般式,把一般式配方、因式分解就可转化为顶点式、交点式.六.二次函数的图象与各项系数之间的关系1. 二次项系数a【a决定抛物线的开口方向,|a|决定抛物线开口的大小】⑴当0a>时,抛物线开口向上,a的值越大,开口越小,a的值越小,开口越大;⑵当0a<时,抛物线开口向下,a的值越大,开口越大,a的值越大,开口越大.注:|a|越大,抛物线的开口越小,|a|越小,抛物线开口越大抛物线的形状相同,即|a|相同.2.一次项系数b【由a和对称轴共同决定】对称轴在y轴的左侧,a,b同号;对称轴在y轴的右侧,a,b异号.(左同右异b为0时,对称轴为y轴)3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.七.二次函数图象(抛物线)与x轴交点情况的判断:y=ax2+bx+c (a≠0,a、b、c都是常数)1.△=b²-4ac>0⇔抛物线与x轴有两个交点2.△=b²-4ac=0⇔抛物线与x轴有一个交点3.△=b²-4ac<0⇔抛物线与x轴没有交点①当0a>时,图象落在x轴的上方,无论x为任何实数,都有0y>;②当0a<时,图象落在x轴的下方,无论x为任何实数,都有0y<.八.二次函数与一元二次方程、一元二次不等式的解之间的关系:1.二次函数y=ax2+bx+c的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的解.因此利用二次函数图象可求以x为未知数的一元二次方程ax2+bx+c =0的解(从图象上进行判断).2.二次函数y=ax2+bx+c在x轴上方的图象上的点的横坐标是一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标是一元二次不等式ax2+bx+c<0的解.九.二次函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少☆☆二次函数抛物线简单的图形变换☆☆①平移:如将二次函数cbx axy ++=2向右平移m(m >0)个单位,再向下平移n (n >0)个单位,得到n c bm am x b am ax n c m x b m x a -+-+--=-+-+-=222)2()()(y注:无论是平移、轴对称还是旋转,最好先把二次函数化成顶点式,然后再根据需要进行求解.二次函数对应练习试题一.选择题1.二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A.22(1)y x =-+ B.22(1)y x =-- C.221y x =-+ D.221y x =--3.函数2y kx k =-和(0)k y k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( ) A.1个 B.2个 C.3个 D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3B.-2.3C.-0.3D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A.第一象限B.第二象限C.第三象限D.第四象限7.方程222x x x -=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =--B. 22y x x =-++C. 22y x x =--或22y x x =-++D. 22y x x =---或22y x x =++二.填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______.10.已知抛物线y=-2(x+3)²+5,如果y 随x 的增大而减小,那么x 的取值范围是_______.11.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是(只写一个即可).12.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 .13. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= .14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 (π取3.14).三.解答题:15.已知二次函数图象的对称轴是30x +=,图象经过(1,-6),且与y 轴的交点为(0,52-). (1)求这个二次函数的解析式;(2)当x 为何值时,这个函数的函数值为0?(3)当x 在什么范围内变化时,这个函数的函数值y 随x的增大而增大?16.某种爆竹点燃后,其上升高度h (米)和时间t (秒)符合关系式212h v t gt =- (0<t ≤2),其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以v 0=20米/秒的初速度上升,(1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,第15题图判断爆竹是上升,或是下降,并说明理由.17.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACDS ∆=5 :4的点P 的坐标。

二次函数系数a,b,c与图像的关系ppt课件

二次函数系数a,b,c与图像的关系ppt课件
(6)b2-4ac; (7)4ac-b2; (8)2a+b; (9)2a-b y
-1
0
1
x
8
9.练习:填空
(1)函数y=ax2 +bx+c(a 0)的函数值恒为正的
条件为:
,恒为负的条件为:

(2)已知抛物线y=ax2 +bx+c的图象在x轴的下方,
则方程ax2 +bx+c 0的解的情况为

(3)二次函数y=ax2 +bx+c中,ac<0,则抛物线与x轴 有 交点。
9
11、二次函数y ax2 bx c(a 0)的图象如图所示,
下列结论①c<0,②b>0③4a+2b+c>0,④(a+c)2 b2
其中正确的是
(填序号,并说明理由)
y
x=1
(a+c)2 b2 (a b c)(a b c)
1 2
其中正确的结论是( ) (A)①② (B)②③ (C)②④ (D)③④
11
-1 o
1x
4
3.二次函数y=ax2+bx+c的图象如图1所
示则下列关于a、b、c间的关系判断正
确的是( )
y
A)ab<0
O
x
B)bc<0
C)a+b+c>0
D)a-b+c<0
(图1)
5
例4(青海)二次函数 y ax2 bx c 图象如图2所示,
则点 A(b2 4ac, b ) 在第 象限.

a
y
O x

中考数学考点14二次函数图像与性质及与a、b、c的关系(解析版)

中考数学考点14二次函数图像与性质及与a、b、c的关系(解析版)

二次函数图像与性质及与a 、b 、c 的关系【命题趋势】在中考中.二次函数的图像与性质常在选择题和填空题常考;二次函数图像与系数a 、b 、c 的关系常在选择题或填空题的最后一题出现。

【中考考查重点】一、会用描点法画出二次函数的图像.通过图像了解二次函数的性质; 二、会用配方法将数字系数的二次函数的表达式化为k ax +=-)h (2y 的形式.并能由此得到二次函数图像的顶点坐标.说出图像的开口方向.画出图像的对称轴。

考点一:二次函数的概念及三种解析式概念 形如的函数叫二次函数三种解析式 1. 一般式:;2. 顶点式:(a ≠0)其中(h,k )为二次函数的顶点坐标3. 交点式:.其中为抛物线与x 轴交点的横坐标图像画法列表、描点、连线1.(2021秋•黔西南州期末)下列各式中.y 是关于x 的二次函数的是( ) A .y =4x +2 B .y =(x ﹣1)2﹣x 2 C .y =3x 2+5﹣4x D .y =【答案】C【解答】解:A .y =4x +2.是一次函数.故A 不符合题意; B .y =(x ﹣1)2﹣x 2=﹣2x +1.是一次函数.故B 不符合题意; C .y =3x 2+5﹣4x =3x 2﹣4x +5.是二次函数.故C 符合题意; D .y =等号右边是分式.不是二次函数.故D 不符合题意;故选:C .考点二:二次函数的图像与性质2.(2021春•岳麓区校级期末)已知二次函数的解析式为y =x 2﹣4x +5.则该二次函数图象的顶点坐标是( ) A .(﹣2.1) B .(2.1)C .(2.﹣1)D .(1.2)【答案】B【解答】解:∵二次函数的解析式为y =x 2﹣4x +5. ∴x =﹣=﹣=2.y ===1.二次函数图象的顶点坐标为(2.1). 故选:B .3.(2020秋•莫旗期末)对于二次函数y =(x ﹣1)2+2的图象.下列说法正确的是( )A .开口向下B .当x =﹣1时.y 有最大值是2C .对称轴是直线x =﹣1解析式对称轴直线(还可以利用.其中为y 值相等的两个点对应的横坐标)求解)顶点坐标2424b ac b a a ⎛⎫-- ⎪⎝⎭,增减性当时.在对称轴左侧.y 随x 的增大而减少;在对称轴右侧.y 随x 的增大而增大 当a <0时.在对称轴左侧.y 随x 的增大而增大;在对称轴右侧.y 随x的增大而减少最值当时.y 有最小值当2bx a =-时.y 有最小值244ac ba-. 当a <0时.y 有最大值当时.y 有最大值D.顶点坐标是(1.2)【答案】D【解答】解:二次函数y=(x﹣1)2+2的图象的开口向上.故A错误;当x=1时.函数有最小值2.故B错误;对称轴为直线x=1.故C错误;顶点坐标为(1.2).故D正确.故选:D.4.(2021秋•越秀区期末)在同一平面直角坐标系xOy中.一次函数y=ax与二次函数y =ax2﹣a的图象可能是()A.B.C.D.【答案】C【解答】解:选项A.直线下降a<0.抛物线开口向上.a>0.不符合题意.选项B.直线下降.a<0.抛物线开口向下a<0.抛物线与y轴交点在x轴下方.﹣a<0.即a>0.不符合题意.选项C.直线上升.a>0.抛物线开口向上a>0.抛物线与y轴交点在x轴下方.﹣a<0.即a>0.符合题意.选项D.直线上升.a>0.抛物线开口向下a<0.不符合题意.故选:C.5.(2021秋•南召县期末)已知(﹣3.y1).(1.y2).(5.y3)是抛物线y=﹣2x2﹣4x+m 上的点.则()A.y1>y2>y3B.y2>y1>y3C.y1=y2>y3D.y1>y2=y3【答案】C【解答】解:∵y=﹣2x2﹣4x+m=﹣2(x+1)2+2+m.∴抛物线的开口向下.对称轴是直线x=﹣1.∴当x>﹣1时.y随x的增大而减小.∵(﹣3.y1).(1.y2).(5.y3)是抛物线y=﹣2x2﹣4x+m上的点.∴点(﹣3.y1)关于对称轴x=﹣1的对称点是(1.y3).∵1<5.∴y1=y2>y3.故选:C6.(2021秋•昭阳区期中)已知二次函数y=﹣(x﹣k)2+h.当x>2时.y随x的增大而减小.则函数中k的取值范围是()A.k≥2B.k≤2C.k=2D.k≤﹣2【答案】B【解答】解:抛物线的对称轴为直线x=k.因为a=﹣1<0.所以抛物线开口向下.所以当x>k时.y的值随x值的增大而减小.而x>2时.y的值随x值的增大而减小.所以k≤2.故选:B.考点三:二次函数图像与a、b、c的关系a、b、c的正负数判断二次函数图像二次项系数a 决定抛物线的开口方向及开口大小⑴当0a>时.抛物线开口向上⑵当0a<时.抛物线开口向下一次项系数b 决定对称轴的位置在二次项系数a确定的前提下.b决定了抛物线的对称轴.(同左异右b为对称轴为y轴)2.根据二次函数图像判断a 、b 、c 关系式与0的关系7.(2021秋•新抚区期末)如图.已知点A (﹣1.0)和点B (1.1).若抛物线y =x 2+c 与线段AB 有公共点.则c 的取值范围是( )A .﹣1≤c ≤0B .﹣1≤c ≤C .﹣1≤c ≤D .0≤c ≤常数项系数c决定抛物线与y 轴的交点的位置⑴ 当0c >时.抛物线与y 轴的交点在x 轴上方⑵ 当0c =时.抛物线与y 轴的交点为坐标原点⑶ 当0c <时.抛物线与y 轴的交点在x 轴下方ac 4b2-决定抛物线与x 轴的交点个数b2-4ac >0时.抛物线与x 轴有2个交点;b2-4ac =0时.抛物线与x 轴有1个交点; b2-4ac <0时.抛物线与x 轴没有交点 决定抛物线与x 轴的交点个数关系式 实质2a+b实质式结合a 的正负比较a2b-与1关系 2a+b实质式结合a 的正负比较a2b-与-1关系 a+b+c 实质是令x=1.看纵坐标正负 a -b+c 实质是令x=-1.看纵坐标正负 4a+2b+c 实质是令x=2.看纵坐标正负 4a -2b+c实质是令x=-2.看纵坐标正负【答案】C【解答】解:设AB所在直线为y=kx+b.将(﹣1.0).(1.1)代入y=kx+b得.∴y=x+.如图.当抛物线与线段AB相切时.令x+=x2+c.整理得x2﹣x﹣+c=0.∴Δ=(﹣)2﹣4(﹣+c)=0.解得c=.c减小.抛物线向下移动.当抛物线经过点A(﹣1.0)时.将(﹣1.0)代入y=x2+c得0=1+c.解得c=﹣1.∴﹣1≤c≤满足题意.故选:C.8.(2021秋•肃州区期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示.在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上.∴a>0.∵0<﹣<1.∴b<0.2a﹣b>0.①不正确.不符合题意.∵抛物线与y轴交点在x轴下方.∴c<0.∴abc>0.②不正确.不符合题意.∵x=1时.y<0.∴a+b+c<0.③正确.符合题意.∵x=﹣1时.y>0.∴a﹣b+c>0.④正确.符合题意.∵x=2时.y>0.∴4a+2b+c>0.⑤正确.符合题意.故选:C1.(2021秋•五常市期末)抛物线y=x2+2x﹣3的对称轴是直线()A.x=﹣2B.x=﹣1C.x=1D.x=2【答案】B【解答】解:∵y=x2+2x﹣3.∴抛物线对称轴为直线x=﹣=﹣1.故选:B.2.(2021秋•呼和浩特期末)关于二次函数y=2x2+4x﹣1.下列说法正确的是()A.图象与y轴的交点坐标为(0.1)B.当x<1时.y的值随x值的增大而减小C.图象的顶点坐标为(﹣1.﹣3)D.图象的对称轴在y轴的右侧【答案】C【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3.∴当x=0时.y=﹣1.故选项A错误.该函数的对称轴是直线x=﹣1.当x<﹣1时.y随x的增大而减小.故选项B错误.图象的顶点坐标为(﹣1.﹣3).故选项C正确.图象的对称轴在y轴的左侧.故选项D错误.故选:C.3.(2021春•岳麓区校级期末)已知抛物线y=﹣(x+1)2上的两点A(﹣4.4.y1)和B (﹣3.3.y2).那么下列结论一定成立的是()A.0<y2<y1B.0<y1<y2C.y1<y2<0D.y2<y1<0【答案】C【解答】解:∵y=﹣(x+1)2.∴二次函数图象开口向下.对称轴为直线x=﹣1.顶点为(﹣1.0).∵A(﹣4.4.y1)和B(﹣3.3.y2).∴|﹣1+4.4|>|﹣1+3.3|.∴y1<y2<0.故选:C.4.(2021秋•克东县期末)抛物线y=x2﹣2x﹣4的顶点M关于坐标原点O的对称点为N.则点N的坐标为()A.(1.﹣5)B.(1.5)C.(﹣1.5)D.(﹣1.﹣5)【答案】C【解答】解:∵抛物线y=x2﹣2x﹣4=(x﹣1)2﹣5.∴该抛物线的顶点M的坐标为(1.﹣5).∴顶点M关于坐标原点O的对称点为N的坐标为(﹣1.5).故选:C.5.(2021秋•龙江县期末)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数.且a≠0)如图所示.现有结论:①abc<0.②b2>4ac.③3a+c>0.④ac﹣bc+c2<0.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上.∴a>0.∵抛物线对称轴为直线x=﹣=1.∴b=﹣2a<0.∵抛物线与y轴交点在x轴下方.∴c<0.∴abc>0.①错误.∵抛物线与x轴有2个交点.∴b2﹣4ac>0.∴b2>4ac.②正确.∵b=﹣2a.∴y=ax2﹣2ax+c.由图象可得x=﹣1时y>0.∴a+2a+c=3a+c>0.③正确.∵c<0.∴ac﹣bc+c2<0可整理为a﹣b+c>0.∵x=﹣1时y>0.∴a﹣b+c>0.④正确.故选:C.1.(2021•兰州)二次函数y=x2+4x+1的图象的对称轴是()A.x=2B.x=4C.x=﹣2D.x=﹣4【答案】C【解答】解:∵二次函数y=x2+4x+1.∴抛物线对称轴为直线x=﹣=﹣2.故选:C.2.(2021•广州)抛物线y=ax2+bx+c经过点(﹣1.0)、(3.0).且与y轴交于点(0.﹣5).则当x=2时.y的值为()A.﹣5B.﹣3C.﹣1D.5【答案】A【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1.0)、(3.0).且与y轴交于点(0.﹣5).∴可画出上图.∵抛物线对称轴x==1.∴点(0.﹣5)的对称点是(2.﹣5).∴当x=2时.y的值为﹣5.故选:A.3.(2021•常州)已知二次函数y=(a﹣1)x2.当x>0时.y随x增大而增大.则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1【答案】B【解答】解:∵二次函数y=(a﹣1)x2.当x>0时.y随x增大而增大.∴a﹣1>0.∴a>1.故选:B.4.(2021•阜新)如图.二次函数y=a(x+2)2+k的图象与x轴交于A.B(﹣1.0)两点.则下列说法正确的是()A.a<0B.点A的坐标为(﹣4.0)C.当x<0时.y随x的增大而减小D.图象的对称轴为直线x=﹣2【答案】D【解答】解:∵二次函数y=a(x+2)2+k的图象开口方向向上.∴a>0.故A错误.∵图象对称轴为直线x=﹣2.且过B(﹣1.0).∴A点的坐标为(﹣3.0).故B错误.D正确.由图象知.当x<0时.由图象可知y随x的增大先减小后增大.故C错误.故选:D.5.(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】A【解答】解:A、由抛物线可知.a>0.b<0.c=1.对称轴为直线x=﹣.由直线可知.a >0.b<0.直线经过点(﹣.0).故本选项符合题意;B、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;C、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;D、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;故选:A.6.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示.下列说法错误的是()A.a<0.b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5.x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<5【答案】D【解答】解:由图象可知.抛物线开口向下.所以a<0;对称轴为直线x=﹣=2.所以b=﹣4a.所以b>0.故A正确.因为抛物线与x轴有两个交点.所以b2﹣4ac>0.故B正确.由图象和对称轴公式可知.抛物线与x轴交于点(5.0)和(﹣1.0).所以方程ax2+bx+c =0的解是x1=5.x2=﹣1.故C正确.由图象可知.不等式ax2+bx+c>0的解集是﹣1<x<5.故D错误.故选:D.7.(2021•雅安)定义:min{a.b}=.若函数y=min{x+1.﹣x2+2x+3}.则该函数的最大值为()A.0B.2C.3D.4【答案】C【解答】解:x+1=﹣x2+2x+3.解得x=﹣1或x=2.∴y=.把x=2代入y=x+1得y=3.∴函数最大值为y=3.故选:C.8.(2021•烟台)如图.二次函数y=ax2+bx+c的图象经过点A(﹣1.0).B(3.0).与y 轴交于点C.下列结论:①ac>0;②当x>0时.y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解答】解:把点A(﹣1.0).B(3.0)代入二次函数y=ax2+bx+c.可得二次函数的解析式为:y=ax2﹣2ax﹣3a.∵该函数图象开口方向向下.∴a<0.∴b=﹣2a>0.c=﹣3a>0.∴ac<0.3a+c=0.①错误.③正确;∵对称轴为直线:x=﹣=1.∴x<1时.y随x的增大而增大.x>1时.y随x的增大而减小;②错误;∴当x=1时.函数取得最大值.即对于任意的m.有a+b+c≥am2+bm+c.∴a+b≥am2+bm.故④正确.综上.正确的个数有2个.故选:B.9.(2021•徐州)如图.点A、B在y=x2的图象上.已知A、B的横坐标分别为﹣2、4.直线AB与y轴交于点C.连接OA、OB.(1)求直线AB的函数表达式;(2)求△AOB的面积;(3)若函数y=x2的图象上存在点P.使△P AB的面积等于△AOB的面积的一半.则这样的点P共有个.【答案】(1)y=+2 (2)6 (3)4【解答】解:(1)∵点A、B在y=x2的图象上.A、B的横坐标分别为﹣2、4.∴A(﹣2.1).B(4.4).设直线AB的解析式为y=kx+b.∴.解得.∴直线AB的解析式为y=+2;(2)在y=+2中.令x=0.则y=2.∴C的坐标为(0.2).∴OC=2.∴S△AOB=S△AOC+S△BOC=+=6.(3)过OC的中点.作AB的平行线交抛物线两个交点P1、P2.此时△P1AB的面积和△P2AB的面积等于△AOB的面积的一半.作直线P1P2关于直线AB的对称直线.交抛物线两个交点P3、P4.此时△P3AB的面积和△P4AB的面积等于△AOB的面积的一半.所以这样的点P共有4个.故答案为4.1.(2021•龙湾区模拟)下列函数中.是二次函数的是()A.y=6x2+1B.y=6x+1C.y=D.y=﹣+1【答案】A【解答】解:A.是二次函数.故本选项符合题意;B.是一次函数.不是二次函数.故本选项不符合题意;C.是反比例函数.不是二次函数.故本选项不符合题意;D.等式的右边是分式.不是整式.不是二次函数.故本选项不符合题意;故选:A.2.(2021•安徽模拟)在平面直角坐标系中.A的坐标为(1.﹣2).B的坐标为(﹣1.﹣5).若y关于x的二次函数y=﹣x2+2mx﹣m2﹣1在﹣1≤x≤1段的图象始终在线段AB 的下方.则m的取值范围是()A.m<﹣3B.m>2C.m<﹣2或m>2D.m<﹣3或m>2【答案】D【解答】解:∵y关于x的二次函数为y=﹣x2+2mx﹣m2﹣1.∴顶点式为y=﹣(x﹣m)2﹣1.∴抛物线顶点为(m.﹣1).当﹣1≤m≤1时.∵﹣1>﹣2>﹣5.∴顶点在线段AB的上方.不符合题意;当m<﹣1时.若二次函数的图象与线段AB交于点B.则当x=﹣1时.y=﹣(﹣1﹣m)2﹣1=﹣5.解得:m1=﹣3.m2=1(舍去).∴要使二次函数的图象在线段AB的下方.则需要将图象向左平移.∴m<﹣3.当m>1时.若二次函数图象与线段AB交于点A.则当x=1时.y=﹣(1﹣m)2﹣1=﹣2.解得:m1=2.m2=0(舍去).∴而要使二次函数始终在线段AB下方.则需要将图象向右平移.∴m>2.综上所述:m<﹣3或m>2.故选:D.3.(2021•陕西模拟)如图.若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1.与y 轴交于点C.与x轴交于点A、点B(﹣1.0).则:①二次函数的最大值为1;②4a ﹣2b+c>0;③b2﹣4ac>0;④当y<0时.x<﹣1或x>3.其中错误的个数是()A.I B.2C.3D.4【答案】B【解答】解:∵对称轴为直线x=1.∴b=﹣2a.∵B(﹣1.0).∴A(3.0).∴a﹣b+c=0.∴c=﹣3a.∴y=ax2﹣2ax﹣3a;①当x=1时.函数的最大值是a+b+c.故①不正确;②当x=﹣2时.y<0.∴4a﹣2b+c<0.故②不正确;③∵函数与x轴有两个不同的交点.∴Δ=b2﹣4ac>0.故③正确;④由图象可知当y<0时.x<﹣1或x>3.故④正确;故选:B.。

二次函数常见题型

二次函数常见题型
下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;
④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.
其中说法正确的是
5、如图所示,二次函数 的图象中,王刚同学观察得
出了下面四条结论:① ;② ;③ ;④ .
其中错误的有
6、已知二次函数 的图象如图所示,有下列结论:① ;
②2a+b=0;③ ;④ .其中正确的有
题型四:抛物线的图形变换问题(平移、旋转、轴对称)
1、抛物线 向右平移3个单位,再向上平移2个单位,则所得抛物线的解析式。
2、抛物线 可以由抛物线 先向平移个单位,再向平移个单位得到的。
3、将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位得到的抛物线是
4、将抛物线C:y=x²+3x-10,将抛物线C平移到C/。若两条抛物线C,C/关于直线x=1对称,则下列平移方法中正确的是()
7
16

根据表格你能找出抛物线图象上的对称点吗?
你能写出抛物线的对称轴吗?
抛物线与x轴的交点坐标为,
当x=2时,函数值y=
(1)若M是函数 图象上对称轴右侧 轴上方的一个动点,其横坐标为 ,四边形MNPQ为矩形,P、N在 轴上,Q、M在抛物线上,求四边形的周长C与 之间的函数关系式.
(2)如果图象向右平移3个单位,设M点横坐标为 ,其它条件不变,
10、如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式abx 2-=判断符号. (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0. (4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b2-4ac=0;没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号.一.选择题(共9小题) 1.(2014•威海)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a ;④am 2+bm+a >0(m ≠﹣1). 其中正确的个数是( )A . 1B . 2C . 3D . 4 2.(2014•仙游县二模)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( ) A . ③④ B . ②③ C . ①④ D . ①②③ 3.(2014•南阳二模)二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论:①a <0;②c >0;③b 2﹣4ac >0;④<0中,正确的结论有( )A . 1个B . 2个C . 3个D . 4个4.(2014•襄城区模拟)函数y=x 2+bx+c 与y=x 的图象如图,有以下结论:①b 2﹣4c <0;②c ﹣b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确结论的个数为( )A . 1B . 2C . 3D . 4 5.(2014•宜城市模拟)如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(2,y 2)是抛物线上的两点,则y 1>y 2. 其中说法正确的是( )A.①②B.②③C.②③④D.①②④6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3 7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤11、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案:CBDCD DCDDD 11、C一.选择题(共9小题)1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a >0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0 ∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解解:①∵图象开口向下,∴a<0;故本选项正确;答:②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a ﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c <0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a ≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。

判定二次函数中的a,b,c的符号

判定二次函数中的a,b,c的符号

二次函数:图象位置与a,b,c,(1)a决定抛物线的开口方向:;.(2)C决定抛物线与轴交点的位置,抛物线交轴于;抛物线交轴于;.(3)ab决定抛物线对称轴的位置,当同号时对称轴在轴;对称轴为;异号对称轴在轴,简称为.一、通过抛物线的位置判断a,b,c,△的符号.例1.根据二次函数y=ax2+bx+c的图象,判断a、b、c、b2-4ac的符号2.看图填空(1)a+b+c_______0(2)a-b+c_______0(3)2a-b _______0(4)4a+2b+c_______0二、通过a,b,c,△的符号判断抛物线的位置:D例1.若,则抛物线y=ax2+bx+c的大致图象为()例2.若a>0,b>0,c>0,△>0,那么抛物线y=ax2+bx+c经过象限.例3.已知二次函数y=ax2+bx+c且a<0,a-b+c>0;则一定有b2-4ac 0例4.如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的大致图象是()BDCA1.若抛物线y=ax2+bx+c开口向上,则直线经过象限.2.二次函数y=ax2+bx+c的图象如图所示,则下列条件不正确的是(A、 B、C、 D、3.二次函数y=ax2+bx+c的图象如图,则点在.()A、第一象限B、第二象限C、第三象限D、第四象限4.二次函数y=ax2+bx+c与一次函数在同一坐标系中的图象大致是( O5.二次函数y=ax2+bx+c的图象,如图,下列结论①②③④其中正确的有()A、1个B、2个C、3个D、4个16.已知函数y=ax2+bx+c的图象如图所示,关于系数有下列不等式①②③④⑤其中正确个数为.7.已知直线y=ax2+bx+c不经过第一象限,则抛物线一定经过()A.第一、二、四象限 B.第一、二、三象限C.第一、二象限 D.第三、四象限8. 如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__.9. 若抛物线y=x2-bx+9的顶点在x轴上,则b的值为______若抛物线y=x2-bx+9的顶点在y轴上,则b的值为______10.已知二次函数y=ax2+bx+c(a≠0的图象如图所示,有下列结论:①abc>0;②a+b+c=2;;④b<1.其中正确的结论是(A.①② B.②③ C.②④ D.③④11.二次函数y=ax2+bx+c(a≠0的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴负半轴交于一点,给出以下结论①abc<0;②2a+b>0;③a +c=1;④a>1.其中正确的结论是(A、1个B、2个C、3个D、4个12. 二次函数y=ax2 -2x-1与x轴有交点,则k的取值范围________。

二次函数的图像特征与系数a,b,c的关系

二次函数的图像特征与系数a,b,c的关系

二次函数y=ax2 3 4 5+bx+c的图像与系数a,b,c的关系教学设计一、教学目标知识与技能目标:理解a、b、c对二次函数图象的作用,能够根据二次函数图象判断a、b、c及相关代数式的符号。

过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法。

第三个层面是情感、态度和价值观:通过直观多媒体演示和学生动手作图、分析,进一步培养学生数形结合的思想和动手操作能力,激发学生学习数学的热情。

二、教学重难点重点:理解a、b、c对二次函数图象的作用难点;能够根据二次函数图象判断a、b、c及相关代数式的符号。

其中关键是数形结合思想的应用和培养学生的归纳能力。

三、教学过程:1、知识回顾2(1)抛物线y=ax +bx+c开口方向方向与有关?2 抛物线y=ax +bx+c对称轴是 _________________ 。

23 抛物线y=ax +bx+c与y轴的交点的坐标是___________4 抛物线y=ax2+bx+c与x轴的交点的个数与有关5 抛物线y=ax2+bx+c的顶点的坐标是。

2、探索发现利用几何画板画出几个函数的图像,观察图像 总结;|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽|a|相同,抛物线的开口大小相同;(2)b 的符号;由于对称轴是-三;a,b 共同决定对称轴的位置,观察图像,得出结论\1b _x = ----- >0 I 2a —1 ----- ► Va<0 va>0 / 1 /. b<0 / 1 f 1 \ A b>0 1对称轴在y 轴右侧时a,b 异号归纳:当对称轴在 y 轴的两则时,a,b 的符号是 ______________ ;对称轴是y 轴时 ________________ 抛物线开口向下av 0 a的符号确定抛物线开口方向(1) a 的符号2•例题精讲例1、根据图象判断a 、b 、c 及b 2 — 4ac 的符号例2、二次函数y=ax 2 +bx+c 的图像如图所示,对称轴是直线 x= -1,有以下结论:① abc>0;②4ac v b 2 ; ③2a+b=0;④a-b+c>2.其中正确的结论的是 (填3、课堂练习(3) c 的符号归纳:c 的符号决定抛物线与y 轴的交点位置1 .已知二次函数y=ax2+bx+c , a v 0 , b>0, c>0那么抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限2.二次函数y=ax2+bx+c的图象如图所示,则下列5个代数式:ab,ac,a-b+c,④b2-4ac,⑤a+b+c中,值大于0的个数有()3.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0). 对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确结论的是(填序号)4已知二次函数y=ax2+bx+c(a工0)的图象如图所示,有下列5个结果①abc>0; ②b-a>c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m^ 1);其中正确的结论()4、本课小结开口方向和犬小 y 釉交点位羞y=ax 2bx-^-c (申))* I对称轴位羞 x= z 决定函数r=m+ *+空的俏 戈=-』决定的值5、布置作业(导学案)1. (2010?广安)已知二次函数 y=ax 2+bx+c (a ^0)的图象如图所示,下列结论:① abc >0; ② bv a+c ;③2a+b=0;④ a+b > m ( am+b (m^ 1 的实数).其中正确的结论有(A 、1个B 、2个C 、3个D 、4个2. 如图,抛物线y=ax 2 +bx+c 的对称轴是x=1,下列结论:①bv0;②(a+c ) 2 > b 2 ;③2a+b-c > 0;④3bv 2c .其中正确的结论有 ①③④(填上正确结论的序号).6.二次函数y=ax 2+bx+c 的图象如图所示,以下结论:①a+b+c=O;②4a+b=0;③abcv0;④4ac-b 2 v 0;⑤当XM 2时,总有4a+2b > ax 2+bx 其中正确的有 ______________ (填写正确结论的序号).2 | | - * ______________________________________________________________ ___________________1题图 2题图7.已知二次函数y=ax+bx+c(aM0)的图象如下图所示,有下列5个结论:①abcv0;②a-b+c > 0;③2a+b=0;④b -4ac > 0⑤a+b+c> ( am+b +c, (m> 1的实数),其中正确的结论有()A. 1个B . 2个C . 3个D . 4个8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (X i, 0),-3 v X i v-2,对称轴为x=-1 .给出四个结论:① abc>0;②2a+b=0;③b >4ac;④a-b >m(ma+b (mM-1 的实数);⑤3b+2c> 0.其中正确的结论有()A. 2个B . 3个C . 4个D . 5个9.已知:如图所示,抛物线y=ax2+bx+c的对称轴为x=-1,与x轴交于A、B两点,交y轴于点C,且OB=O,则下列结论正确的个数是()①b=2a ②a-b+c >-1 ③0v b2-4ac v4 ④ac+1=b.A. 1个B . 2个C . 3个D . 4个10.如图所示,二次函数y=ax2+bx+c (aM 0)的图象经过点(-1,2),且与x轴交点的横坐标为X1、X2,其中-2 v X1 v-1,0v X2< 1,下列结论:① abc>0;②4a-2b+c v 0;③2a-b >0;④11. (2006?武汉)已知抛物线y=ax 2+bx+c (a >0)的对称轴为直线x=-1,与x 轴的一个交点 为(X 1, 0),且0vX 1V 1,下列结论:①9a-3b+c >0;②bva ;③3a+c >0.其中正确结论的 个数是( ) A . 0 B . 1 C . 2 D . 312. 如图为抛物线y=ax 2+bx+c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且 OA=OC=1AB> AQ 下列几个结论:(1) abcv 0;( 2) b >2a ;( 3) a-b=-1 ; (4) 4a-2b+1 v0.其中正确 的个数是( ) A . 4 B . 3 C . 2 D . 1没3. (2011?广西)已知:二次函数 y=ax2+bx+c (a ^0)的图象如图所示,下列结论中:① abc > 0;② 2a+bv 0;③ a+bv m ( am+b (m^ 1 的实数);a+c ) v b ;⑤ a > 1.其中正确的项 是( A 、①⑤ B 、①②⑤ C 、②⑤ D 、①③④4. (2010?天津)已知二次函数y=ax2+bx+c (a ^0)的图象如图所示,有下列结论: ①b2-4ac >0;②abc> 0;③8a+c>0;④9a+3b+cv0其中,正确结论的个数是( )A 、1 B 、2 C 、3 D 、45. 如图,已知二次函数y=ax 2+bx+c (a ^0)的图象,则下列结论正确序号是 _____________ (只填序 号).①abc >0,②c=-3a ,③b 2-4ac >0,④a+bv m ( am+b ( m^ 1 的实数).9题图10题图 11题图 12题图。

二次函数图形练习

二次函数图形练习

二次函数专题训练——图像特征与a 、b 、c 、△符号的关系1、已知二次函数2y ax bx c =++,如图所示,若0a <,0c >,那么它的图象大致是 ( ) y y y yxx x x A B C D2、已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3、已知二次函数2y ax bx c =++的图象如下,则下列结论正确的是 ( ) A 0ab < B 0bc < C 0a b c ++> D 0a b c -+<4、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论: ①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )A .0个B .1个C .2个D .3个5、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,ca )在( )A .第一象限B .第二象限C .第三象限D .第四象限6、二次函数2y ax bx c =++的图象如图所示,则( ) A 、0a >,240b ac -< B 、0a >,240b ac -> C 、0a <,240b ac -< D 、0a <,240b ac ->y x一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-二次函数图象的几何变换一、二次函数图象的平移变换【例1】 函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤是:( )A. 右移两个单位,下移一个单位B. 右移两个单位,上移一个单位C. 左移两个单位,下移一个单位D. 左移两个单位,上移一个单位【例2】 函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤 是( )A. 右移三个单位,下移四个单位B. 右移三个单位,上移四个单位C. 左移三个单位,下移四个单位D. 左移四个单位,上移四个单位【例3】 二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( )A. 向左移动1个单位,向上移动3个单位.B. 向右移动1个单位,向上移动3个单位.C. 向左移动1个单位,向下移动3个单位.D. 向右移动1个单位,向下移动3个单位.【例4】 将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D .4【例5】 把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x =-+,则a b c ++=________________.【例6】 对于每个非零自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++…的值是( )A . 20092008B .20082009C .20102009D .20092010【例7】 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .()213y x =---B .()213y x =-+-C .()213y x =--+D .()213y x =-++【例8】 将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .()221y x =+B .()221y x =-C .221y x =+D .221y x =-【例9】 将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( )A. 232y x =-B. 23y x =C. 23(2)y x =+D. 232y x =+【例10】 一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.【例11】 已知二次函数5632+-=x x y ,求满足下列条件的二次函数的解析式: 例题精讲(1)图象关于x 轴对称;(2)图象关于y 轴对称;(3)图象关于经过其顶点且平行于x 轴的直线对称【例12】 如图,ABCD 中,4AB =,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c =++经过x 轴上的点A ,B .⑴ 求点A ,B ,C 的坐标. ⑵ 若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.DCBAO【例13】 抛物线254y ax x a =-+与x 轴相交于点A B 、,且过点()54C ,. ⑴ 求a 的值和该抛物线顶点P 的坐标.⑵ 请你设计一种平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式.二、二次函数图象的对称变换【例14】 函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到.【例15】 已知二次函数221y x x =--,求:⑴关于x 轴对称的二次函数解析式;⑵关于y 轴对称的二次函数解析式;⑶关于原点对称的二次函数解析式.【例16】 在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++【例17】 已知二次函数2441y ax ax a =++-的图象是1c .⑴ 求1c 关于()10R ,成中心对称的图象2c 的函数解析式;⑵ 设曲线12c c 、与y 轴的交点分别为A B ,,当18AB =时,求a 的值.【例18】 已知抛物线265y x x =-+,求⑴ 关于y 轴对称的抛物线的表达式; ⑵ 关于x 轴对称的抛物线的表达式; ⑶ 关于原点对称的抛物线的表达式.【例19】 设曲线C 为函数()20y ax bx c a =++≠的图象,C 关于y 轴对称的曲线为1C ,1C关于x 轴对称的曲线为2C ,则曲线2C 的函数解析式为________________.【例20】 对于任意两个二次函数:()2211112222120y a x b x c y a x b x c a a =++=++≠,,当12a a =时,我们称这两个二次函数的图象为全等抛物线,现有ABM ∆,()()1010A B -,,,,记过三点的二次函数抛物线为“C”(“□□□”中填写相应三个点的字母).图3图2图1yxOABMy xOABMMNBAO xy⑴ 若已知()01M ,,ABM ABN ∆∆≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线;⑵ 在图2中,以A B M 、、三点为顶点,画出平行四边形. ① 若已知()0M n ,,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.② 若已知()M m n ,,当m n 、满足什么条件时,存在抛物线ABM C ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C ”;若不存在,请说明理由.【例21】 已知:抛物线2:(2)5f y x =--+. 试写出把抛物线f 向左平行移动2个单位后,所得的新抛物线1f 的解析式;以及f 关于x 轴对称的曲线2f 的解析式.画出1f 和2f 的略图, 并求: ⑴ x 的值什么范围,抛物线1f 和2f 都是下降的;⑵ x 的值在什么范围,曲线1f 和2f 围成一个封闭图形; ⑶ 求在1f 和2f 围成封闭图形上,平行于y 轴的线段的长度的最大值.Oyxg(x)=-x 2+5h(x)=(x -2)2-5。

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系若抛物线与 x 轴交于(1,0),则a + b + c = 0;若抛物线与 x 轴交于(-1,0),则a - b + c = 0. (1) 当x = 1时,①若y > 0,则a + b + c >0;②若y < 0,则a + b + c < 0 (2) 当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.5 例1(重庆2004年)二次函数()02≠++=a c b a χχγ的图像如图,则点M (b ,ac )在( )A .第一象限B .第二象限C .第三象限D .第四象限 分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的右边,∴b 与a 异号,即b > 0;∴ac < 0;∴点M 在第四象限选D例2、(2004陕西)二次函数()02≠++=a c b a χχγ的图像如图,则下列关系判断正确的是( )A .ab < 0B .bc < 0C .a + b + c > 0D .a - b + c < 0分析:∵开口向下,∴a < 0; ∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴ab > 0, bc > 0 故A 、B 均错 ∵x = 1时,y < 0,∴a + b + c < 0,故C 错 ∵x = -1时,y < 0,∴a - b + c < 0.故选D例3(2004呼和浩特)如图,四个二次函数的图像中分别对应的是:①2χγa =②2χγb =③2χγc =④2χγd =,则a , b , c , d 的大小关系是 . A .a > b > c > d B .a > b > d > c C .b > a > c > dD .b > a > d > c分析:∵③、④的图像开口向下,∴c < 0,d < 0; ∵④的张口比③的张口小,∴∣d ∣ > ∣c ∣, ∴c > d ; ∵①、②的图像开口向上,∴a > 0,b > 0;∵①的张口比②的张口小,∴∣a ∣ > ∣b ∣, ∴a > b例4、已知二次函数()02≠++=a c b aχχγ的图像如图,则a 、b 、c 满足( )A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C .a < 0,b > 0,c > 0 ;D .a > 0,b < 0,c > 0 ;分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴选A 例5 二次函数()02≠++=a c b a χχγ的图像如图,13χ=为该函数图像的对称轴,根据这个函数图像,你能得到关于该函数的那些性质和结论呢?(写4个即可). 解: ①∵开口向上,∴a > 0;②∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0; ③∵顶点在y 轴的右边,∴b 与a 异号,即b < 0; ④∵x = 1时,y < 0,∴a + b + c < 0;⑤∵x = -1时,y > 0,∴a - b + c > 0.例1、已知y=ax 2+bx+c 图象如图1,则下列关系中成立的是( )120.<-<a bA 220.<-<abB 221.<-<a bC12.=abD 剖析 特别位置判定法,若抛物过O(0,0)(2,0)则x=12=-a b 这里221<-<ab ,所以选C .求值判定法,设抛物线过(α,0)(0<α<2),(2,0),则α2a+αb+c=0①,4a+2b+c=0②,①②(α2-4)a+(α-2)b=0∵α-2≠0∴(α+2)a+b=0b=-(α+2)a.121222)2(2>+=+=+=-∴αααa a a b 221<-<∴ab求中点坐标判定法,设抛物线与x 轴交于点A(α,0)(0<α<2),B(2,0), 则A 、B 中点坐标是12122>+=+αα 221<-<∴ab所以选 C . 注意:若题目为“已知抛物线y=ax 2+bx+c 过A(1,5),B(4,5),求对称轴直线”应怎样求?例2为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动路线是抛物线y=ax 2+bx+c 如图2,则下列结论: ①601-<a ,②0601<<-a ,③a-b+c>0,④a<b<-12aA .①③ B. ①④ C . ②③ D . ②④剖析 排除法判定,易知c=2.4把(12,0)代入y=ax 2+bx+c 中得: 144a+12b+2.4=0,11205a b ++=,由图象知a<0,对称轴2b x a-=11120560a a ∴+<<-,, 即①成立, ②不成立,故不可能选C 与D . 111201201255a b a b b a++=∴+-<<- ,,,000022b ba b a a<->∴<> ,,,.,12a b a -<<∴④正确,故在A ,B 中只能选B .例3、已知抛物线y=ax 2+bx+c(a<0)经过点(-1,0)且满足4a+2b+c>0以下结论:①a+b>0,②a+c>0,③-a+b+c>0,④b 2-2ac>5a 2其中正确的个数有( )A .1个B .2个C .3个D .4个剖析: 特殊值判定法,∵抛物线过(-1,0)点,∴a-b+c=0, c=b-a 代入4a+2b+c>0中得.a+b>0,①正确.∵a<0,a+b>0,∴b>0,∵a-b+c=0,∴a+c=b>0,a+c>0,②正确.∵a<0,b>0,∴c=b-a>0,-a>0,∴-a+b+c>0,③正确.∵a-b+c=0,∴a+c=b ,2a+c=a+b>0,2a+c>0,∵a<0,c>0,∴c-2a>0, ∴(c-2a)(c+2a)>0,c 2-4a 2>0,c 2>4a 2,∵b=a+c ,∴b 2=c 2+a 2+2ac ,c 2=b 2-a 2-2ac ,b 2-a 2-2ac>4a 2,b 2-2ac>5a 2, ④正确. 所以选D .注意 :有时利用x=±1时,y=a±b+c ,x=±2时,y=4a±2b+c 中,y 符号判定a±b+c 和4a±2b+c 的符号.例4、已知二次函数y=ax 2+bx+c 图象与x 轴交于(-2,0)(x ,0)且1<x 1<2,与y 轴正半轴交点在(0,2)下方,下列结论,①a<b<0,②2a+c>0,③4a+c<0,④2a-b+1>0其中正确个数为( )A .1个B .2个C .3个D .4个剖析: 数形判定法,根据题意可画草图3, 1122b b x a a=->-∴< 对称轴,, 00022b ba a a<-<∴> ,, ∴a<b<0 ①正确. ∵抛物线过(-2,0),∴4a-2b+c=0, 2a+c=-2a+2b=-2(a-b)>0∴2a+c>0,②正确. ∵4a-2b+c=0,4a+c=2b<0∴4a+c<0,③正确. ∵4a-2b+c=0,2cb a 2-=-∴ ∵0<c<2,12c->-∴,2a-b>-1,即2a-b+1>0 ④正确. 所以选D .补充练习:1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫ ⎪⎝⎭,在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( ) A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0B 、bc <0C 、a +b +c >0D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

二次函数图象与系数a、b、c的关系

 二次函数图象与系数a、b、c的关系

模块三 函数第五讲 二次函数图象与a 、b 、c 的关系知识梳理 夯实基础二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征a >0开口向上aa <0开口向下b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧bab <0(a 与b 异号)对称轴在y 轴右侧c =0经过原点c >0与y 轴正半轴相交cc <0与y 轴负半轴相交b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4acb 2–4ac <0与x 轴没有交点常用公式及方法:(1)二次函数三种表达式:表达式顶点坐标对称轴一般式c bx ax y ++=2⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=顶点式()kh x a y +-=2()k h ,hx =交点式()()12y a x x x x =--()⎪⎪⎭⎫ ⎝⎛--+4,222121x x a x x 221x x x +=(2)韦达定理:若二次函数c bx ax y ++=2图象与x 轴有两个交点且交点坐标为(1x ,0)和(2x ,0),则a b x x -=+21,acx x =⋅21。

(3)赋值法:在二次函数c bx ax y ++=2中,令1=x ,则c b a y ++=;令1-=x ,则c b a y +-=;令2=x ,则c b a y ++=24;令2-=x ,则c b a y +-=24;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。

直击中考 胜券在握1.(2021·山东日照中考)抛物线()20y ax bx c a =++¹的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .12.(2021·四川巴中中考)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:①c =2;②b 2﹣4ac >0;③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0;④7a +c <0.其中正确的有( )x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④3.(2021·牡丹江中考)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c>0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为()A .1B .2C .3D .44.(2021·湖北荆门中考)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .15.(2021·辽宁丹东中考)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x ££时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数()A .2B .3C .4D .56.(2021·山东枣庄中考)二次函数()20y ax bx c a =++¹的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫-⎪⎝⎭,25,2y ⎛⎫⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ¹).正确的结论有()A .2个B .3个C .4个D .5个7.(2021·四川广安中考)二次函数()20y ax bx c a =++¹的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -³+,④30a c +<,正确的有()A .1个B .2个C .3个D .4个8.(2021·湖南株洲中考)二次函数()20y ax bx c a =++¹的图像如图所示,点 P 在x 轴的正半轴上,且1OP =,设()M ac a b c =++,则 M 的取值范围为( )A .1M <-B .10M -<<C .0M <D .0M >9.(2021·齐齐哈尔中考)如图,二次函数2(0)y ax bx c a =++¹图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=¹ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有()A .1个B .2个C .3个D .4个10.(2021·湖北鄂州中考)二次函数()20y ax bx c a =++¹的图象的一部分如图所示.已知图象经过点()1,0-,其对称轴为直线1x =.下列结论:①0abc <;②420a b c ++<;③80a c +<;④若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=¹的两根分别为3-,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个11.(2021·江苏宿迁·中考真题)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;②24b ac ->0;③40a b +=;④不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是()A .1B .2C .3D .412.(2021·四川达州中考)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ¹)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有()A .1个B .2个C .3个D .4个13.(2021·湖北随州中考)如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()2,0A -和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a bc->;②241b ac -=;③14a =;④当10b -<<时,在x 轴下方的抛物线上一定存在关于对称轴对称的两点M ,N (点M 在点N 左边),使得AN BM ^.其中正确的有( )A .1个B .2个C .3个D .4个14.(2021·天津中考)已知抛物线2y ax bx c =++(,,a b c 是常数,0a ¹)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .315.(2021·四川遂宁中考)已知二次函数2(0)y ax bx c a =++¹的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ¹);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个16.(2013·山东德州中考)函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .4。

二次函数的性质a,b,c符号问题

二次函数的性质a,b,c符号问题

二次函数的图像与性质知识点:二次函数抛物线,图像对称是关键,开口、顶点和交点,它们确定图像现。

a 的正负开口判(开口大小由a 断),c 与y 轴来相见,b 的符号较特别,符号与a 相关联,顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱。

△的符号最简便,x 轴上数交点,顶点坐标最重要,一般配方它就现,横标即为对称轴,纵标函数最值现,若求对称轴位置,括中符号正相反,一般、顶点、交点式,不同表达能互换。

二次函数a ,b ,c 及相关问题的解决:1、 a 正负性:由开口方向决定,开口向上,a >0;开口向下,a <02、 b 的正负性:由于抛物线对称轴为ab x 2-=,所以b 的正负性与对称轴的位置和a 的正负性相关联。

对称轴在y 轴的左边时,a 、b 符号相同,对称轴在y 轴的右边时,a 、b 符号相反,对称轴为y 轴时,b=0(左同右异中为0)3、 c 的正负性:c 表示抛物线与y 轴交点的纵坐标,即当x=0时,y=c ,所以当抛物线与y 轴的交点在x 轴的上方时,c >0,当抛物线与y 轴的交点在x 轴的下方时,c <0。

(c 与y 轴来相见)4、 abc 的正负性:a ,b ,c 确定,则随之确定5、 ac b 42-=∆的正负性:△是根的判别式,由于一元二次方程是二次函数y=0的特殊情况,所以可以从抛物线与x 轴的交点个数来判断△的正负性,与x 轴有两个交点时,042>-ac b ,与x 轴的交点有一个时,042=-ac b ,与x 轴没有交点时,042<-ac b6、 利用x 的特殊值判断一些代数式的正负性:当x=1时,y=a+b+c ,当x=-1时,y=a-b+c ,当x=2时,y=4a+2b+c ,当x=-2时,y=4a-2b+c ,当x=3时,y=9a+3b+c ,当x=-3时,y=9a-3b+c ,对于取x 的特殊值得到代数式的正负性,重点看此时图像在x 轴的上方还是下方。

二次函数图像特征与a、b、c、△符号的关系

二次函数图像特征与a、b、c、△符号的关系

二次函数系数a 、b 、c 与图像的关系一、首先就y=ax 2+bx+c (a ≠0)中的a ,b ,c 对图像的作用归纳如下: 1、a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 2、b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-ab ,则对称轴在y 轴的左边;b 与a 异号,说明,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3、c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴; c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点. 4、a,b,c 共同决定判别式的符号进而决定图象与x 轴的交点与x 轴两个交点与x 轴一个交点与x 轴没有交点5、几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0 当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

反之,给我们相应的二次函数图象,我们可以得到其系数a,b,c 以及它们组合成的一些关系结构(例如对称轴;判别式……等等)的符号二次函数专题训练1——图像特征与a 、b 、c 、△符号的关系1例1、已知二次函数()02≠++=a c b a χχγ的图像如图,则a 、b 、c 满足(A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C . a < 0,b > 0,c > 0 ;D .a > 0,b < 0,c > 0 ;例2、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是( ) A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是=-1,=31、已知二次函数2y ax bx c =++,如图所示,若0a <,0c >,那么它的图象大致是 ( )2、已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知二次函数2y ax bx c =++的图象如下,则下列结论正确的是( ) A 、0ab < B 、0bc < C 、0a b c ++> D 、0a b c -+<4、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论: ①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )A .0个B .1个C .2个D .3个5、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,ca )在( )A .第一象限B .第二象限C .第三象限D .第四象限6、二次函数2y ax bx c =++的图象如图所示,则( )A 、0a >,240b ac -<B 、0a >,240b ac ->C 、0a <,240b ac -<D 、0a <,240b ac ->7、已知函数y=ax+b 的图象经过第一、二、三象限,那么y=ax 2+bx+1的图象大致为( )8、已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <09、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A .240b ac -> B .0a > C .0c > D .02b a -<10、二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是( )(1)abc <0;(2)a +b +c <0; (3)a +c >b ;(4)a <2b -.A .1B 2C .3 D. 411、已知二次函数的图象如图所示,有下列5 个结论:① ;② ;③ ;④ ;⑤ ,(的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个12、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ). A ②④ B ①④ C ②③ D ①③13、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0,•③4a+2b+c>0,④(a+c )2<b 2.其中正确的有( )A .1个B .2个C .3个D .4个14、抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( ) A. 0 B. -1 C. 1 D. 215、已知: ()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )A .-1B . 1C . -3D . -416、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( ) A.1个 B.2个 C. 3个 D. 4个17、已知函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.其中,正确结论的个数是( ) A .1 B .2 C .3 D . 418、已知二次函数y=ax 2+bx+c 的图象,如图所示,下列结论:①a+b+c>0;②a-b+c>0;③abc<0;④2a-b=0,其中正确结论的个数是( )A. 1B. 2C. 3D. 419、已知二次函数y=ax2+bx+c (a ≠0)的图象如图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个20、已知一次函数y ax c =+与2y ax bx c =++,它们的大致图象是( )21、函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )22、函数y=ax+b 与y=ax 2+bx+c 的图象如图所示, 则下列选项中正确的是( ) A. ab>0,c>0 B. ab<0,c>0 C. ab>0,c<0 D. ab<0,c<0x O y22、如图,二次函数y=ax 2+bx+c 的图象与x 轴相交于两个点,根据图象回答: (1)b_______0(填“>、<、=); (2)当x 满足______________时,ax 2+bx+c>0:(3)当x 满足______________时,ax 2+bx+c 的值随x 增大而减小.24、如图为二次函数y=ax 2+b x +c 的图象,在下列说法中: ①ac <0;②方程ax 2+b x +c=0的根是x1= -1, x 2= 3 ③a +b +c >0④当x >1时,y 随x 的增大而增大。

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)二次函数y=ax2+bx+c(a≠0)的图象特征与a,b,c及判别式b2-4ac的符号之间的关系:一、选择题1.已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )A.当a=1时,函数图象过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.二次函数y=ax2+bx+c的图象如图2-ZT-1所示,则下列关系式错误的是( )图2-ZT-1A.a<0B.b>0C.b2-4ac>0D.a+b+c<03.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b 的取值范围是( )A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤24.已知二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-2所示,则正比例函数y=(b+c)x与反比例函数y=a-b-cx在同一坐标系中的大致图象是( )图2-ZT-2图2-ZT-35.已知抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )图2-ZT-46.二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-5所示,对称轴是直线x=1.下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是( )图2-ZT-5A.①④ B.②④C .①②③D .①②③④7.如图2-ZT -6,抛物线y =ax 2+bx +c 的图象交x 轴于点A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC .下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc >0,其中正确的结论有( )图2-ZT -6A .1个B .2个C .3个D .4个8.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图2-ZT -7所示,则下列结论:①4a -b =0;②c <0;③-3a +c >0;④4a -2b >at 2+bt (t 为实数);⑤点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,则y 1<y 2<y 3.正确的结论有( )图2-ZT -7A .4个B .3个C .2个D .1个 二、填空题9.二次函数y =ax 2+bx +c 的图象的一部分如图2-ZT -8所示,则a 的取值范围是________.图2-ZT-810.如图2-ZT-9是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y=mx+n(m≠0)与抛物线交于A,B两点,下列结论:2①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b.其中正确的结论是________.(只填写序号)图2-ZT-911.如图2-ZT-10,二次函数y=ax2+bx+c的图象的对称轴在y轴的右侧,其图象与x 轴交于点A(-1,0),C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.图2-ZT-1012.如图2-ZT-11,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④当a=12时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有四个.其中正确的结论是________(只填序号).图2-ZT-11三、解答题13.如图2-ZT-12,二次函数y=ax2+bx+c的图象与x轴交于B,C两点,交y轴于点A.(1)根据图象确定a,b,c的符号;(2)如果OC=OA=13OB,BC=4,求这个二次函数的表达式.图2-ZT-1214.已知函数y=ax2+bx+c,若a>0,b<0,c<0,则这个函数的图象与x轴交点的情况是怎样的?若无交点,请说明理由;若有交点,请说明有几个交点及交点分别在x轴的哪个半轴上.详解详析二次函数图象与a,b,c,b2-4ac等符号问题1.[答案] D2.[解析] D 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,即a+b+c>0,所以D选项的关系式错误.3.[答案] A4.[答案] C5.[解析] B 由公共点的横坐标为1,且在反比例函数y=bx的图象上,当x=1时,y=b,即公共点的坐标为(1,b).又点(1,b)在抛物线上,得a+b+c=b,即a+c=0.由a≠0知ac<0,一次函数y=bx+ac的图象与y轴的交点在负半轴上,而反比例函数y=bx的图象的一支在第一象限,故b>0,一次函数的图象满足y随x的增大而增大,选项B符合条件.故选B.6.[解析] C ①抛物线的开口向上,所以a>0.抛物线的对称轴为直线x=-b2a=1,所以b<0,所以ab<0.所以①正确;②抛物线与x轴有两个交点,所以b2-4ac>0,所以b2>4ac.所以②正确;③由图象知,当x=1时,y=a+b+c<0.又抛物线与y轴交于负半轴,所以c<0,所以a+b +2c<0.所以③正确;④由抛物线的对称性知当x =3时,y =9a +3b +c>0.又-b2a=1,所以b =-2a,所以3a +c>0.所以④错误.综上可知,正确的是①②③.故选C.7.[解析] C 在y =ax 2+bx +c 中,当x =0时y =c,∴C(0,c),∴OC =-c.∵OB=OC,∴B(-c,0).∵A(-2,0),∴-c,-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c·(-2)=c a .∵c≠0,∴a =12,②正确;∵-c,-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B(-c,0)代入y =ax 2+bx +c,得0=a(-c)2+b·(-c)+c,即ac 2-bc +c =0.∵c≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在x 轴左侧,∴-b2a <0,∴b >0,∴a +b >0.∵抛物线与y 轴负半轴交于点C,∴c <0.∴a +bc<0,④错误.8.[解析] B ∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,∴-b2a=-2,∴4a -b =0,故①正确;∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,∴另一个交点位于(-1,0)和(0,0)之间,∴抛物线与y 轴的交点在原点的下方,∴c <0.故②正确;∵4a -b =0,∴b =4a.∵当x =-3时,y =9a -3b +c =9a -12a +c =-3a +c>0,故③正确;∵4a -b =0,∴b =4a,∴at 2+bt -(4a -2b)=at 2+4at -(4a -2×4a)=at 2+4at +4a =a(t 2+4t +4)=a(t +2)2.∵t 为实数,a <0,∴a(t +2)2≤0,∴at 2+bt -(4a -2b)≤0,∴at 2+bt≤4a-2b,即4a -2b≥at 2+bt,∴④错误;∵点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,∴将它们描在图象上可得由图象可知:y1<y3<y2,故⑤错误.综上所述,正确的有3个.故选B.9.[答案] -1<a<0[解析] ∵抛物线开口向下,∴a<0.∵函数图象过点(0,1),∴c=1.∵函数图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴a的取值范围是-1<a<0.10.[答案] ②⑤[解析] ①根据函数图象的开口方向、对称轴、与y轴交点可知,a<0,b>0,c>0,故abc<0;②根据函数图象的顶点坐标可知,方程ax2+bx+c=3有两个相等的实数根,即x1=x2=1;③根据抛物线的对称性可知,抛物线与x轴的另一个交点是(-2,0);④根据函数图象,当1<x<4时,有y2<y1;⑤当x=1时,y=a+b+c=3≥x(ax+b)+c,∴x(ax+b)≤a+b.故正确的结论有②⑤.11.[答案] ①④[解析] 由抛物线的开口向上可知,a >0,且抛物线经过点A(-1,0),B(0,-2),对称轴在y 轴的右侧可得⎩⎪⎨⎪⎧a -b +c =0,c =-2,-b2a >0,即a -b =2,b <0,故a =2+b <2.综合可知0<a <2;由a -b =2可得a =b +2,将其代入0<a <2中,得0<b +2<2,即-2<b <0;当|a|=|b|时,因为a >0,b <0,故有a =-b.又a -b =2,可得a =1,b =-1. 故原函数为y =x 2-x -2,当y =0时,即有x 2-x -2=0,解得x 1=-1,x 2=2, 此时x 2=2>5-1.故答案为:①④. 12.[答案] ③④[解析] ∵抛物线与x 轴的交点A,B 的横坐标分别为-1,3,∴AB =4,对称轴为直线x =-b2a=1,∴b =-2a,即2a +b =0.故①错误;根据图象知,当x =1时,y <0,即a +b +c <0.故②错误;∵点A 的坐标为(-1,0),∴a -b +c =0,而b =-2a,∴a +2a +c =0,即c =-3a.故③正确;当a =12时,b =-1,c =-32,抛物线的函数表达式为y =12x 2-x -32.设对称轴直线x =1与x 轴的交点为E,∴把x =1代入y =12x 2-x -32,得y =12-1-32=-2,∴点D 的坐标为(1,-2),∴AE =2,BE =2,DE =2,∴△ADE 和△BDE 都为等腰直角三角形,∴△ABD 为等腰直角三角形.故④正确;要使△ACB 为等腰三角形,则必须保证AB =BC =4或AB =AC =4或AC =BC,当AB =BC =4时,∵BO =3,△BOC 为直角三角形,OC 的长为|c|,∴c 2=16-9=7.∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-7,与2a +b =0,a -b +c =0联立组成方程组,解得a =73; 当AB =AC =4时,∵AO =1,△AOC 为直角三角形,OC 的长为|c|,∴c 2=16-1=15. ∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-15,与2a +b =0,a -b +c =0联立组成方程组,解得a =153; 当AC =BC 时,在△AOC 中,AC 2=1+c 2,在△BOC 中,BC 2=c 2+9.∵AC =BC,∴1+c 2=c 2+9,此方程无解.∴只有两个a 值满足条件.故⑤错误.综上所述,正确的结论是③④.13.解:(1)∵抛物线开口向上,∴a>0. 又∵对称轴x =-b2a<0, ∴a,b 同号,即b>0.∵抛物线与y 轴交于负半轴,∴c<0. 综上所述,a>0,b>0,c<0. (2)∵OC=OA =13OB,BC =4,∴点A 的坐标为(0,-1),点B 的坐标为(-3,0),点C 的坐标为(1,0).把A,B,C 三点的坐标分别代入y =ax 2+bx +c 中,可得⎩⎨⎧-1=c ,0=9a -3b +c ,0=a +b +c ,解得⎩⎪⎨⎪⎧a =13,b =23,c =-1,∴该二次函数的表达式是y =13x 2+23x -1.14.[全品导学号:63422210]解:∵a>0,b <0,c <0,∴b 2-4ac >0, ∴这个函数图象与x 轴有两个交点.设这个函数图象与x 轴的交点坐标为(x 1,0),(x 2,0). ∵x 1·x 2=ca ,a >0,c <0,∴x 1·x 2<0,∴这个函数图象与x轴有两个交点,一个交点在x轴的正半轴上,另一个交点在x轴的负半轴上.。

判定二次函数中的a,b,c

判定二次函数中的a,b,c

二次函数:图象位置与a ,b ,c ,△的符号(1)a 决定抛物线的开口方向:⇔>0a ;⇔<0a .(2)C 决定抛物线与y 轴交点的位置, 0>c ⇔抛物线交y 轴于 ;0<c ⇔抛物线交y 轴于 ; 0=c ⇔ .(3)ab 决定抛物线对称轴的位置,当b a ,同号时⇔对称轴在y 轴 ;0=b ⇔对称轴为 ;b a ,异号⇔对称轴在y 轴 ,简称为 .(4)b 2-4ac 决定抛物线与x 轴交点的个数,当042>-ac b 时,抛物线与x 轴有交点;当042=-ac b 时,抛物线与x 轴有 交点;当042<-ac b 时,抛物线与x 轴有 交点.一、通过抛物线的位置判断a ,b ,c ,△的符号.例1.根据二次函数y=ax 2+bx+c 的图象,判断a 、b 、c 、b 2-4ac 的符号(1)a +b +c_______0(2)a -b +c_______0(3)2a -b _______0(4)4a +2b+c_______0二、通过a ,b ,c ,△的符号判断抛物线的位置:例1.若0,0,0<><c b a ,则抛物线y=ax 2+bx+c 的大致图象为( )例2.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx+c 经过 象限.例3.已知二次函数y=ax 2+bx+c 且a <0,a-b+c >0;则一定有b 2-4ac 0例4. 如果函数y=kx+b 的图象在第一、二、三象限内,那么函数y=kx 2+bx-1的大致图象是( )x x xx1.若抛物线y=ax 2+bx+c 开口向上,则直线3+=ax y 经过 象限.2.二次函数y=ax 2+bx+c 的图象如图所示,则下列条件不正确的是( )A 、0,0,0<><c b aB 、042<-ac bC 、0<++c b aD 、0>+-c b a 3.二次函数y=ax 2+bx+c 的图象如图,则点⎪⎭⎫ ⎝⎛-+b ac ac b b a ,42A 、第一象限B 、第二象限C 、第三象限D 、第四象限4.二次函数y=ax 2+bx+c与一次函数c ax y +=( )5.二次函数y=ax 2+bx+c ()0≠a 的图象,如图,下列结论①0<c ②0>b ③024>++c b a ④()22b c a <+其中正确的有( ) A 、1个 B 、2个C 、3个D 、4个6.已知函数y=ax 2+bx+c 的图象如图所示,关于系数cb a ,,有下列不等式①0<a ②0<b ③0>c ④02<+b a ⑤0>++c b a 其中正确个数为 .7.已知直线y=ax 2+bx+c 不经过第一象限,则抛物线2y ax bx =+一定经过( )A .第一、二、四象限B .第一、二、三象限C .第一、二象限D .第三、四象限8. 如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图象,那么a 的值是__.9. 若抛物线y =x 2-bx +9的顶点在x 轴上,则b 的值为______若抛物线y =x 2-bx +9的顶点在y 轴上,则b 的值为______10.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c=2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④11.二次函数y =ax 2+bx +c(a ≠0)的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴负半轴交于一点,给出以下结论①abc <0;②2a +b >0;③a +c =1;④a >1.其中正确的结论是( )A 、1个B 、2个C 、3个D 、4个12. 二次函数y =ax 2 -2x -1与x 轴有交点,则k 的取值范围________。

二次函数图像与系数a,b,c

二次函数图像与系数a,b,c

二次函数图像与系数c b a ,,的关系知识点总结:(1) 由抛物线的开口方向判断a 的正负;(2)由对称轴x=a b 2->0(或<0)确定b 的正负(口诀:左同右异); (3)抛物线与y 轴的交点确定c 的正负; (4)由对称轴x=a b 2->1(或<1)可确定2a+b 的正负;由对称轴x=a b 2->-1(或<-1) 可确定2a-b 的正负(或取值);(5) 令x=1观察图像可得a+b+c 的正负(或取值),令x= -1可得a-b+c 的正负(或取值);同理可推得4a+2b+c 、4a-2b+c 、9a+6b+c 、9a-6b+c 等代数式的正负(或取值)(6) b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0;没有交点,b 2-4ac <0,反之亦然。

例题讲解:例 1.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论:① abc >0;② a -b +c <0;③a +b +c <0;④ b +2a <0; 。

其中所有正确结论的序号有______变式练习1-1:已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论:①abc >0,②b 2-4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是( ) A 、1 B 、2 C 、3 D 、4变式练习1-2:(2013•烟台)如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc <0;②2a-b=0;③4a+2b+c <0;④若(-5,y 1),(2,25y )是抛物线上两点,则y 1>y 2.其中说法正确的是( )A 、①②B 、②③C 、①②④D 、②③④变式练习1-3:(2012湖南衡阳市,12,3)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a bc>0 ②2a+b=0 ③a+b+c>0④当﹣1<x<3时,y>0其中正确的是_________。

初三数学二次函数知识点总结及经典习题含答案

初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y a x b x c =++的比较 a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.3 6. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =--B. 22y x x =-++C. 22y x x =--或22y x x =-++D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像特征与a 、b 、c 、△符号的关系1
1、已知二次函数2y ax bx c =++,如图所示,若0a <,0c >,那么它的图象大致是 ( ) y y y y
x
x x A B C D
2、已知二次函数
2
y ax bx c =++的图象如图所示,则点(,)ac bc 在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3、已知二次函数
2y ax bx c =++的图象如下, 则下列结论正确的是 ( ) A 0ab < B 0bc < C 0a b c ++> D 0a b c -+<
4、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论: ①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )
A .0个
B .1个
C .2个
D .3个
5、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,c
a )在
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6、二次函数
2
y ax bx c =++的图象如图所示,则( ) A 、0a >,240b ac -< B 、0a >,2
40b ac -> C 、0a <,240b ac -< D 、0a <,240b ac ->
7、已知函数y=ax+b 的图象经过第一、二、三象限,那么y=ax 2+bx+1的图象大致为( )
8、已知函数c bx ax y ++=2
的图象如图所示,则下列结论
正确的是( )
A .a >0,c >0
B .a <0,c <0
C .a <0,c >0
D .a >0,c <0
9、二次函数
2(0)y ax bx c a =++≠的图象如图所示,
则下列说法不正确的是( )
A .2
40b ac ->
B .0a >
C .0c >
D .02b a -
<
10、二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是
( )(1)abc <0; (2)a +b +c <0; (3)a +c >b ;(4)a <-2b

A .1
B 2
C .3 D. 4
11、已知二次函数的图象如图所示,有下列5
个结论:① ;② ;③
;④


,(
的实数)其中正确的结论有( )
A. 2个
B. 3个
C. 4个
D. 5个
12、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ).
A ②④
B ①④
C ②③
D ①③
13、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0,•③4a+2b+c>0,④(a+c )2<b 2.其中正确的有( ) A .1个 B .2个 C .3个 D .4个
14、如图,抛物线)0(2
>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( ) A. 0 B. -1 C. 1 D. 2
15、已知:二次函数()2
2
0y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )
A .-1
B . 1
C . -3
D . -4 16、已知二次函数2
(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )
A.1个
B.2个
C. 3个
D. 4个
17、已知二次函数2y ax bx c =++(0a ≠)
①2
40b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数是( )
A . 1
B . 2
C . 3
D . 4
18、已知二次函数y=ax 2+bx+c 的图象,如图所示,下列结论:①a+b+c>0;②a-b+c>0;③abc<0;④2a-b=0,其中正确结论的个数是( ) A. 1 B. 2 C. 3 D. 4
19、已知二次函数y=ax2+bx+c (a ≠0)的图象如图所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个
20、已知:二次函数()2
2
0y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )
A .-1
B . 1
C . -3
D . -4
21、已知一次函数y ax c =+与2
y ax bx c =++,它们在同一坐标系内的大致图象是( )
22、函数2
y kx k =-和(0)k
y k x
=
≠在同一直角坐标系中图象可能是图中的( )
23、函数y=ax+b 与y=ax 2+bx+c 的图象如图所示, 则下列选项中
正确的是( )
A. ab>0,c>0
B. ab<0,c>0
C. ab>0,c<0
D. ab<0,c<0
24、已知反比例函数x
k
y =的图象如右图所示,则二次函222k x kx y +-=的图象大致为( )
二次函数专题训练1——图像特征与a 、b 、c 、△符号的关系2
1、)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2
的图象大致为 ( )

A .
B .
C .
D .
x
O
y
数y=ax 2
+ax 与函数,则它们在同一坐标系中的大致图象是( )
3、在同一坐标系中,函数)0(2
>++=+=b c bx ax y c ax y 和的图象大致是( )

5、在同一直角坐标系中,函数y mx m =
+和2
2
2y mx x
=-++(
m 是常数,且0m ≠)的图象可能..
是( )
6c )x
A .
B .
C .
D .
7、在同一坐标系中一次函数
和二次函数
的图象可能为( )
8、如图,二次函数y=ax 2
+bx+c 的图象与x 轴相交于两个点,
根据图象回答:
(1)b_______0(填“>、”、“<”、“=”);
(2)当x 满足______________时,ax 2
+bx+c>0:
(3)当x 满足______________时,ax 2
+bx+c 的值随x 增大而减小.
A.
B.
C.
D.
9、如图为二次函数y=ax2+b x+c的图象,在下列说法中:
①ac<0;②方程ax2+b x+c=0的根是x1=-1, x2= 3
③a+b+c>0 ④当x>1时,y随x的增大而增大。

正确的说法有_____________。

(把正确的答案的序号都填在横线上)
10、二次函数y =ax2+bx+c的图象如图8所示,且P=| a-b+c |+| 2a+b |,Q=| a+b+c |
+| 2a-b |,则P、Q的大小关系为.。

相关文档
最新文档