高中数学空间向量与立体几何知识总结(高考必备!)
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
高中数学必背公式——立体几何与空间向量
〔1〕求点 到直线 的距离;〔2〕求点 到平面 的距离。
例14:如图,正方形 与 成 的二面角,且正方形的边长为 , 、 分别为 , 的中点,求异面直线 与 的距离。
例15:如图,四棱锥P-ABCD的底面是正方形,
,求异面直线AB与PC的距离。
例16:已知 是底面边长为 的正四棱柱, 为 与 的交点.
底面 为梯形, , . ,
点 在棱 上,且 .
〔1〕求证:平面 ⊥平面 ;
〔2〕求证: ∥平面 ;
〔3〕求平面 和平面 所成锐二面角的余弦值.
例10:已知四棱锥 的底面为直角梯形, , 底面 ,
且 , 是 的中点。
〔1〕证明:面 ⊥面 所成二面角的余弦值。
高中数学必背公式——立体几何与空间向量
知识点复习:
1.空间几何体的三视图“长对正、高平齐、宽相等〞的规律。
2.在计算空间几何体体积时注意割补法的应用。
3.空间平行与垂直关系的关系的证明要注意转化:
线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。
4.求角:〔1〕异面直线所成的角:
可平移至同一平面;也可利用空间向量: =
方法二:向量法:二面角 的平面角 或
〔 , 为平面 , 的法向量〕.
5. 求空间距离:
〔1〕点与点的距离、点到直线的距离,一般用三垂线定理“定性〞;
〔2〕两条异面直线的距离: 〔 同时垂直于两直线, 、 分别在两直线上〕;
〔3〕求点面距: 〔 为平面 的法向量, 是经过面 的一条斜线, 〕;
〔3〕线面距、面面距都转化为点面距。
A. B. C. D.
题型二:空间点、线、面位置关系的判断
例4:已知 、 是不重合的直线, 和 是不重合的平面,有下列命题:
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。
设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。
设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。
设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。
向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。
向量具有平移不变性。
2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。
运算法则包括三角形法则、平行四边形法则和平行六面体法则。
3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。
共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量:能平移到同一平面内的向量叫做共面向量。
5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。
若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。
6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
立体几何与空间向量知识点归纳总结材料
立体几何与空间向量知识点归纳总结材料一、立体几何知识点归纳总结:1.点、线、面的几何特性:-点:没有大小和形状,只有位置;两个不同的点确定一条直线,三个不共线的点确定一个平面。
-线:有长度但没有宽度和厚度;平行线、垂直线、相交线等性质。
-面:有长度和宽度但没有厚度;平面的平行关系、垂直关系、相交关系等。
2.空间几何形体的特性:-点:在空间中指定位置的几何实体。
-直线:长度无限延伸的几何实体。
-射线:以一个端点和无限延伸的直线为基础的几何实体。
-平面:无限延伸的、具有长度和宽度的几何实体。
-多面体:由平面构成的立体图形,如三角形、四面体、五棱柱等。
-圆锥、圆柱、圆球等。
3.空间几何的距离公式:-两点之间的距离公式:设点A(x1,y1,z1)和点B(x2,y2,z2),则AB 的距离为√[(x2-x1)²+(y2-y1)²+(z2-z1)²]。
-点到直线的距离公式:设直线L的方程为Ax+By+Cz+D=0,点P(x0,y0,z0),则点P到直线L的距离为d=,Ax0+By0+Cz0+D,/√(A²+B²+C²)。
二、空间向量知识点归纳总结:1.空间向量的定义:空间中具有大小和方向的有向线段。
2.空间向量的表示方法:-定点表示法:以一个固定点为起点,用一条线段的另一端点表示向量。
-坐标表示法:向量的起点为原点O,终点坐标为(x,y,z),则向量的坐标表示为(x,y,z)。
-分解表示法:将向量沿着坐标轴分解成若干个坐标分量的和。
3.空间向量的运算:-向量的加法:向量的加法满足三角形法则,即向量的和等于它们的起点相同的两个边相加的结果。
-向量的减法:向量的减法等于将减向量取反后与被减向量相加。
-向量的数乘:向量的数乘等于向量的每个分量与一个常数的乘积。
4.向量的数量积和向量积:-数量积(点积):设向量A(x1,y1,z1)和向量B(x2,y2,z2),则数量积AB=A·B=x1x2+y1y2+z1z2,具有交换律和分配律。
高中数学空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
立体几何和空间向量综合知识点(高中数学)
立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。
2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。
3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。
(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。
(3)长方体外接球的直径是长方体的体对角线长222c b a ++。
高二复习知识点之空间向量与立体几何
空间向量与立体几何一、几何关系(平行、垂直)1、向量共线定理:a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C O P=O A +A B +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA +OB +O ++=.3、a b ⋅=a cos ,b a b 〈〉.0a b a b ⊥⇔⋅=;cos ,a b a b a b⋅〈〉=;a b a b ⋅≤.4、(1)、若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. (2)、若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. (3)、21a a a x =⋅=+(4)、21cos ,a b a b a bx ⋅〈〉==+(5)、()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =5、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄:(1)、////a a αα⇔0a n an ⇔⊥⇔⋅=,(2)、//a a a n a n ααλ⊥⇔⊥⇔⇔=. 6、若空间不重合的两个平面α,β的法向量分别为a ,b : (1)、////a b αβ⇔⇔a b λ=,(2)、0a b a b αβ⊥⇔⊥⇔⋅=. 二、夹角7、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有:cos cos a b a bθϕ⋅==.注意两异面直线所成角θ的范围是0,2π⎛⎤⎥⎝⎦8、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.直线和平面所成角θ的取值范围是0,2π⎡⎤⎢⎥⎣⎦9、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.二面角取值范围[]0,π 三、距离。
高中数学必修2--空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
高中数学空间向量与立体几何知识总结(高考必备!)
辅导科目:数学授课教师:x年级:高二上课时间:教材版本:人教版总课时:已上课时:课时学生签名:课题名称教学目标重点、难点、考点空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示r r r r 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设i, j , k (单位正交基底) r r r r r 唯一的有序实数组(a1,a2,a3),使a a1i a2 j a3 k ,有序实数组( a1 , a2 , a3 )叫作向量a在r空间直角坐标系O xyz中的坐标,记作a (a1,a2,a3) .在空间直角坐标系O xyz中, 1 2 3uuur r r对空间任一点A ,存在唯一的有序实数组(x,y,z),使OA xi yj zk ,有序实数组(x,y,z)叫作向量A在空间直角坐标系O xyz中的坐标,记作A(x,y,z),x叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律rr(1)若a (a1,a2,a3) ,b (b1, b2 ,b3 ) ,rr则a b (a1 b1,a2 b2,a3 b3) ,r r r a b r(r a1 b1,a2 b2,a3 b3),a ( a1, a2, a3)( R) ,a//b a1 b1,a2 b2,a3 b3( R) ,uuur(2)若A(x1,y1,z1),B(x2, y2,z2),则AB (x2 x1, y2 y1,z2 z1) .一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
r r r r b1a1(3) a//b b a b2 a2( R)b 3 a 3三、空间向量直角坐标的数量积1、设a,b是空间两个非零向量,我们把数量|a||b|cos a,b 叫作向量a,b的数量积,记作a b,即a b=|a||b|cos a,b 规定:零向量与任一向量的数量积为0。
2、模长公式|a| a a x12x22x323、两点间的距离公式:若A(x1,y1,z1),B(x2, y2,z2),则| u A u B ur | u A u B ur (x2 x1)2 (y2 y1)2 (z2 z1)2,或d A,B (x2 x1)2 (y2 y1)2 (z2 z1)2.4、夹角: cos a b ab注:① a |a| |b| r 2 r r r 2② |a|2 a a a 。
空间向量与立体几何知识点
空间向量与立体几何知识点第一篇:空间向量1. 空间向量的表示方法空间向量可以用有向线段、坐标和向量分量等多种方式进行表示。
其中,有向线段表示空间向量的长度、方向和起点,坐标表示空间向量的左端点和右端点的坐标,向量分量表示空间向量在三个坐标轴上的投影。
2. 空间向量的加减法空间向量的加减法与二维向量的加减法类似,可以通过将两个向量的分量逐一相加或相减得到结果向量的分量。
也可以通过平移法、三角法、正交分解等方法进行计算。
3. 空间向量的数量积和向量积空间向量的数量积和向量积都具有几何意义和物理意义。
数量积表示两个向量之间的夹角余弦值和向量长度的乘积,通常用于计算向量的投影和求解平面或直线的方程。
向量积表示两个向量所在平行四边形的面积和法向量,通常用于计算向量的叉积、平面或直线的法向量以及计算空间中两个平面的夹角。
4. 空间向量的共线、垂直和平行空间向量的共线、垂直和平行是三种基本关系。
当两个向量共线时,它们所在直线相交或重合;当两个向量垂直时,它们的数量积为0,而向量积为一个与它们垂直的向量;当两个向量平行时,它们的向量积为0,而数量积为它们长度的乘积。
5. 应用举例空间向量广泛应用于物理、工程、计算机图形学等领域。
例如,通过计算物体的重心和质量分布情况,可以求解物体的转动惯量和稳定性问题;通过计算矢量场中的散度和旋度,可以分析流体的运动状态和变化规律;通过计算三维空间中的距离和夹角,可以在计算机图形学中进行三维模型的建模和渲染。
第二篇:立体几何1. 立体几何的基本概念立体几何是研究三维空间中的基本几何对象和它们的性质、关系的数学分支。
它包括点、线、面、体和空间角等多个基本概念,用于描述和分析三维物体的形状、大小和位置关系。
2. 立体几何的基本公理立体几何的基本公理是欧几里得几何的扩展,是指空间中的点、线、面、体和空间角等基本几何对象应满足的性质和约束。
这些公理包括点的唯一性、直线的唯一性、平面的唯一性、线段长度的可加性、平面的无限性、等角推移原理等。
空间向量与立体几何知识点汇总
空间向量与立体几何知识点汇总知识点一 空间向量及其运算(一)、空间向量在空间,我们把具有大小和方向的量叫做向量。
1. 空间的一个平移就是一个向量。
2. 向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。
相等向量只考虑其定义要素:方向,大小。
3. 空间的两个向量可用同一平面内的两条有向线段来表示。
(二)、共线向量1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.2.共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb 。
(三)、两个向量的数量积1.定义:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。
2.空间向量数量积的性质① ||cos ,a e a a e ⋅=<>; ② 0a b a b ⊥⇔⋅=; ③ 2||a a a =⋅.3.空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅;②a b b a ⋅=⋅(交换律);③()a b c a b a c ⋅+=⋅+⋅(分配律)。
(四)、空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
(五)、空间直角坐标系:1.若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b ; BA OA OB a b ; OP a( R)运算律:⑴加法交换律: a b b a⑵加法结合律:(a b) c a (b c)⑶数乘分配律:(a b) a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作a // b 。
(2)共线向量定理:空间任意两个向量 a 、b(b ≠0 ),a //b 存在实数λ,使a =λb 。
(3)三点共线:A、B、C 三点共线<=> AB AC<=> OC xOA yOB (其中x y 1)(4)与a共线的单位向量为 aa4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量a,b 不共线,p 与向量a,b 共面的条件是存在实数x, y 使p xa yb 。
(3)四点共面:若A、B、C、P 四点共面<=> AP xAB yAC<=> OP xOA yOB zOC (其中x y z 1)5. 空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x, y,z ,使p xa yb zc 。
若三向量a,b,c不共面,我们把{ a,b,c} 叫做空间的一个基底,a,b,c 叫做基向量,1空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设O, A, B,C 是不共面的四点,则对空间任一点 P ,都存在唯一的三个有序实数x, y, z ,使OPxOA yOB zOC 。
空间向量与立体几何知识总结全国高考必备
空间向量与立体几何知识总结(全国高考必备!)空间向量知识总结:一、向量的基本概念1. 向量的定义:向量是具有大小和方向的量,用箭头表示。
2. 向量的表示:通常用字母加上一个箭头表示向量,如AB→表示从点A指向点B的向量。
3. 零向量:大小为0的向量,表示为0→。
4. 向量的相等:两个向量的大小和方向都相同,即为相等。
5. 单位向量:长度为1的向量,表示为→a。
二、向量的运算1. 向量的加法:两个向量相加,将它们的起点重合,终点连线即为结果向量。
2. 向量的减法:将被减向量取反,然后与减向量相加。
3. 数乘:将向量的大小乘以一个实数,得到新的向量。
4. 内积:两个向量的数量积,结果是一个实数。
5. 外积:两个向量的向量积,结果是一个向量,其大小等于两个向量构成的平行四边形的面积,方向垂直于这个平行四边形的平面。
三、向量的性质1. 交换律:向量的加法满足交换律,即A+B=B+A。
2. 结合律:向量的加法满足结合律,即(A+B)+C=A+(B+C)。
3. 数乘结合律:数乘与向量的加法满足结合律,即k(A+B)=kA+kB。
4. 数乘分配律:数乘对向量的加法满足分配律,即(k+m)A=kA+mA。
5. 内积的性质:内积满足交换律、结合律和分配律。
四、立体几何知识总结:1. 空间几何基本概念:点、线、面。
2. 空间几何基本要素:直线的判定、平面的判定、相交关系的判定。
3. 立体图形的基本要素:点、线、面、体。
4. 空间几何基本定理:平行线与平面的关系、垂直关系、垂直平分线定理、角平分线定理、垂直平面定理、等腰三角形定理等。
5. 空间几何的投影:点到直线的投影、点到平面的投影、直线到直线的投影等。
6. 空间几何的立体图形:立体图形的表面积和体积计算公式,如球体、圆柱体、圆锥体、棱锥体、棱台等。
综上所述,空间向量与立体几何是高中数学中重要的内容,理解并掌握相关的概念、运算、性质以及定理和公式,对于解题和应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k i
O x
z
如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底)123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a 在中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,二、空间向量的直角坐标运算律
1)若12(,,a a a =12(,,b b b =, 则1133(,)a b a b a a b +=++,
1123(,)a b a b a b -=---,1(,a a λλλ=1233//,()a b a b a b R λλλλ⇔===∈,(2)若111(,,A x y z 222,,)x y z ,则2(AB x =一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔=123
()b b R b λ=⎧⎪
⇔=∈⎨⎪=⎩
三、空间向量直角坐标的数量积
设b a ,是空间两个非零向><b a ,cos 规定:零向量与任一向量的数量积为、模长公式
21|a a a x =⋅=+、两点间的距离公式:若2
21|(AB AB x x ==-2,212()(A B d x x y =-+
||||
a b
b a b ⋅⋅. 注:①2
2
|a a a a =⋅=。
空间向量数量积的性质:
||cos ,a e a a e ⋅=<>.②0a b a b ⊥⇔⋅=.③2
||a a a =⋅. 、运算律
a b b a ⋅=⋅; ②)()(a b b a ⋅=⋅λλ; ③c a b a c b a ⋅+⋅=+⋅)( 四、直线的方向向量及平面的法向量
、直线的方向向量:我们把直线l 上的向量e 以及与e 共线的向量叫做直线l 、平面的法向量:如果表示向量n 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作)待定系数法:建立空间直接坐标系(,,n x y z =
②在平面内找两个不共线的向量11(,,a x y =22(,,b x y =0
n a n b ⋅=⋅=
④解方程组,取其中的一组解即可。
、证明两直线平行
和b , B A ,AB CD λ= 、证明直线和平面平行
存在有序实数对μλ,使AB CD CE λμ=+ //AB m ,m n ,则m n α⊥
⊥
已知两异面直线
b
a,,,,,
A B a C D b
∈∈,则异面直线所成的角θ为:cos
AB CD
AB CD
θ•
=
例题
【空间向量基本定理】
例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。
分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。
如图所示,取PC的中点E,连接NE,则。
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。
再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。
有分解才有组合,组合是分解的表现形式。
空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。
【利用空间向量证明平行、垂直问题】
例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB 于点F。
(1)证明:PA//平面EDB;
(2)证明:PB⊥平面EFD;
(3)求二面角C—PB—D的大小。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:
①证明直线的方向向量与平面的法向量垂直;
②证明能够在平面内找到一个向量与已知直线的方向向量共线;
③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:
①转化为线线平行、线面平行处理;
②证明这两个平面的法向量是共线向量.
(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:
①证明直线的方向向量与平面的法向量是共线向量;
②证明直线与平面内的两个不共线的向量互相垂直.
(6)证明面面垂直的方法:
①转化为线线垂直、线面垂直处理;
②证明两个平面的法向量互相垂直.
【用空间向量求空间角】
例3.正方形ABCD—中,E、F分别是,的中点,求:
(1)异面直线AE与CF所成角的余弦值;
(2)二面角C—AE—F的余弦值的大小。
点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
例4.长方体ABCD—中,AB=4,AD=6,,M是A1C1的中点,P在线段BC上,且|CP|=2,Q是DD1的中点,求:
(1)异面直线AM与PQ所成角的余弦值;
(2)M到直线PQ的距离;
(3)M到平面AB1P的距离。
本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。
利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。
现列出几类问题的解决方法。
(1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元
一次方程,联立后取其一组解。
(2)线面角的求法:设n 是平面的一个法向量,AB 是平面
的斜线l 的一个方向向量,则直线与平面
所成
角为n
AB n AB ⋅•=
θθsin 则
(3)二面角的求法:①AB ,CD 分别是二面角
的两个面内与棱l 垂直的异面直线,则二面角的大小为。
②设分别是二面角的两个平面
的法向量,则
就是二面角的平
面角或其补角。
(4)异面直线间距离的求法:是两条异面直线,n 是
的公垂线段AB 的方向向量,又C 、D 分别是
上
的任意两点,则。
(5)点面距离的求法:设n 是平面
的法向量,AB 是平面
的一条斜线,则点B 到平面
的距离为。
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
练习:
1.若等边ABC ∆的边长为23,平面内一点M 满足12
63
CM CB CA =
+,则MA MB •=_________ 2.在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐
标是________。
3.(本小题满分12分)
如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=
1
2
AD (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; (III )求二面角A-CD-E 的余弦值。
4.(本题满分15分)如图,平面PAC ⊥平面ABC ,ABC ∆
是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,
PB ,AC 的中点,16AC =,10PA PC ==.
(I )设G 是OC 的中点,证明://FG 平面BOE ;
(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.
5.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. (Ⅰ)求证:平面AEC PDB ⊥平面;
(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与
平面PDB 所成的角的大小.
学科组长审核:教学主任审核:。