2020年威海市中考数学试题
2020年威海市中等学校招生考试初中数学
2020年威海市中等学校招生考试初中数学数 学第I 卷一、选择题〔本大题共12小题,每题3分,共36分.在每题给出的四个选项中,只有一个是正确的.每题选对得3分,选错、不选或多项选择,均不得分〕1.据威海新闻网报道,今年〝五一〞黄金周约有110万游客饱览我市美景,游客在威海游玩期间人均消费840元,我市〝五一〞黄金周的旅行收入用科学计数法表示为〔保留三个有效数字〕 〔 〕〔A 〕9.24×107 〔B 〕9.24×108 〔C 〕0.924×109 〔D 〕9.24×1092.以下图形中,既是轴对称图形又是中心对称图形的是 〔 〕〔A 〕平行四边形 〔B 〕正八边形 〔C 〕等腰梯形 〔D 〕等边三角形 3.21-的绝对值等于 〔 〕〔A 〕 2 〔B 〕-2 〔C 〕22 〔D 〕-224.如图,过原点的一条直线与反比例函数x k y =〔k≠0〕的图像分不交于A 、B 两点.假设A 点的坐标为〔a ,b 〕,那么B 点的坐标为 〔 〕〔A 〕〔a ,b 〕 〔B 〕〔b ,a 〕 〔C 〕〔-b ,-a 〕 〔D 〕〔-a ,-b 〕5.如图,数轴上所标出的点中,相邻两点间的距离相等,那么点A 表示的数为 〔 〕〔A 〕30 〔B 〕50 〔C 〕60 〔D 〕806.如图,在△ABC中,∠ACB=100º,AC=AE,BC=BD,那么∠DCE的度数为〔〕〔A〕20º〔B〕25º〔C〕30º〔D〕40º7.用换元法解方程322222=-+-xxxx时,设yxx=-22,那么原方程可变形为〔〕〔A〕232=+-yy〔B〕01322=+-yy〔C〕232=-+yy〔D〕01322=-+yy8.用半径为30cm,圆心角为120º的扇形围成一个圆锥的侧面,那么圆锥的底面半径为〔〕〔A〕10 cm 〔B〕30 cm 〔C〕45 cm 〔D〕300 cm 9.标价为x元的某件商品,按标价八折出售仍能盈利b元,该件商品的进价为a元,那么x等于〔〕〔A〕()54ba-〔B〕()45ba-〔C〕()54ba+〔D〕()45ba+10.如图,假设正方形A1B1C1D1内接于正方形ABCD的内接圆,那么ABBA11的值为〔〕〔A〕21〔B〕22〔C〕41〔D〕4211.a、b为一元二次方程0922=-+xx的两个根,那么baa-+2的值为〔〕〔A〕-7 〔B〕0 〔C〕7 〔D〕1112.如图,⊙O1的半径为1,O1O2=6,P为⊙O2上一动点,过P点作⊙O1的切线,那么切线长最短为〔〕〔A〕52〔B〕5 〔C〕3 〔D〕33第II卷二、填空题〔本大题共6小题,每题3分,共18分.只要求填出最后结果〕13.写出一个-6~-5之间的无理数:.14.运算()2322321541⎪⎭⎫⎝⎛-⨯---⎪⎭⎫⎝⎛-= .15.如图,梯形纸片ABCD,AB∥CD,AD=BC,AB=6,CD=3.将该梯形纸片沿对角线AC折叠,点D恰与AB边上的E点重合,那么∠B= .15题图 16题图16.如图,一圆与平面直角坐标系中的x轴切于点A〔8,0〕,与y轴交于点B〔0,4〕,C〔0,16〕,那么该圆的直径为.17.将多项式42+x加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:,,.18.如图,△ABC面积为1,第一次操作:分不延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1. 第二次操作:分不延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1= A1B1,B2C1= B1C1,C2A1= C1A1,顺次连结A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少通过次操作.三、解答题〔本大题共7小题,共66分〕先化简,再求值: a a a -÷⎪⎭⎫ ⎝⎛+--222121,其中a =13-20.〔7分〕某学校举行实践操作技能大赛,所有参赛选手的成绩统计如下表所示〔总分值10分〕 分数7.1 7.4 7.7 7.9 8.4 8.8 9 9.2 9.4 9.6 人数 〔2〕本次参赛学生的平均成绩是多少?〔3〕肖刚同学的竞赛成绩是8.8分,能不能讲肖刚同学的竞赛成绩处于参赛选手的中游偏上水平?试讲明理由.21.〔8分〕图①,②是晓东同学在进行〝居民楼高度、楼间距对住户采光阻碍咨询题〞的研究时画的两个示意图.请你阅读相关文字,解答下面的咨询题.〔1〕图①是太阳光线与地面所成角度的示意图.冬至日正午时刻,太阳光线直射在南回来线〔南纬23.5º〕B 地上.在地处北纬36.5º的A 地,太阳光线与地面水平线l 所成的角为α,试借助图①,求α的度数.图1 图②〔2〕图②是乙楼高度、楼间距对甲楼采光阻碍的示意图.甲楼地处A 地,其二层住户的南面窗户下沿距地面3.4米.现要在甲楼正南面建一幢高度为22.3米的乙楼,为不阻碍甲楼二层住户〔一层为车库〕的采光,两楼之间的距离至少应为多少米?小明和小亮共下了10盘围棋,小明胜一盘计1分,小亮胜一盘计3分.当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高于小明.他们各胜过几盘?〔竞赛中没有显现平局〕23.〔10分〕:如图①,在□ABCD中,O为对角线BD的中点.过O的直线MN交直线AB于点M,交直线CD于点N;过O的另一条直线PQ交直线AD于点P,交直线BC于点Q,连结PN、MQ.〔1〕试证明△PON与△QOM全等;〔2〕假设点O为直线BD上任意一点,其他条件不变,那么△PON与△QOM又有如何样的关系?试就点O在图②所示的位置,画出图形,证明你的猜想;图①图②〔3〕假设点O为直线BD上任意一点〔不与点B、D重合〕,设OD:OB=k,PN=x,MQ=y,那么y与x之间的函数关系式为.24.〔12分〕抛物线y = ax2+bx+c (a≠0)过点A〔1,-3〕,B〔3,-3〕,C〔-1,5〕,顶点为M点.〔1〕求该抛物线的解析式.〔2〕试判定抛物线上是否存在一点P,使∠POM=90º.假设不存在,讲明理由;假设存在,求出P 点的坐标.〔3〕试判定抛物线上是否存在一点K,使∠PMK=90º,讲明理由.在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点动身的两个动点,点M沿A→D→C→B的方向运动,速度为2cm/秒;点N沿A→B的方向运动,速度为1cm/秒.当M、N 其中一点到达B点时,点M、N运动停止.设点M、N的运动时刻为x秒,以点A、M、N为顶点的三角形的面积为y cm2.〔1〕试求出当0 < x < 3时,y与x之间的函数关系式;〔2〕试求出当4 < x < 7时,y与x之间的函数关系式;〔3〕当3 < x < 4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?假设相似,试求出x的值. 假设不相似,试讲明理由.。
山东省威海市2020年中考数学试题(Word版,含答案与解析)
山东省威海市2020年中考数学试卷一、单选题(共12题;共24分)1.-2的倒数是()A. -2B. −12C. 12D. 2【答案】B【考点】有理数的倒数【解析】【解答】-2的倒数是- 12故答案为:B【分析】求一个数的倒数就是用1除以这个数的商,即可求解。
2.下列几何体的左视图和俯视图相同的是()A. B.C. D.【答案】 D【考点】简单组合体的三视图【解析】【解答】A.该几何体左视图是:俯视图是:故A选项不符合题意;B.该几何体左视图是:俯视图是:故B选项不符合题意;C.该几何体左视图是:俯视图是:故C选项不符合题意;D.该几何体左视图是:俯视图是:故D选项符合题意,故答案为:D.【分析】通过观察各几何体得到左视图与俯视图,进而进行判断即可得解.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为()A. 10×10−10B. 1×10−9C. 0.1×10−8D. 1×109【答案】B【考点】科学记数法—表示绝对值较小的数【解析】【解答】 11000000000=0.000000001=1.0×10−9 ,故答案为:B .【分析】根据科学记数法的表示形式 a ×10n (1≤|a|<10) (n 为整数)进行表示即可求解.4.下列运算正确的是( )A. 3x 3⋅x 2=3x 5B. (2x 2)3=6x 6C. (x +y)2=x 2+y 2D. x 3+x 2=x 5【答案】 A【考点】同底数幂的乘法,完全平方公式及运用,幂的乘方【解析】【解答】A 、 3x 3⋅x 2=3x 5 ,本选项符合题意;B 、 (2x 2)3=8x 6 ,本选项不符合题意;C 、 (x +y)2=x 2+2xy +y 2 ,本选项不符合题意;D 、 x 3+x 2=x 3+x 2 ,本选项不符合题意;故答案为:A .【分析】分别进行同底数幂的乘法、幂的乘方、完全平方公式、合并同类项等运算,然后选出正确选项即可.5.分式 2a+2a 2−1−a+11−a 化简后的结果为( ) A. a+1a−1 B. a+3a−1 C. −a a−1 D. −a 2+3a 2−1 【答案】 B【考点】分式的加减法【解析】【解答】解: 2a+2a 2−1−a+11−a=2a +2(a +1)(a −1)−(a +1)2(1−a)(a +1)=2a +2+(a +1)2(a +1)(a −1)=2a +2+a 2+2a +1(a +1)(a −1)=(a +3)(a +1)(a +1)(a −1)=a +3a −1故答案为:B .【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.6.一次函数 y =ax −a 与反比例函数 y =a x (a ≠0) 在同一坐标系中的图象可能是( )A. B.C. D.【答案】 D【考点】反比例函数与一次函数的交点问题【解析】【解答】当a>0时,−a<0,则一次函数y=ax−a经过一、三、四象限,反比例函数y=a(a≠0)经过一、三象限,故排除A,C选项;x(a≠0)经当a<0时,−a>0,则一次函数y=ax−a经过一、二、四象限,反比例函数y=ax过二、四象限,故排除B选项,故答案为:D.【分析】根据一次函数与反比例函数图象的性质进行判断即可得解.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A. 本次调查的样本容量是600B. 选“责任”的有120人C. 扇形统计图中“生命”所对应的扇形圆心角度数为64.8∘D. 选“感恩”的人数最多【答案】C【考点】扇形统计图,条形统计图【解析】【解答】A.由统计图可知“奉献”对应的人数是108人,所占比为18%,则调查的样本容量是108÷18%=600,故A选项不符合题意;=120人,故B选项不B.根据扇形统计图可知“责任”所对的圆心角是72°,则所对人数为600×72°360°符合题意;=79.2°,故C选项C.根据条形统计图可知“生命”所对的人数为132人,则所对的圆心角是360°×132600符合题意;D.根据“敬畏”占比为16%,则对应人数为600×16%=96人,则“感恩”的人数为600−96−132−108−120=144人,人数最多,故D选项不符合题意,故答案为:C.【分析】根据条形统计图与扇形统计图中的相关数据进行计算并逐一判断即可得解.8.如图,点P(m,1),点Q(-2,n)都在反比例函数y=4的图象上,过点P分别向x轴、y轴作垂线,垂x足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A. S1:S2=2:3B. S1:S2=1:1C. S1:S2=4:3D. S1:S2=5:3【答案】C【考点】反比例函数系数k的几何意义,三角形的面积,几何图形的面积计算-割补法的图象上,【解析】【解答】解:点P(m,1),点Q(−2,n)都在反比例函数y=4x∴m×1=−2n=4,∴m=4,n=−2,∵P(4,1),Q(−2,−2),∵过点P分别向x轴、y轴作垂线,垂足分别为点M,N,∴S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S2=S△PQK−S△PON−S梯形ONKQ=12×6×3− 12×4×1− 12(1+3)×2=3,∴S1:S2=4:3,故答案为:C.【分析】过点P分别向x轴、y轴作垂线,垂足分别为点M,N,根据图象上点的坐标特征得到P(4,1),Q(−2,−2),根据反比例函数系数k的几何意义求得S1=4,然后根据S2=S△PQK−S△PON−S梯形ONKQ求得S2=3,即可求得S1:S2=4:3.9.七巧板是大家熟悉的一种益智玩具,用七巧板能拼出许多有趣的图案.小李将块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②),已知AB=40cm,则图中阴影部分的面积为()A. 25cm2B. 1003cm2 C. 50cm2 D. 75cm2【答案】C【考点】正方形的性质,等腰直角三角形,几何图形的面积计算-割补法【解析】【解答】解:如图,设OF=EF=FG=x,∴OE=OH=2x,在Rt△EOH中,EH=2 √2x,由题意EH=20cm,∴20=2 √2x,∴x=5 √2,∴阴影部分的面积=(5 √2)2=50(cm2),故答案为:C.【分析】如图,设OF=EF=FG=x,可得EH=2 √2x=20,解方程即可解决问题.10.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(−4,0),对称轴为直线x=−1,则下列结论错误的是()A. 二次函数的最大值为a−b+cB. a+b+c>0C. b2−4ac>0D. 2a+b=0【答案】 D【考点】二次函数图象与系数的关系,二次函数的其他应用【解析】【解答】解:抛物线y=ax2+bx+c过点A(−4,0),对称轴为直线x=−1,因此有:x=−1=−b,即2a−b=0,因此选项D不符合题意;2a当x=−1时,y=a−b+c的值最大,选项A符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B符合题意;抛物线与x轴有两个不同交点,因此b2−4ac>0,C符合题意;故答案为:D.【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可.11.如图,在平行四边形ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A. 四边形DEBF为平行四边形B. 若AE=3.6,则四边形DEBF为矩形C. 若AE=5,则四边形DEBF为菱形D. 若AE=4.8,则四边形DEBF为正方形【答案】 D【考点】平行四边形的判定与性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】A.∵四边形ABCD是平行四边形∴DC//AB∴∠FDO=∠EBO∵O为BD的中点∴DO=BO在△FDO与△EBO中{∠FDO=∠EBO DO=BO∠DOF=∠BOE ∴△FDO≅△EBO(ASA)∴DF=BE又∵DC//AB∴四边形DEBF为平行四边形,故A选项不符合题意;B.假设DE⊥AB∵BD⊥AD,AB=10,AD=6∴BD=√AB2−AD2=8∴S△ABD=12AD×BD=12×6×8=24∴DE=2S△ABDAB=4.8∵DE⊥AB∴AE=√AD2−DE2=3.6则当AE=3.6时,DE⊥AB∵四边形DEBF为平行四边形∴四边形DEBF为矩形,故B选项不符合题意;C.∵AE=5,AB=10∴E是AB中点∵BD⊥AD∴DE=AE=BE∵四边形DEBF为平行四边形∴四边形DEBF为菱形,故C选项不符合题意;D.当AE=4.8时与AE=3.6时矛盾,则DE不垂直于AB,则四边形DEBF不为矩形,则也不可能为正方形,故D选项符合题意,故答案为:D.【分析】根据平行四边形的性质及判定定理,以及特殊平行四边形的判定定理进行逐一判断即可得解.12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1//l2//l3//l4且间距相等,AB=4,BC=3,则tanα的值为()A. 38B. 34C. √52D. √1515【答案】A【考点】平行线的性质,相似三角形的判定与性质,解直角三角形【解析】【解答】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得GE∥BF,CE=EF,∴△CEG∽△CFB,∴CECF =CGCB,∵CECF =12,∴CGCB =12,∵BC=3,∴GB=32,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG=BGAB =324= 38,∴tanα的值为38,故答案为:A.【分析】根据题意,可以得到BG的长,再根据∠ABG=90°,AB=4,可以得到∠BAG的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.二、填空题(共6题;共6分)13.计算 √3−√12−(√8−1)0 的结果是________.【答案】 −√3−1【考点】实数的运算,0指数幂的运算性质,最简二次根式,二次根式的加减法【解析】【解答】解: √3−√12−(√8−1)0= √3−2√3−1= −√3−1 ,故答案为: −√3−1 .【分析】根据二次根式的加减运算和零指数幂的运算法则进行计算即可.14.一元二次方程 4x(x −2)=x −2 的解为________.【答案】 x= 14 或x=2【考点】因式分解法解一元二次方程【解析】【解答】 4x(x −2)=x −2当x -2=0时,x =2,当x -2≠0时,4x =1,x = 14 ,故答案为:x = 14 或x =2.【分析】根据一元二次方程的解法解出答案即可.15.下表中y 与x 的数据满足我们初中学过的某种函数关系,其函数表达式为________.【答案】 y=-x 2+2x+3【考点】待定系数法求二次函数解析式【解析】【解答】解:根据表中x 与y 之间的数据,假设函数关系式为: y=ax 2+bx+c ,并将表中(-1,0)、(0,3)、(1,4)三个点带入函数关系式,得:{a-b+c=0c=3a+b+c=4解得: {a=-1b=2c=3,∴函数的表达式为: y=-x 2+2x+3 .故答案为: y=-x 2+2x+3 .【分析】根据表中x 与y 之间的数据,假设函数关系式为: y=ax 2+bx+c ,并将表中的点(-1,0)、(0,3)、(1,4)、(3,0)任取三个点带入函数关系式,求出二次项系数、一次项系数、常数项即可求得答案. 16.如图,四边形 ABCD 是一张正方形纸片,其面积为 25cm 2 .分别在边 AB , BC , CD , DA 上顺次截取 AE =BF =CG =DH =acm(AE >BE) ,连接 EF , FG , GH , HE .分别以 EF ,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1,若四边形A1B1C1D1的面积为9cm2,则a=________.【答案】4【考点】正方形的判定与性质,轴对称的性质,翻折变换(折叠问题),几何图形的面积计算-割补法【解析】【解答】∵四边形A1B1C1D1是由四个直角边翻折得到的,∴四边形A1B1C1D1是正方形,∵四边形A1B1C1D1是9cm2,∴A1B1=B1C1=C1D1=D1A1=3cm.∵AE=BF=CG=DH=acm,∴EB=FC=DG=HD=(a-3)cm.∴2S△AEH=(S□ABCD-S□A1B1C1D1)÷4=(25-9)÷4=4cm2,×a×(a−3)=4, a2−3a−4=0,即2×12因式分解得: (a−4)(a+1)=0,∴a=4或a=﹣1(舍去).故答案为4.【分析】由四边形A1B1C1D1的面积算出边长,再用a表示出EB,即可表示出四个三角形的面积,列出等式即可求解.17.如图,点C在∠AOB的内部,BD=2√3,∠OCA与∠AOB互补,若AC=1.5,BC=2,则OC=________.【答案】√3【考点】相似三角形的判定与性质【解析】【解答】解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,∴∠AOC =∠OBC ,∠COB =∠OAC ,∴△ACO ∽△OCB ,∴ OC AC =BC OC ,∴OC 2=2× 32 =3,∴OC = √3 ,故答案为: √3 .【分析】通过证明△ACO ∽△OCB ,可得 OC AC =BC OC ,可求出OC .18.如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作 (1,1) ,第二块( B 型)地时记作 (2,1) …若 (m,n) 位置恰好为A 型地砖,则正整数m ,n 须满足的条是________.【答案】 m 、n 同为奇数或m 、n 同为偶数【考点】探索图形规律【解析】【解答】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数, 故答案为:m 、n 同为奇数或m 、n 同为偶数.【分析】几何图形,观察A 型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m 、n 满足的条件.三、解答题(共7题;共65分)19.解不等式组,并把解集在数轴上表示出来{4x −2≥3(x −1)x−52+1>x −3 【答案】 解: {4x −2≥3(x −1)①x−52+1>x −3② 由①得:x≥−1;由②得:x<3;∴原不等式组的解集为−1≤x<3,在坐标轴上表示:.【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【分析】先求出每个不等式的解集,再求出这些不等式解集的公共部分,然后在数轴上表示出来即可.20.在“旅游示范公路”建设的的中,工程队计划在海边某路段修建一条长1200m的步行道,由于采用新的施工方式平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务,求计划平均每天修建的长度.【答案】解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:1200x −12001.5x=5解得:x=80,经检验,x=80是原方程的解,且正确,答:计划平均每天修建步行道的长度为80m.【考点】分式方程的实际应用【解析】【分析】设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.21.居家学习期间,小睛同学运用所学知识在自家阳台测对面大楼的高度如图,她利用自制的测角仪测得该大楼顶部的仰角为45∘,底部的俯角为38∘:又用绳子测得测角仪距地面的高度AB为31.6m.求该大棱的高度(结果精确到0.1m)(参考数据:sin38∘≈0.62,cos38∘≈0.79,tan38∘≈0.78)【答案】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=HDAH,∴AH=HDtan∠HAD =31.60.78≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】作AH⊥CD于H,则四边形ABDH是矩形,得出HD=AB=31.6m,由三角函数定义求出AH≈40.51(m),证出CH=AH=40.51m,进而得出答案.22.如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF//BC,交CM于点D求证:(1)BE=CE;(2)EF为⊙O的切线.【答案】(1)证明:∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)证明:如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EO⊥BC,∵EF//BC,∴EO⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.【考点】平行线的性质,线段垂直平分线的性质,圆内接四边形的性质,切线的判定【解析】【分析】(1)根据圆内接四边形的性质得到∠EAM=∠EBC.,根据角平分线的定义得到∠BAE =∠EAM,得到∠BCE=∠EBC,于是得到BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,推出直线EO垂直平分BC,得到EH⊥BC,求得EH⊥EF,根据切线的判定定理即可得到结论.23.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜:若所得数值等于3,4,5,则小梅胜(1)请利用表格分别求出小伟、小梅获胜的概率(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性【答案】(1)解:用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,∴P(小伟胜)=2436=23,P(小梅胜)=1236=13,答:小伟胜的概率是23,小梅胜的概率是13;(2)解:∵23≠ 13,∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,于是修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜,这样小伟、小梅获胜的概率均为12.【考点】列表法与树状图法,游戏公平性,概率公式【解析】【分析】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;(2)依据获胜的概率判断游戏的公平性,修改规则时,利用差的绝对值的形式,使两人获胜的概率相等即可.24.已知,在平面直角坐标系中,抛物线y=x2−2mx+m2+2m−1的顶点为A,点B的坐标为(3,5)(1)求抛物线过点B时顶点A的坐标(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2−2mx+m2+2m−1与线段BC只有一个交点【答案】(1)解:∵抛物线y=x2−2mx+m2+2m−1过点B(3,5),∴把B(3,5)代入y=x2−2mx+m2+2m−1,整理得,m2−4m+3=0,解得m1=1,m2=3,当m=1时,y=x2−2x+2=(x−1)2+1,其顶点A的坐标为(1,1);当m=3时,y=x2−6x+m2+14=(x−3)2+5,其顶点A的坐标为(3,5);综上,顶点A的坐标为(1,1)或(3,5);(2)解:∵y=x2−2mx+m2+2m−1=(x−m)2+2m−1,∴顶点A的坐标为(m,2m−1),∵点A的坐标记为(x,y),∴x=m,∴y=2x−1;(3)解:由(2)可知,抛物线的顶点在直线y=2x−1上运动,且形状不变,由(1)知,当m=1或3时,抛物线过B(3,5),把C(0,2)代入y=x2−2mx+m2+2m−1,得m2+2m−1=2,解得m=1或−3,所以当m=1或−3时,抛物线经过点C(0,2),如图所示,当m=−3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是−3≤m≤3且m≠1.【考点】待定系数法求二次函数解析式,二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化,二次函数的其他应用【解析】【分析】(1)根据待定系数法求得解析式,然后把解析式化成顶点式即可求得;(2)化成顶点式,求得顶点坐标,即可得出y与x的函数表达式;(3)把C(0,2)代入y=x2−2mx+m2+2m−1,求得m=1或−3,结合(1)根据图象即可求得.25.发现规律:(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60∘得到线段MK,连接NK,OK,求线段OK长度的最小值【答案】(1)解:∵△ABC与△ADE是等边三角形∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°∴∠BAD=∠CAE∴△BAD≅△CAE(SAS)∴∠ABD=∠ACE∵∠ABD+∠DBC=∠ABC=60°∴∠ACE+∠DBC=60°∴∠BFC=180°−∠DBC−∠ACE−∠ACB=60°;(2)解:∵∠ABC=∠ADE=α,∠ACB=∠AED=β∴△ABC∼△ADE∴∠BAC=∠DAE,ABAD =ACAE∴∠BAD=∠CAE,ABAC =ADAE∴△ABD∼△ACE∴∠ABD=∠ACE∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE∴∠BFC=∠BAC∵∠BAC+∠ABC+∠ACB=180°∴∠BFC+α+β=180°∴∠BFC=180°−α−β;应用结论:(3)解:∵将线段MN绕点M逆时针旋转60°得到线段MK ∴MN=MK,∠NMK=60°∴△MNK是等边三角形∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°如下图,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ∴△MOK≅△MQN,∠OMQ=60°∴OK=NQ,MO=MQ∴△MOQ是等边三角形∴∠QOM=60°∴∠NOQ=30°∵OK=NQ∴当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值∵点M的坐标为(3,0)∴OM=OQ=3∵QN⊥y轴,∠NOQ=30°∴NQ=12OQ=32∴线段OK长度的最小值为32.【考点】三角形内角和定理,等边三角形的判定与性质,相似三角形的判定与性质,旋转的性质,直角三角形的性质【解析】【分析】(1)通过证明△BAD≅△CAE可得∠ABD=∠ACE,再由三角形内角和定理进行求解即可;(2)通过证明△ABC∼△ADE可得∠BAC=∠DAE,ABAD =ACAE,可证△ABD∼△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,再有三角形内角和定理进行求解即可;(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM= 60°,如图③将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ= 60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质即可求解.。
2020年山东省威海市中考数学试卷-解析版
2020年山东省威海市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.−2的倒数是()A. −2B. −12C. 12D. 22.下列几何体的左视图和俯视图相同的是()A. B.C. D.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A. 10×10−10B. 1×10−9C. 0.1×10−8D. 1×1094.下列运算正确的是()A. 3x3⋅x2=3x5B. (2x2)3=6x6C. (x+y)2=x2+y2D. x2+x3=x55.分式2a+2a2−1−a+11−a化简后的结果为()A. a+1a−1B. a+3a−1C. −aa−1D. −a2+3a2−16.一次函数y=ax−a与反比例函数y=ax(a≠0)在同一坐标系中的图象可能是()A. B.C. D.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针的是()A. 本次调查的样本容量是600B. 选“责任”的有120人C. 扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D. 选“感恩”的人数最多8.如图,点P(m,1),点Q(−2,n)都在反比例函数y=4的x图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A. S1:S2=2:3B. S1:S2=1:1C. S1:S2=4:3D. S1:S2=5:39.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()cm2 C. 50cm2 D. 75cm2A. 25cm2B. 100310.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(−4,0),对称轴为直线x=−1,则下列结论错误的是()A.二次函数的最大值为a−b+cB. a+b+c>0C. b2−4ac>0D. 2a+b=011.如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A. 四边形DEBF为平行四边形B. 若AE=3.6,则四边形DEBF为矩形C. 若AE=5,则四边形DEBF为菱形D. 若AE=4.8,则四边形DEBF为正方形12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1//l2////l3//l4且间距相等,AB=4,BC=3,则tanα的值为()A. 38B. 34C. √52D. √1515二、填空题(本大题共6小题,共18.0分)13.计算√3−√12−(√8−1)0的结果是______.14.一元二次方程4x(x−2)=x−2的解为______.15.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为______.x…−1013…y…0340…16.如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=______.17.如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=______.18.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m ,n 须满足的条件是______.三、解答题(本大题共7小题,共66.0分)19. 解不等式组,并把解集在数轴上表示出来.{4x −2≥3(x −1), ①x −52+1>x −3. ②20. 在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21. 居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB 为31.6m.求该大楼的高度(结果精确到0.1m). (参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)求证:(1)BE=CE;(2)EF为⊙O的切线.23.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.已知,在平面直角坐标系中,抛物线y=x2−2mx+m2+2m−1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2−2mx+m2+2m−1与线段BC只有一个交点.交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N 为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.答案和解析1.【答案】B)=1.【解析】解:∵−2×(−12∴−2的倒数是−1,2故选:B.根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.【答案】D【解析】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的选项D中的几何体,故选:D.分别画出各种几何体的左视图和俯视图,进而进行判断即可.本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.【解析】解:∵十亿分之一=11000000000=1×10−9,∴十亿分之一用科学记数法可以表示为:1×10−9.故选:B.用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查了科学记数法,解决本题的关键是掌握:用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】A【解析】解:A.3x3⋅x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C.(x+y)2=x2+2xy+y2,故本选项不合题意;D.x2与x3不是同类项,所以不能合并,故本选项不合题意.故选:A.分别根据单项式乘单项式的运算法则,积的乘方运算法则,完全平方公式以及合并同类项法则逐一判断即可.本题主要考查了单项式乘单项式,完全平方公式,合并同类项以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.5.【答案】B【解析】解:2a+2a2−1−a+11−a=2a+2a2−1+a+1a−1=2a+2a2−1+(a+1)2a2−1=2a+2+a2+2a+1a2−1=a2+4a+3a2−1=(a+3)(a+1)(a+1)(a−1)=a+3a−1.故选:B.根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键.(a≠0)的【解析】解:A、由函数y=ax−a的图象可知a>0,−a>0,由函数y=ax图象可知a<0,错误;(a≠0)的图象可知a>0,相矛盾,B、由函数y=ax−a的图象可知a<0,由函数y=ax故错误;(a≠0)的图象可知a<0,故错误;C、由函数y=ax−a的图象可知a>0,由函数y=ax(a≠0)的图象可知a<0,故正确;D、由函数y=ax−a的图象可知a<0,由函数y=ax故选:D.先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【答案】C【解析】解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;=120(人),故选项B中的说法正确;选“责任”的有600×72°360∘=79.2°,故选项C中的说扇形统计图中“生命”所对应的扇形圆心角度数为360°×132600法错误;选“感恩”的人数为:600−132−600×(16%+18%)−120=144,故选“感恩”的人数最多,故选项D中的说法正确;故选:C.根据条形统计图和扇形统计图中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查条形统计图、扇形统计图、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:点P(m,1),点Q(−2,n)都在反比例函数y=4x的图象上.∴m×1=−2n=4,∴m=4,n=−2,∵P(4,1),Q(−2,−2),∵过点P分别向x轴、y轴作垂线,垂足分别为点M,N,∴S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S=S−S−S=1×6×3−1×4×1−1(1+3)×2=3,故选:C.过点P分别向x轴、y轴作垂线,垂足分别为点M,N,根据图象上点的坐标特征得到P(4,1),Q(−2,−2),根据反比例函数系数k的几何意义求得S1=4,然后根据S2=S△PQK−S△PON−S求得S2=3,即可求得S1:S2=4:3.梯形ONKQ本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,分别求得S1、S2的值是解题的关键.9.【答案】C【解析】解:如图:设OF=EF=FG=x,∴OE=OH=2x,在Rt△EOH中,EH=2√2x,由题意EH=20cm,∴20=2√2x,∴x=5√2,∴阴影部分的面积=(5√2)2=50(cm2)故选:C.如图:设OF=EF=FG=x,可得EH=2√2x=20,解方程即可解决问题.本题考查正方形的性质、勾股定理、等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.【答案】D【解析】解:抛物线y=ax2+bx+c过点A(−4,0),对称轴为直线x=−1,因此有:x=−1=−b,即2a−b=0,因此选项D符合题意;2a当x=−1时,y=a−b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2−4ac>0,故选项C不符合题意;故选:D.根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可.本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系式正确判断的前提.11.【答案】D【解析】解:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC//AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴AEAD =3.66=35,又∵ADAB =610=35,∴AEAD =ADAB,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE=12AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.根据平行四边形的判定方法,矩形的判定方法,菱形的判定方法,正方形的判定方法解答即可.本题考查了矩形的判定、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、正方形的判定等知识;熟练掌握矩形的判定和菱形的判定,证明三角形全等是解题的关键.12.【答案】A【解析】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE//BF,CE=EF,∴△CEG∽△CFB,∴CECF =CGCB,∵CECF =12,∴CGCB =12,∵BC=3,∴GB=32,∵l3//l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG=BGAB =324=38,∴tanα的值为38,故选:A.根据题意,可以得到BG的长,再根据∠ABG=90°,AB=4,可以得到∠BAG的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.本题考查矩形的性质,解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.13.【答案】−√3−1【解析】解:√3−√12−(√8−1)0=√3−2√3−1=−√3−1.故答案为:−√3−1.根据二次根式的性质以及任何非零数的零次幂等于1计算即可.本题主要考查了实数的运算.熟练掌握二次根式的性质是解答本题的关键.14.【答案】x1=2,x2=14【解析】解:4x(x−2)=x−24x(x−2)−(x−2)=0(x−2)(4x−1)=0x−2=0或4x−1=0解得x1=2,x2=14.故答案为:x1=2,x2=14.根据因式分解法解一元二次方程即可.本题考查了一元二次方程−因式分解法,解决本题的关键是掌握因式分解法.15.【答案】y=−x2+2x+3【解析】解:根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(−1,0)、(0,3)代入函数关系式,得∴{a+b+c=4 a−b+c=0 c=3,解得{a=−1 b=2c=3,∴函数表达式为y=−x2+2x+3.故答案为:y=−x2+2x+3.根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(−1,0)、(0,3)代入函数关系式,即可得结论.本题考查了函数的表示方法,解决本题的关键是掌握函数的三种表示方法:列表法、解析式法、图象法.16.【答案】4【解析】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=(5−a)cm,∴AH=(5−a)cm,∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25−9)÷8=2(cm2),12a(5−a)=2,解得a1=1(舍去),a2=4.故答案为:4.根据正方形的面积可得正方形的边长为5,根据正方形的面积和折叠的性质和面积的和差关系可得8个三角形的面积,进而得到1个三角形的面积,再根据三角形面积公式即可求解.本题考查了折叠问题,正方形的性质,三角形的面积,关键是熟练运用这些性质解决问题.17.【答案】√3【解析】解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,∴∠AOC=∠OBC,∠COB=∠OAC,∴△ACO∽△OCB,∴OCAC =BCOC,∴OC2=2×32=3,∴OC=√3,故答案为√3.通过证明△ACO∽△OCB,可得OCAC =BCOC,可求OC=√3.本题考查了相似三角形的判定和性质,证明△ACO∽△OCB是本题的关键.18.【答案】m、n同为奇数和m、n同为偶数【解析】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数和m、n 同为偶数.故答案为m、n同为奇数和m、n同为偶数.几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.本题考查了坐标表示位置:通过类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.19.【答案】解:{4x−2≥3(x−1), ①x−52+1>x−3. ②由①得:x≥−1;由②得:x<3;∴原不等式组的解集为−1≤x<3,在坐标轴上表示:.【解析】先求出每个不等式的解集,再求出这些不等式解集的公共部分.此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:1200x −12001.5x=5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.【解析】设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【答案】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=HDAH,∴AH=HDtan∠HAD =31.6tan38∘=31.60.78≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.【解析】作AH⊥CD于H,则四边形ABDH是矩形,得出HD=AB=31.6m,由三角函数定义求出AH≈40.51(m),证出CH=AH=40.51m,进而得出答案.本题考查了解直角三角形的应用−仰角俯角问题以及等腰直角三角形的判定,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.22.【答案】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.【解析】(1)根据圆内接四边形的想知道的∠EAM=∠EBC,根据角平分线的定义得到∠BAE=∠EAM,得到∠BCE=∠EBC,于是得到BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,推出直线EO垂直平分BC,得到EH⊥BC,求得EH⊥EF,根据切线的判定定理即可得到结论.本题考查了切线的判定定理,等腰三角形的性质,圆内接四边形的性质,正确的作出辅助线是解题的关键.23.【答案】解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P (小伟胜)=2436=23,P (小梅胜)=1236=13,答:P (小伟胜)=23,P (小梅胜)=13;(2)∵23≠13, ∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等, 于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为12.【解析】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;(2)依据获胜的概率判断游戏的公平性,修改规则时,可使两人获胜的概率相等,或利用积分的形式,使两人的积分相等即可.此题主要考查了游戏的公平性,主要是通过列举出所有的可能结果,求出相应的概率是解决问题的关键.24.【答案】解:(1)∵抛物线y =x 2−2mx +m 2+2m −1过点B(3,5),∴把B(3,5)代入y =x 2−2mx +m 2+2m −1,整理得,m 2−4m +3=0, 解,得m 1=1,m 2=3,当m =1时,y =x 2−2x +2=(x −1)2+1,其顶点A 的坐标为(1,1);当m =3时,y =x 2−6x +m 2+14=(x −3)2+5,其顶点A 的坐标为(3,5);综上,顶点A 的坐标为(1,1)或(3,5);(2)∵y =x 2−2mx +m 2+2m −1=(x −m)2+2m −1,∴顶点A 的坐标为(m,2m −1),∵点A 的坐标记为(x,y),∴x =m ,∴y =2x −1;(3)由(2)可知,抛物线的顶点在直线y =2x −1上运动,且形状不变,由(1)知,当m =1或3时,抛物线过B(3,5),把C(0,2)代入y =x 2−2mx +m 2+2m−1,得m2+2m−1=2,解,得m=1或−3,所以当m=1或−3时,抛物线经过点C(0,2),如图所示,当m=−3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是−3≤m≤3且m≠1.【解析】(1)根据待定系数法求得解析式,然后把解析式化成顶点式即可求得;(2)化成顶点式,求得顶点坐标,即可得出y与x的函数表达式;(3)把C(0,2)代入y=x2−2mx+m2+2m−1,求得m=1或−3,结合(1)根据图象即可求得.本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,数形结合是解题的关键.25.【答案】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°−∠EBC−∠ACE−∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,ABAD =ACAE,∴∠BAD=∠CAE,ABAC =ADAE,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°−α−β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ=12OQ=32,∴线段OK长度的最小值为32.【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;(2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,ABAD =ACAE,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.本题是几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是本题的关键.。
2020年中考数学试卷-含答案-山东威海
2020年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.﹣2的倒数是()A.﹣2 B.﹣C.D.22.下列几何体的左视图和俯视图相同的是()A.B.C.D.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×1094.下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x55.分式﹣化简后的结果为()A.B.C.﹣D.﹣6.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多8.如图,点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3 B.S1:S2=1:1 C.S1:S2=4:3 D.S1:S2=5:39.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm210.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=011.如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD 于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计算﹣﹣(﹣1)0的结果是.14.一元二次方程4x(x﹣2)=x﹣2的解为.15.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1 0 1 3 …y…0 3 4 0 …16.如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF =CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.17.如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.18.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是.三、解答题(本大题共7小题,共66分)19.(7分)解不等式组,并把解集在数轴上表示出来.20.(8分)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21.(8分)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)22.(9分)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.23.(10分)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(12分)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.25.(12分)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC 的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC =∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.2020年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.﹣2的倒数是()A.﹣2 B.﹣C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.下列几何体的左视图和俯视图相同的是()A.B.C.D.【分析】分别画出各种几何体的左视图和俯视图,进而进行判断即可.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的选项D中的几何体,故选:D.【点评】本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×109【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵十亿分之一==1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9.故选:B.【点评】本题考查了科学记数法,解决本题的关键是掌握:用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x5【分析】分别根据单项式乘单项式的运算法则,积的乘方运算法则,完全平方公式以及合并同类项法则逐一判断即可.【解答】解:A.3x3•x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C.(x+y)2=x2+2xy+y2,故本选项不合题意;D.x2与x3不是同类项,所以不能合并,故本选项不合题意.故选:A.【点评】本题主要考查了单项式乘单项式,完全平方公式,合并同类项以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.5.分式﹣化简后的结果为()A.B.C.﹣D.﹣【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.【解答】解:﹣======.故选:B.【点评】本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键.6.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.【解答】解:A、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a<0,错误;B、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;C、由函数y=ax﹣a的图象可知a>0,由函数y=(a≠0)的图象可知a<0,故错误;D、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a<0,故正确;故选:D.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多【分析】根据条形统计图和扇形统计图中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;选“责任”的有600×=120(人),故选项B中的说法正确;扇形统计图中“生命”所对应的扇形圆心角度数为360°×=79.2°,故选项C中的说法错误;选“感恩”的人数为:600﹣132﹣600×(16%+18%)﹣120=144,故选“感恩”的人数最多,故选项D 中的说法正确;故选:C.【点评】本题考查条形统计图、扇形统计图、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.8.如图,点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3 B.S1:S2=1:1 C.S1:S2=4:3 D.S1:S2=5:3【分析】过点P分别向x轴、y轴作垂线,垂足分别为点M,N,根据图象上点的坐标特征得到P(4,1),Q(﹣2,﹣2),根据反比例函数系数k的几何意义求得S1=4,然后根据S2=S△PQK﹣S△PON﹣S梯形ONKQ求得S2=3,即可求得S1:S2=4:3.【解答】解:点P(m,1),点Q(﹣2,n)都在反比例函数y=的图象上.∴m×1=﹣2n=4,∴m=4,n=﹣2,∵P(4,1),Q(﹣2,﹣2),∵过点P分别向x轴、y轴作垂线,垂足分别为点M,N,∴S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S2=S△PQK﹣S△PON﹣S梯形ONKQ=﹣﹣(1+3)×2=3,∴S1:S2=4:3,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,分别求得S1、S2的值是解题的关键.9.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【分析】如图:设OF=EF=FG=x,可得EH=2x=20,解方程即可解决问题.【解答】解:如图:设OF=EF=FG=x,∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.【点评】本题考查正方形的性质、勾股定理、等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=0【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可.【解答】解:抛物线y=ax2+bx+c过点A(﹣4,0),对称轴为直线x=﹣1,因此有:x=﹣1=﹣,即2a﹣b=0,因此选项D符合题意;当x=﹣1时,y=a﹣b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故选项C不符合题意;故选:D.【点评】本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系式正确判断的前提.11.如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD 于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形【分析】根据平行四边形的判定方法,矩形的判定方法,菱形的判定方法,正方形的判定方法解答即可.【解答】解:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE=AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、正方形的判定等知识;熟练掌握矩形的判定和菱形的判定,证明三角形全等是解题的关键.12.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.【分析】根据题意,可以得到BG的长,再根据∠ABG=90°,AB=4,可以得到∠BAG的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.【解答】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE∥BF,CE=EF,∴△CEG∽△CFB,∴,∵,∴,∵BC=3,∴GB=,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG==,∴tanα的值为,故选:A.【点评】本题考查矩形的性质,解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计算﹣﹣(﹣1)0的结果是﹣﹣1 .【分析】根据二次根式的性质以及任何非零数的零次幂等于1计算即可.【解答】解:﹣﹣(﹣1)0==.故答案为:.【点评】本题主要考查了实数的运算.熟练掌握二次根式的性质是解答本题的关键.14.一元二次方程4x(x﹣2)=x﹣2的解为x1=2,x2=.【分析】根据因式分解法解一元二次方程即可.【解答】解:4x(x﹣2)=x﹣24x(x﹣2)﹣(x﹣2)=0(x﹣2)(4x﹣1)=0x﹣2=0或4x﹣1=0解得x1=2,x2=.故答案为:x1=2,x2=.【点评】本题考查了一元二次方程﹣因式分解法,解决本题的关键是掌握因式分解法.15.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为y=﹣x2+2x+3 .x…﹣1 0 1 3 …y…0 3 4 0 …【分析】根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,即可得结论.【解答】解:根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴,解得,∴函数表达式为y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3.【点评】本题考查了函数的表示方法,解决本题的关键是掌握函数的三种表示方法:列表法、解析式法、图象法.16.如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF =CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a= 4 .【分析】根据正方形的面积可得正方形的边长为5,根据正方形的面积和折叠的性质和面积的和差关系可得8个三角形的面积,进而得到1个三角形的面积,再根据三角形面积公式即可求解.【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=(5﹣a)cm,∴AH=(5﹣a)cm,∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.【点评】本题考查了折叠问题,正方形的性质,三角形的面积,关键是熟练运用这些性质解决问题.17.如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.【分析】通过证明△ACO∽△OCB,可得,可求OC=.【解答】解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,∴∠AOC=∠OBC,∠COB=∠OAC,∴△ACO∽△OCB,∴,∴OC2=2×=3,∴OC=,故答案为.【点评】本题考查了相似三角形的判定和性质,证明△ACO∽△OCB是本题的关键.18.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是m、n同为奇数和m、n 同为偶数.【分析】几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数和m、n同为偶数.故答案为m、n同为奇数和m、n同为偶数.【点评】本题考查了坐标表示位置:通过类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.三、解答题(本大题共7小题,共66分)19.(7分)解不等式组,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出这些不等式解集的公共部分.【解答】解:由①得:x≥﹣1;由②得:x<3;∴原不等式组的解集为﹣1≤x<3,在坐标轴上表示:.【点评】此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.(8分)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.【分析】设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:﹣=5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8分)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)【分析】作AH⊥CD于H,则四边形ABDH是矩形,得出HD=AB=31.6m,由三角函数定义求出AH≈40.51(m),证出CH=AH=40.51m,进而得出答案.【解答】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD=,∴AH===≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题以及等腰直角三角形的判定,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.22.(9分)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.【分析】(1)根据圆内接四边形的想知道的∠EAM=∠EBC,根据角平分线的定义得到∠BAE=∠EAM,得到∠BCE=∠EBC,于是得到BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,推出直线EO垂直平分BC,得到EH⊥BC,求得EH ⊥EF,根据切线的判定定理即可得到结论.【解答】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.【点评】本题考查了切线的判定定理,等腰三角形的性质,圆内接四边形的性质,正确的作出辅助线是解题的关键.23.(10分)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.【分析】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;(2)依据获胜的概率判断游戏的公平性,修改规则时,可使两人获胜的概率相等,或利用积分的形式,使两人的积分相等即可.【解答】解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P(小伟胜)==,P(小梅胜)==,答:P(小伟胜)=,P(小梅胜)=;(2)∵,∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为.【点评】此题主要考查了游戏的公平性,主要是通过列举出所有的可能结果,求出相应的概率是解决问题的关键.24.(12分)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.【分析】(1)根据待定系数法求得解析式,然后把解析式化成顶点式即可求得;(2)化成顶点式,求得顶点坐标,即可得出y与x的函数表达式;(3)把C(0,2)代入y=x2﹣2mx+m2+2m﹣1,求得m=1或﹣3,结合(1)根据图象即可求得.【解答】解:(1)∵抛物线y=x2﹣2mx+m2+2m﹣1过点B(3,5),∴把B(3,5)代入y=x2﹣2mx+m2+2m﹣1,整理得,m2﹣4m+3=0,解,得m1=1,m2=3,当m=1时,y=x2﹣2x+2=(x﹣1)2+1,其顶点A的坐标为(1,1);当m=3时,y=x2﹣6x+m2+14=(x﹣3)2+5,其顶点A的坐标为(3,5);综上,顶点A的坐标为(1,1)或(3,5);(2)∵y=x2﹣2mx+m2+2m﹣1=(x﹣m)2+2m﹣1,∴顶点A的坐标为(m,2m﹣1),∵点A的坐标记为(x,y),∴x=m,∴y=2x﹣1;(3)由(2)可知,抛物线的顶点在直线y=2x﹣1上运动,且形状不变,由(1)知,当m=1或3时,抛物线过B(3,5),把C(0,2)代入y=x2﹣2mx+m2+2m﹣1,得m2+2m﹣1=2,解,得m=1或﹣3,所以当m=1或﹣3时,抛物线经过点C(0,2),如图所示,当m=﹣3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是﹣3≤m≤3且m≠1.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,数形结合是解题的关键.25.(12分)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC 的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC =∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE,由三角形内角和定理可求解;(2)通过证明△ABC∽△ADE,可得∠BAC=∠DAE,,可证△ABD∽△ACE,可得∠ABD=∠ACE,由外角性质可得∠BFC=∠BAC,由三角形内角和定理可求解;(3)由旋转的性质可得△MNK是等边三角形,可得MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,可得∠OMQ=60°,OK=NQ,MO=MQ,则当NQ 为最小值时,OK有最小值,由垂线段最短可得当QN⊥y轴时,NQ有最小值,由直角三角形的性质可求解.【解答】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠BAD=∠CAE,,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°﹣α﹣β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ=OQ=,∴线段OK长度的最小值为.【点评】本题是几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是本题的关键.。
威海市中考数学试题解析版
2020年山东省威海市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.﹣的相反数是()A.3 B.﹣3 C.D.﹣2.函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0C.x≠0D.x>0且x≠﹣23.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°4.下列运算正确的是()A.x3+x2=x5 B.a3•a4=a12C.(﹣x3)2÷x5=1 D.(﹣xy)3•(﹣xy)﹣2=﹣xy5.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣16.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.67.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4 B.﹣4 C.16 D.﹣168.实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b9.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,2010.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A. = B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH =S△CEG11.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.12.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分13.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为.14.化简: = .15.分解因式:(2a+b)2﹣(a+2b)2= .16.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.17.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.18.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2020的纵坐标为.三、解答题:本大题共7小题,共66分19.解不等式组,并把解集表示在数轴上..20.某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.21.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用着六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.22.如图,在△BCE中,点A时边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.23.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A 的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;=5,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB24.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.25.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.2020年山东省威海市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C2.函数y=的自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0C.x≠0D.x>0且x≠﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0,故选:B.3.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【考点】平行线的性质.【分析】利用已知条件易求∠A CD的度数,再根据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.4.下列运算正确的是()A.x3+x2=x5 B.a3•a4=a12C.(﹣x3)2÷x5=1 D.(﹣xy)3•(﹣xy)﹣2=﹣xy【考点】整式的混合运算;负整数指数幂.【分析】A、原式不能合并,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方及单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用同底数幂的乘法法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=a7,错误;C、原式=x6÷x5=x,错误;D、原式=﹣xy,正确.故选D.5.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣1 【考点】根与系数的关系.【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.6.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层立方体的个数,相加即可.【解答】解:由题中所给出的俯视图知,底层有3个小正方体;由左视图可知,第2层有1个小正方体.故则搭成这个几何体的小正方体的个数是3+1=4个.故选:B.7.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4 B.﹣4 C.16 D.﹣16【考点】代数式求值.【分析】把(x2﹣3y)看作一个整体并求出其值,然后代入代数式进行计算即可得解.【解答】解:∵x2﹣3y﹣5=0,∴x2﹣3y=5,则6y﹣2x2﹣6=﹣2(x2﹣3y)﹣6=﹣2×5﹣6=﹣16,故选:D.8.实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b【考点】实数与数轴.【分析】根据数轴可以判断a、b的正负,从而可以化简|a|﹣|b|,本题得以解决.【解答】解:由数轴可得:a>0,b<0,则|a|﹣|b|=a﹣(﹣b)=a+b.故选C.9.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,20【考点】众数;扇形统计图;加权平均数;中位数.【分析】根据扇形统计图给出的数据,先求出销售各台的人数,再根据平均数、中位数和众数的定义分别进行求解即可.【解答】解:根据题意得:销售20台的人数是:20×40%=8(人),销售30台的人数是:20×15%=3(人),销售12台的人数是:20×20%=4(人),销售14台的人数是:20×25%=5(人),则这20位销售人员本月销售量的平均数是=18.4(台);把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是=20(台);∵销售20台的人数最多,∴这组数据的众数是20.故选C.10.如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A. = B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH =S△CEG【考点】黄金分割;全等三角形的判定;线段垂直平分线的性质.【分析】由题意知AB=AC、∠BAC=108°,根据中垂线性质得∠B=∠DAB=∠C=∠CAE=36°,从而知△BDA∽△BAC,得=,由∠ADC=∠DAC=72°得CD=CA=BA,进而根据黄金分割定义知==,可判断A;根据∠DAB=∠CAE=36°知∠DAE=36°可判断B;根据∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可证△BAE≌△CAD,即可判断C;由△BAE≌△CAD知S△BAD =S△CAE,根据DH垂直平分AB,EG垂直平分AC可得S△ADH =S△CEG,可判断D.【解答】解:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴=,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,则=,即==,故A错误;∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE将∠BAC三等分,故B正确;∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵,∴△BAE≌△CAD,故C正确;由△BAE≌△CAD可得S△BAE =S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,∴S△BAD =S△CAE,又∵DH垂直平分AB,EG垂直平分AC,∴S△ADH =S△ABD,S△CEG=S△CAE,∴S△ADH =S△CEG,故D正确.故选:A.11.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】观察二次函数图象,找出a>0,b>0,再结合反比例(一次)函数图象与系数的关系,即可得出结论.【解答】解:观察二次函数图象,发现:图象与y轴交于负半轴,﹣b<0,b>0;抛物线的对称轴a>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=ax+b,a>0,b>0,∴一次函数y=ax+b的图象过第一、二、三象限.故选B.12.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.二、填空题:本大题共6小题,每小题3分,共18分13.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为7.3×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000073用科学记数法表示为7.3×10﹣5.故答案为:7.3×10﹣5.14.化简: = .【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.15.分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).16.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT△OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠CEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.17.如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为(﹣8,﹣3)或(4,3).【考点】位似变换;一次函数图象上点的坐标特征.【分析】首先解得点A和点B的坐标,再利用位似变换可得结果.【解答】解:∵直线y=x+1与x轴交于点A,与y轴交于点B,令x=0可得y=1;令y=0可得x=﹣2,∴点A和点B的坐标分别为(﹣2,0);(0,1),∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,∴==,∴O′B′=3,AO′=6,∴B′的坐标为(﹣8,﹣3)或(4,3).故答案为:(﹣8,﹣3)或(4,3).18.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2020的纵坐标为﹣()2020.【考点】坐标与图形性质.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,利用规律解决问题.【解答】解:∵A 1(1,0),A 2[0,()1],A 3[﹣()2,0].A 4[0,﹣()3],A 5[()4,0]…,∴序号除以4整除的话在y 轴的负半轴上,余数是1在x 轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x 轴的负半轴上, ∵2020÷4=504,∴A 2020在y 轴的负半轴上,纵坐标为﹣()2020.故答案为﹣()2020.三、解答题:本大题共7小题,共66分 19.解不等式组,并把解集表示在数轴上..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 【解答】解:由①得:x≥﹣1, 由②得:x <,∴不等式组的解集为﹣1≤x<, 表示在数轴上,如图所示:20.某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【考点】分式方程的应用.【分析】设乙班的达标率是x,则甲班的达标率为(x+6%),根据“甲、乙两班的学生数相同”列出方程并解答.【解答】解:设乙班的达标率是x,则甲班的达标率为(x+6%),依题意得: =,解这个方程,得x=0.9,经检验,x=0.9是所列方程的根,并符合题意.答:乙班的达标率为90%.21.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用着六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.【考点】游戏公平性;列表法与树状图法.【分析】(1)直接利用概率公式进而得出答案;(2)画出树状图,得出所有等可能的情况数,找出两次摸到小球的标号数字同为奇数或同为偶数的情况数,即可求出所求的概率.【解答】解:(1)∵1,2,3,4,5,6六个小球,∴摸到标号数字为奇数的小球的概率为: =;(2)画树状图:如图所示,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲)==,P(乙)==,∴这个游戏对甲、乙两人是公平的.22.如图,在△BCE中,点A时边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.【考点】切线的判定与性质;扇形面积的计算.【分析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO 解决问题.(2)首先证明S阴=S扇形ODF,然后利用扇形面积公式计算即可.【解答】(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2,∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2,在△CDO和△CBO中,,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切线.(2)由(1)可知∠3=∠BCO,∠1=∠2,∵∠ECB=60°,∴∠3=∠ECB=30°,∴∠1=∠2=60°,∴∠4=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=OF,∵∠1=∠ADO,在△ADG和△FOG中,,∴△ADG≌△FOG,∴S△ADG =S△FOG,∵AB=6,∴⊙O的半径r=3,∴S阴=S扇形ODF==π.23.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A 的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A 的坐标代入y=,求出反比例函数的解析式,把点B 的坐标代入y=,得出n 的值,得出点B 的坐标,再把A 、B 的坐标代入直线y=kx+b ,求出k 、b 的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m ),连接AE ,BE ,先求出点P 的坐标(0,7),得出PE=|m ﹣7|,根据S△AEB =S △BEP ﹣S △AEP =5,求出m 的值,从而得出点E 的坐标. 【解答】解:(1)把点A (2,6)代入y=,得m=12, 则y=.把点B (n ,1)代入y=,得n=12,则点B 的坐标为(12,1).由直线y=kx+b 过点A (2,6),点B (12,1)得,解得,则所求一次函数的表达式为y=﹣x+7.(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB =S△BEP﹣S△AEP=5,∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).24.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.【考点】全等三角形的判定与性质;正方形的判定.【分析】(1)由等腰直角三角形的性质得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,证出BF=CD,由SAS证明△ABF≌△ACD,即可得出AD=AF;(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,证出∠EAF=∠BAD,由SAS证明△AEF≌△ABD,得出对应边相等即可;(3)由全等三角形的性质得出得出∠AEF=∠ABD=90°,证出四边形ABNE是矩形,由AE=AB,即可得出四边形ABNE是正方形.【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△A BF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.25.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可.(2)分①点E在直线CD上方的抛物线上和②点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分①CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算;【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣ m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣ n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.2020年6月23日。
最新2020山东省威海市中考数学试卷及答案
5.(3分)(2020•威海)分式化简后的结果为()A.B.C.D.6.(3分)(2020•威海)一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是()A.B.C.D.7.(3分)(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多8.(3分)(2020•威海)如图,点P(m,1),点Q(﹣2,n)都在反比例函数y的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3 B.S1:S2=1:1 C.S1:S2=4:3 D.S1:S2=5:3 9.(3分)(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm210.(3分)(2020•威海)如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=011.(3分)(2020•威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形12.(3分)(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.(3分)(2020•威海)计算(1)0的结果是.14.(3分)(2020•威海)一元二次方程4x(x﹣2)=x﹣2的解为.15.(3分)(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1 0 1 3 …y…0 3 4 0 …16.(3分)(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a=.17.(3分)(2020•威海)如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.18.(3分)(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是.三、解答题(本大题共7小题,共66分)19.(7分)(2020•威海)解不等式组,并把解集在数轴上表示出来.20.(8分)(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21.(8分)(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)22.(9分)(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.23.(10分)(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(12分)(2020•威海)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.25.(12分)(2020•威海)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N 为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.2020年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2020•威海)﹣2的倒数是()A.﹣2 B.C.D.2【解答】解:∵﹣21.∴﹣2的倒数是,故选:B.2.(3分)(2020•威海)下列几何体的左视图和俯视图相同的是()A.B.C.D.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的选项D中的几何体,故选:D.3.(3分)(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10﹣10B.1×10﹣9C.0.1×10﹣8D.1×109【解答】解:∵十亿分之一1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9.故选:B.4.(3分)(2020•威海)下列运算正确的是()A.3x3•x2=3x5B.(2x2)3=6x6C.(x+y)2=x2+y2D.x2+x3=x5【解答】解:A.3x3•x2=3x5,故本选项符合题意;B.(2x2)3=8x6,故本选项不合题意;C.(x+y)2=x2+2xy+y2,故本选项不合题意;D.x2与x3不是同类项,所以不能合并,故本选项不合题意.故选:A.5.(3分)(2020•威海)分式化简后的结果为()A.B.C.D.【解答】解:.故选:B.6.(3分)(2020•威海)一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解答】解:A、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y(a≠0)的图象可知a<0,错误;B、由函数y=ax﹣a的图象可知a<0,由函数y(a≠0)的图象可知a>0,相矛盾,故错误;C、由函数y=ax﹣a的图象可知a>0,由函数y(a≠0)的图象可知a<0,故错误;D、由函数y=ax﹣a的图象可知a<0,由函数y(a≠0)的图象可知a<0,故正确;故选:D.7.(3分)(2020•威海)为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多【解答】解:本次调查的样本容量为:108÷18%=600,故选项A中的说法正确;选“责任”的有600120(人),故选项B中的说法正确;扇形统计图中“生命”所对应的扇形圆心角度数为360°79.2°,故选项C 中的说法错误;选“感恩”的人数为:600﹣132﹣600×(16%+18%)﹣120=144,故选“感恩”的人数最多,故选项D中的说法正确;故选:C.8.(3分)(2020•威海)如图,点P(m,1),点Q(﹣2,n)都在反比例函数y的图象上.过点P分别向x轴、y轴作垂线,垂足分别为点M,N.连接OP,OQ,PQ.若四边形OMPN的面积记作S1,△POQ的面积记作S2,则()A.S1:S2=2:3 B.S1:S2=1:1 C.S1:S2=4:3 D.S1:S2=5:3【解答】解:点P(m,1),点Q(﹣2,n)都在反比例函数y的图象上.∴m×1=﹣2n=4,∴m=4,n=﹣2,∴P(4,1),Q(﹣2,﹣2),∵S1=4,作QK⊥PN,交PN的延长线于K,则PN=4,ON=1,PK=6,KQ=3,∴S2=S△PQK﹣S△PON﹣S梯形ONKQ(1+3)×2=3,∴S1:S2=4:3,故选:C.9.(3分)(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【解答】解:如图:设OF=EF=FG=x,∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.10.(3分)(2020•威海)如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=0【解答】解:抛物线y=ax2+bx+c过点A(﹣4,0),对称轴为直线x=﹣1,因此有:x=﹣1,即2a﹣b=0,因此选项D符合题意;当x=﹣1时,y=a﹣b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故选项C不符合题意;故选:D.11.(3分)(2020•威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形【解答】解:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.12.(3分)(2020•威海)如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.【解答】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE∥BF,CE=EF,∴△CEG∽△CFB,∴,∵,∴,∵BC=3,∴GB,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG,∴tanα的值为,故选:A.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.(3分)(2020•威海)计算(1)0的结果是 1 .【解答】解:(1)0.故答案为:.14.(3分)(2020•威海)一元二次方程4x(x﹣2)=x﹣2的解为x1=2,x2.【解答】解:4x(x﹣2)=x﹣24x(x﹣2)﹣(x﹣2)=0(x﹣2)(4x﹣1)=0x﹣2=0或4x﹣1=0解得x1=2,x2.故答案为:x1=2,x2.15.(3分)(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为y=﹣x2+2x+3 .x…﹣1 0 1 3 …y…0 3 4 0 …【解答】解:根据表中y与x的数据设函数关系式为:y=ax2+bx+c,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴,解得,∴函数表达式为y=﹣x2+2x+3.当x=3时,代入y=﹣x2+2x+3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y=﹣x2+2x+3.16.(3分)(2020•威海)如图,四边形ABCD是一张正方形纸片,其面积为25cm2.分别在边AB,BC,CD,DA上顺次截取AE=BF=CG=DH=acm(AE>BE),连接EF,FG,GH,HE.分别以EF,FG,GH,HE为轴将纸片向内翻折,得到四边形A1B1C1D1.若四边形A1B1C1D1的面积为9cm2,则a= 4 .【解答】解:∵四边形ABCD是一张正方形纸片,其面积为25cm2,∴正方形纸片的边长为5cm,∵AE=BF=CG=DH=acm,∴BE=(5﹣a)cm,∴AH=(5﹣a)cm,∵四边形A1B1C1D1的面积为9cm2,∴三角形AEH的面积为(25﹣9)÷8=2(cm2),a(5﹣a)=2,解得a1=1(舍去),a2=4.故答案为:4.17.(3分)(2020•威海)如图,点C在∠AOB的内部,∠OCA=∠OCB,∠OCA与∠AOB互补.若AC=1.5,BC=2,则OC=.【解答】解:∵∠OCA=∠OCB,∠OCA与∠AOB互补,∴∠OCA+∠AOB=180°,∠OCB+∠AOB=180°,∵∠OCA+∠COA+∠OAC=180°,∠OCB+∠OBC+∠COB=180°,∴∠AOB=∠COA+∠OAC,∠AOB=∠OBC+∠COB,∴∠AOC=∠OBC,∠COB=∠OAC,∴△ACO∽△OCB,∴,∴OC2=23,∴OC,故答案为.18.(3分)(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是m、n同为奇数或m、n同为偶数.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.三、解答题(本大题共7小题,共66分)19.(7分)(2020•威海)解不等式组,并把解集在数轴上表示出来.【解答】解:由①得:x≥﹣1;由②得:x<3;∴原不等式组的解集为﹣1≤x<3,在坐标轴上表示:.20.(8分)(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.【解答】解:设计划平均每天修建步行道的长度为xm,则采用新的施工方式后平均每天修建步行道的长度为1.5xm,依题意,得:5,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m.21.(8分)(2020•威海)居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)【解答】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD,∴AH40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.22.(9分)(2020•威海)如图,△ABC的外角∠BAM的平分线与它的外接圆相交于点E,连接BE,CE,过点E作EF∥BC,交CM于点D.求证:(1)BE=CE;(2)EF为⊙O的切线.【解答】证明:(1)∵四边形ACBE是圆内接四边形,∴∠EAM=∠EBC,∵AE平分∠BAM,∴∠BAE=∠EAM,∵∠BAE=∠BCE,∴∠BCE=∠EAM,∴∠BCE=∠EBC,∴BE=CE;(2)如图,连接EO并延长交BC于H,连接OB,OC,∵OB=OC,EB=EC,∴直线EO垂直平分BC,∴EH⊥BC,∴EH⊥EF,∵OE是⊙O的半径,∴EF为⊙O的切线.23.(10分)(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.【解答】解(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,所以,P(小伟胜),P(小梅胜),答:P(小伟胜),P(小梅胜);(2)∵,∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,于是修改为:两次掷的点数之差为1,2,则小伟胜;否则小梅胜.这样小伟、小梅获胜的概率均为.24.(12分)(2020•威海)已知,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+2m﹣1的顶点为A.点B的坐标为(3,5).(1)求抛物线过点B时顶点A的坐标;(2)点A的坐标记为(x,y),求y与x的函数表达式;(3)已知C点的坐标为(0,2),当m取何值时,抛物线y=x2﹣2mx+m2+2m﹣1与线段BC只有一个交点.【解答】解:(1)∵抛物线y=x2﹣2mx+m2+2m﹣1过点B(3,5),∴把B(3,5)代入y=x2﹣2mx+m2+2m﹣1,整理得,m2﹣4m+3=0,解,得m1=1,m2=3,当m=1时,y=x2﹣2x+2=(x﹣1)2+1,其顶点A的坐标为(1,1);当m=3时,y=x2﹣6x+m2+14=(x﹣3)2+5,其顶点A的坐标为(3,5);综上,顶点A的坐标为(1,1)或(3,5);(2)∵y=x2﹣2mx+m2+2m﹣1=(x﹣m)2+2m﹣1,∴顶点A的坐标为(m,2m﹣1),∵点A的坐标记为(x,y),∴x=m,∴y=2x﹣1;(3)由(2)可知,抛物线的顶点在直线y=2x﹣1上运动,且形状不变,由(1)知,当m=1或3时,抛物线过B(3,5),把C(0,2)代入y=x2﹣2mx+m2+2m﹣1,得m2+2m﹣1=2,解,得m=1或﹣3,所以当m=1或﹣3时,抛物线经过点C(0,2),如图所示,当m=﹣3或3时,抛物线与线段BC只有一个交点(即线段CB的端点),当m=1时,抛物线同时过点B、C,不合题意,所以m的取值范围是﹣3≤m≤3且m≠1.25.(12分)(2020•威海)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N 为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.【解答】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠BAD=∠CAE,,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°﹣α﹣β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ OQ,∴线段OK长度的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年威海市中考数学试题
1.-2的倒数是( ) A .-2
B .12
- C .12
D .2
2.下列几何体的左视图和俯视图相同的是( )
A .
B .
C .
D .
3.人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为( ) A .101010-⨯
B .9110-⨯
C .80110-⨯.
D .9110⨯
4.下列运算正确的是( ) A .32533x x x ⋅= B .236(2)6x x = C .222()x y x y +=+ D .325x x x +=
5.分式
2221
11a a a a
++---化简后的结果为( ) A .11
a a +-
B .31
a a +-
C .1
a
a --
D .2231
a a +--
6.一次函数y ax a =-与反比例函数(0)a y a x
=≠在同一坐标系中的图象可能是( )
A .
B .
C .
D .
7.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是( )
A .本次调查的样本容量是600
B .选“责任”的有120人
C .扇形统计图中“生命”所对应的扇形圆心角度数为64.8
D .选“感恩”的人数最多
8.如图,点(,1)P m ,点(-2,)Q n 都在反比例函数4y x
的图象上,过点P 分别向x 轴、
y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积
记作1S ,POQ △的面积记作2S ,则( )
A .12:2:3S S =
B .12:1:1S S =
C .12:4:3S S =
D .12:5:3S S =
9.七巧板是大家熟悉的一种益智玩具,用七巧板能拼出许多有趣的图案.小李将块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②),已知40AB cm =,则图中阴影部分的面积为( )
A .225cm
B .
2
1003
cm C .250cm D .275cm
10.如图,抛物线2(0)y ax bx c a =++≠交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(4,0)-,对称轴为直线1x =-,则下列结论错误的是( )
A .二次函数的最大值为a b c -+
B .0a b c ++>
C .240b ac ->
D .20a b +=
11.如图,在平行四边形ABCD 中,对角线BD AD ⊥,10AB =,6AD =,O 为BD 的中点,E 为边AB 上一点,直线EO 交CD 于点F ,连结DE ,BF .下列结论不成立的是( )
A .四边形DEBF 为平行四边形
B .若 3.6AE =,则四边形DEBF 为矩形
C .若5AE =,则四边形DEBF 为菱形
D .若 4.8A
E =,则四边形DEB
F 为正方形
12.如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )
A .3
8
B .34
C D .
15
1301)的结果是__________. 14.一元二次方程4(2)2x x x -=-的解为__________.
15.下表中y 与x 的数据满足我们初中学过的某种函数关系,其函数表达式为__________.
16.如图,四边形ABCD 是一张正方形纸片,其面积为225cm .分别在边AB ,BC ,
CD ,DA 上顺次截取()AE BF CG DH acm AE BE ====>,连接EF ,FG ,GH ,HE .分
别以EF ,FG ,GH ,HE 为轴将纸片向内翻折,得到四边形1111D C B A ,若四边形
1111D C B A 的面积为29cm ,则a =__________.
17.如图,点C 在AOB ∠的内部,OCA OCB ∠=∠,OCA ∠与AOB ∠互补,若 1.5AC =,
2BC =,则OC =__________.
18.如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.
19.解不等式组,并把解集在数轴上表示出来
423(1)5
132
x x x x -≥-⎧⎪
⎨-+>-⎪⎩ 20.在“旅游示范公路”建设的的中,工程队计划在海边某路段修建一条长1200m 的步行道,由于采用新的施工方式平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务,求计划平均每天修建的长度.
21
.居家学习期间,小睛同学运用所学知识在自家阳台测对面大楼的高度如图,
她利用自制的测角仪测得该大楼顶部的仰角为45,底部的俯角为38:又用绳子测得测角仪距地面的高度AB为31.6m.求该大棱的高度(结果精确到0.1m)(参考数据:sin380.62
≈)
≈,tan380.78
≈,cos380.79
22.如图,ABC的外角BAM
∠的平分线与它的外接圆相交于点E,连接BE,CE,过点E作//
EF BC,交CM于点D
求证:(1)BE CE
=;
(2)EF为⊙O的切线.
23.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜:若所得数值等于3,4,5,则小梅胜
(1)请利用表格分别求出小伟、小梅获胜的概率
(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性
24.已知,在平面直角坐标系中,抛物线22
=-++-的顶点为A,点B
y x mx m m
221
的坐标为(3,5)
(1)求抛物线过点B时顶点A的坐标
(2)点A的坐标记为(,)
x y,求y与x的函数表达式;
(3)已知C点的坐标为(0,2),当m取何值时,抛物线22
=-++-与线
y x mx m m
221
段BC只有一个交点
25.发现规律:
(1)如图①,ABC 与ADE 都是等边三角形,直线,BD CE 交于点F .直线BD ,
AC 交于点H .求BFC ∠的度数
(2)已知:ABC 与ADE 的位置如图②所示,直线,BD CE 交于点F .直线BD ,
AC 交于点H .若ABC ADE α∠=∠=,ACB AED β∠=∠=,求BFC ∠的度数
应用结论:
(3)如图③,在平面直角坐标系中,点O 的坐标为(0,0),点M 的坐标为(3,0),N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60得到线段MK ,连接
NK ,OK ,求线段OK 长度的最小值。