电炉熔炼铸铁工艺及常见缺陷防治
铸造工艺缺陷及解决措施
8.铸件开箱落砂太晚,形成固态热粘砂,尤其是厚大铸件和高熔点合金铸件.
9.金属液流动性好、表面张力低。例如,铜合金中磷、铅含量过高,铸钢中磷、硅、锰含量过高.
10.树脂砂型、芯表面未刷涂料或涂料质量差,涂层厚薄不均,浇注时砂粒间树脂膜气化,形成毛细通道,在金属液静压力、蒸气压和表面张力作用下,金属液或金属蒸气渗入毛细通道,形成机械粘砂.
补救措施
概率因子
0.3
缺陷名称
脉纹
分类
多肉类缺陷
定义和特征
鉴别方法
形成原因
涂料过薄或性能不良,型芯开裂后,涂料熔融物填充不良.
防止方法
保证涂料的质量及厚度,在涂料中加入 2 % 氧化铁粉.
补救措施
概率因子
0.3
5.未浇满
缺陷名称
未浇满
分类
残缺类缺陷
定义和特征
鉴别方法
形成原因
除了液态金属不足的因素而外浇注工的操作也很重要.
11.对于大型厚壁铸件,适当提早开箱,加快铸件冷却,以防止固态粘砂.
12.采用表面光洁的模样和芯盒.
补救3.电化学清砂,尤其适用于清除铸件深腔和精密铸件的严重粘砂
概率因子
7.抬型/抬箱
缺陷名称
抬型/抬箱
分类
多肉类缺陷
定义和特征
铸件在分型面部位高度增大,并伴有厚大飞翅
鉴别方法
定义和特征
存在于铸件内的严重的空壳状残缺。有时铸件外形虽较完整,但内部金属已漏空,铸件完全呈壳状,铸型底部残留有多余金属
鉴别方法
型漏是铸件内部严重的空壳状残缺,铸件轮廓通常完整。
形成原因
常见铸件缺陷及其预防措施
常见铸件缺陷及其预防措施常见铸件缺陷及其预防措施(序+缺陷名称+缺陷特征+预防措施)1 气孔在铸件内部、表面或近于表面处,有大小不等的光滑孔眼,形状有圆的、长的及不规则的,有单个的,也有聚集成片的。
颜色有白色的或带一层暗色,有时覆有一层氧化皮。
降低熔炼时流言蜚语金属的吸气量。
减少砂型在浇注过程中的发气量,改进铸件结构,提高砂型和型芯的透气性,使型内气体能顺利排出。
2 缩孔在铸件厚断面内部、两交界面的内部及厚断面和薄断面交接处的内部或表面,形状不规则,孔内粗糙不平,晶粒粗大。
壁厚小且均匀的铸件要采用同时凝固,壁厚大且不均匀的铸件采用由薄向厚的顺序凝固,合理放置冒口的冷铁。
3 缩松在铸件内部微小而不连贯的缩孔,聚集在一处或多处,晶粒粗大,各晶粒间存在很小的孔眼,水压试验时渗水。
壁间连接处尽量减小热节,尽量降低浇注温度和浇注速度。
4 渣气孔在铸件内部或表面形状不规则的孔眼。
孔眼不光滑,里面全部或部分充塞着熔渣。
提高铁液温度。
降低熔渣粘性。
提高浇注系统的挡渣能力。
增大铸件内圆角。
5 砂眼在铸件内部或表面有充塞着型砂的孔眼。
严格控制型砂性能和造型操作,合型前注意打扫型腔。
6 热裂在铸件上有穿透或不穿透的裂纹(注要是弯曲形的),开裂处金属表皮氧化。
严格控制铁液中的 S、P含量。
铸件壁厚尽量均匀。
提高型砂和型芯的退让性。
浇冒口不应阻碍铸件收缩。
避免壁厚的突然改变。
开型不能过早。
不能激冷铸件。
7 冷裂在铸件上有穿透或不穿透的裂纹(主要是直的),开裂处金属表皮氧化。
8 粘砂在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙。
减少砂粒间隙。
适当降低金属的浇注温度。
提高型砂、芯砂的耐火度。
9 夹砂在铸件表面上,有一层金属瘤状物或片状物,在金属瘤片和铸件之间夹有一层型砂。
严格控制型砂、芯砂性能。
改善浇注系统,使金属液流动平稳。
大平面铸件要倾斜浇注。
10 冷隔在铸件上有一种未完全融合的缝隙或洼坑,其交界边缘是圆滑的。
纯铜熔炼及铸件缺陷分析和预防措施
纯铜熔炼及铸件缺陷分析和预防措施摘要:随着经济的发展,人们对于金属制品的需求越来越高,同时对产品的质量也提出了更高的要求。
因此,如何提高金属制品的质量成为了当前亟待解决的一个问题。
在金属制品生产过程中,熔炼技术是非常重要的一环。
熔炼过程不仅决定了原材料的质量,同时也直接影响到最终产品中的微观结构和性能。
因此,对于熔炼技术的研究具有非常重要的意义。
本文重点研究纯铜熔炼及铸件缺陷分析和预防措施,从而提升金属制品的质量和可靠性。
关键词:纯铜熔炼;铸件;缺陷分析;预防措施引言:现阶段,工业化进程不断加快,金属材料的需求量也在逐年增加,而纯铜作为一种重要的金属材料之一,其应用领域广泛且需求量大。
然而,在实际生产中,由于各种原因导致的纯铜的质量问题越来越多,这对于企业的生产经营带来了很大的影响。
因此,如何提高纯铜的质量成为了当前亟待解决的一个关键问题。
一、纯铜熔炼及铸件缺陷分析通过对铸件进行检测和分析,发现了一些常见的铸件缺陷,如裂纹、气孔、残余应力等等。
这些缺陷不仅会影响到铸件的质量和使用寿命,还会给生产过程带来一定的风险和损失。
因此,对于铸件缺陷的研究具有重要的意义。
首先,我们需要了解不同类型的铸件缺陷的特点和危害,以便更好地制定防控方案。
其次,需要考虑工艺参数的影响因素,包括温度、压力、时间等因素,以及材料的选择和质量控制等方面的问题[1]。
最后,要考虑到设备维护和操作人员的专业素质等问题,以确保铸件的质量和可靠性。
总之,铸件缺陷是铸造过程中不可避免的一部分,但是我们可以通过科学的方法来减少其发生率和影响程度。
只有这样才能够保证产品的品质和市场竞争力。
二、纯铜熔炼及铸件工艺设计(一)工艺方案1.准备材料。
需要准备好所需要使用的原材料,包括纯铜块、磷铜等。
这些原材料的质量必须符合一定的标准,以确保最终产品质量可靠。
2.预热炉内温度控制。
为了保证熔炼过程顺利进行,需要对预热炉内的温度进行精确控制。
在此过程中,需要注意的是,高温下金属会发生氧化反应,因此需要采取相应的防氧化措施。
铸件常见缺陷的产生原因及防止方法
铸件常见缺陷的产生原因及防止方法一、气孔(气泡、呛孔、气窝)特征:气孔是存在于铸件表面或内部的孔洞,呈圆形、椭圆形或不规则形,有时多个气孔组成一个气团,皮下一般呈梨形。
呛孔形状不规则,且表面粗糙,气窝是铸件表面凹进去一块,表面较平滑。
明孔外观检查就能发现,皮下气孔经机械加工后才能发现。
形成原因:1、模具预热温度太低,液体金属经过浇注系统时冷却太快。
2、模具排气设计不良,气体不能通畅排出。
3、涂料不好,本身排气性不佳,甚至本身挥发或分解出气体。
4、模具型腔表面有孔洞、凹坑,液体金属注入后孔洞、凹坑处气体迅速膨胀压缩液体金属,形成呛孔。
5、模具型腔表面锈蚀,且未清理干净。
6、原材料(砂芯)存放不当,使用前未经预热。
7、脱氧剂不佳,或用量不够或操作不当等。
防止方法:1、模具要充分预热,涂料(石墨)的粒度不宜太细,透气性要好。
2、使用倾斜浇注方式浇注。
3、原材料应存放在通风干燥处,使用时要预热。
4、选择脱氧效果较好的脱氧剂(镁)。
5、浇注温度不宜过高。
二、缩孔(缩松)特征:缩孔是铸件表面或内部存在的一种表面粗糙的孔,轻微缩孔是许多分散的小缩孔,即缩松,缩孔或缩松处晶粒粗大。
常发生在铸件内浇道附近、冒口根部、厚大部位,壁的厚薄转接处及具有大平面的厚薄处。
形成原因:1、模具工作温度控制未达到定向凝固要求。
2、涂料选择不当,不同部位涂料层厚度控制不好。
3、铸件在模具中的位置设计不当。
4、浇冒口设计未能达到起充分补缩的作用。
5、浇注温度过低或过高。
防治方法:1、提高磨具温度。
2、调整涂料层厚度,涂料喷洒要均匀,涂料脱落而补涂时不可形成局部涂料堆积现象。
3、对模具进行局部加热或用绝热材料局部保温。
4、热节处镶铜块,对局部进行激冷。
5、模具上设计散热片,或通过水等加速局部地区冷却速度,或在模具外喷水,喷雾。
6、用可拆缷激冷块,轮流安放在型腔内,避免连续生产时激冷块本身冷却不充分。
7、模具冒口上设计加压装置。
8、浇注系统设计要准确,选择适宜的浇注温度。
铸造与熔炼相关的主要缺陷
(四)防止对策: 1、适当降低碳当量; 2、合金化;均匀化。 3、孕育处理; 4、适当降低浇注温度; 5、改善铸件的温度场(如放冷铁)
25
六、魏氏石墨 (一)特征: 1、同共晶片状石墨是相互连接的; 2、石墨片延伸至珠光体基体中; 3、石墨片极薄,其厚度只有1800Å (1.8×10-7m) (二)危害:力学性能下降一半。 (三)形成原因:Pb、 H2、Al。 (四)防止对策:减少Pb、 H2、Al。 26
铸件缺陷及预防措施 培训
铸造分厂工艺科
熔炼过程造成的缺陷 砂型铸造铸件缺陷形成机理和防治 组织异常缺陷 一、偏析 二、硬点或硬区 三、反白口 四、板块状黑斑断口 五、灰铸铁件疏松 六、魏氏石墨 2
补充部分 一、化学成分不准确 二、化学成分不稳定 三、铁液出炉温度不高 四、铁液出炉温度不稳定
3
组织异常缺陷 1、组织异常缺陷:是指铸件的金相组织出现 不正常的情况, 如:金相组织本身的缺陷 一、灰铸铁 (一)石墨 1、石墨类型(A、B、C、D、E、F)不符合要求
4
石墨的形态:5Fra bibliotek 1、分布特征 均匀无向性分布 2、形成条件 1)共晶成分(亚共 晶) 2)冷速较慢 3、对性能的影响 好
6
1、分布特征 菊花状分布 2、形成条件 1)共晶成分(比A低) 2)冷速较快 3、对性能的影响 较好
7
1、分布特征 板条状分布 2、形成条件 1)过共晶成分 2)冷速慢 3、对性能的影响 不好
22
(四)防止对策 1、避免铁水氧化; 2、铁水出炉温度适当(<1566℃); 3、严格控制铸件的化学成分(适当提高稀土、 镁的残留量); 4、强化孕育; 5、铸件壁厚适当。
23
五、灰铸铁件疏松 铸件材质不致密称为疏松。 (一)特征: 在铸件的小热节处出现许多小细孔; (二)危害: 1、力学性能下降; 2、渗漏或泄漏。 (三)形成原因: 1、铸件壁厚; 2、碳当量高; 3、铁水温度低。 24
感应电炉熔炼的冶金特性五个方面应对措施
感应电炉熔炼的冶金特性五个方面应对措施目前,由于国家对环保标准的要求不断提高,大多数小型冲天炉逐渐被中频感应电炉所取代。
与冲天炉熔炼相比较,电炉熔炼具有设备操作简便、铁液供应柔性好的特点,但没有显著的冶金反应熔炼,而是大量废钢、合金以及增碳剂等材料的重熔过程,生产的铸件也称为合成铸铁。
电炉熔炼的工艺特点影响了铁液的性质,同时也带来一些铸件质量问题,如果生产过程中控制不当,往往会出现铸铁显微组织不合格、加工性能恶化的现象。
我公司自2012年开始使用ABP感应电炉生产灰铁铸件,主要包括气缸体、曲轴箱等铸件,每年生产铸件重量约为4-6万吨,在生产铸件的过程中,经过探索研究感应电炉熔炼的冶金一些特性,并不断优化电炉熔炼工艺,较大程度上提升铁液的生产质量和铸件品质。
1.感应电炉熔炼的铁液过冷度电炉熔炼采用了大量的废钢和增碳剂的熔化方式,在提高铸件强度和硬度的同时,铁液中的外来结晶核心减少,在相同碳当量的条件下,电炉熔炼的铁液在共晶凝固时的过冷度比冲天炉铁液要大,收缩倾向也较大,在灰铸件厚壁处易产生缩孔和缩松现象,薄壁处易产生白口和硬边等铸造缺陷,因此,在铁水孕育过程中,为保证铸件力学性能,需要提高0.1-0.2%的孕育量。
2.电炉熔炼铁液气体含量特点电炉熔炼利用交流电感应原理,将金属炉料熔化,整个熔炼冶金基础就在于金属炉料、炉衬材料、炉渣以炉内气体的相互作用。
与冲天炉熔炼相比较,由于金属炉料与炉气的接触时间比较短,熔化铁液与炉气的接触界面较小,熔化后的铁液中氢、氧含量较低。
2.1电炉铁液氢含量氢元素是反石墨化元素,在铁液中属于有害元素,其含量越低越好。
相关资料表明,电炉熔炼铁液中的氢含量约为2PPm,因此,在熔炼过程中,只要控制原材料干燥无水分、洁净无污染,铸件产生由氢元素导致的皮下气孔、针孔的可能性较小。
2.2电炉铁液氧含量氧元素一般以结合氧与溶解氧的形式存在铁液之中,它对石墨在铁液凝固过程中的形核有着重要作用。
铸铁主要缺陷及防止
附着在外来夹杂表面的气核形成后,溶于铁液中的气体由 于压差必将自动向气泡扩散,当气泡长大到一定临界尺寸 时,就会脱离表面而上浮,有时附着在非金属杂物表面的 气泡,可带着夹杂物一起上浮。气泡越小,上浮速度越慢。 要使气泡能及时上浮而排除,气泡直径一般应大于0.0010.01cm。 铁液在铸型内降温较快,气泡上浮困难,或铸件表面已凝 固,气泡来不及排除而造成的气孔。 防止析出性气孔的最基本方法是减少铁液的吸气量,其次 是将它含有的气体排除或阻止气体析出。如废钢应经清理 流筒除锈,焦炭、铁料不应在露天堆放,炉衬、浇注工具 必须充分烘干,孕育剂应烧烤后加入,提高浇注温度,提 高铸铁件的冷却速度等。
形成原因
预防措施
1、正确配料,注意废钢、白口铁、含气 炉料对白口倾向的遗传性。废钢尤应薄料、 小块进炉。 2、保证碳当量(宜低碳高硅),限制反 石墨化元素硫、铬、碲、钒等。 3、合理选 择孕育剂及其加入量,减少白 口、增加共晶团数量。 4、合理使用涂料、冷铁;造型起模、修 型时,不宜多刷水。 5、复杂、薄壁灰铸铁件,延迟开箱。
高的铁水温 度和静臵
控制铁水成 分,合理孕 育
防止在浇注 过程中产生 二次夹杂物
1、浇道应避免产生二次夹杂物的条件。 2、足够高的浇注温度能使卷入铁水的夹杂物漂浮出来。
五、气孔
铸铁中存在气孔将大大降低力学性能,尤其使冲击韧度和疲劳强度大幅度下 降。铸铁件凝固时析出气体的反压力,阻碍铁液的补缩,造成微观缩松,降 低铸铁件的致密性,使某些需经水压试验的铸铁件因渗漏而报废。 析出性气孔一般在铸铁件的最后凝固处,冒口附近较多。铸铁件中形成析出 性气孔的气体主要有氧、氮、氢。 铸铁中的气体含量一般为:氧在80*10以下,氢在4*10以下。随着温度下降, 气体在铁液中的溶解度减小。 (一)析出性气孔的形成及其防止 铸铁溶解气体是一个可逆过程。温度降低时,溶解的气体处于过饱和状态, 气体能向铁液表面扩散而脱离吸附状态。溶于铁液中过饱和的气体能形成气 泡的条件有以下几个。 (1)气泡内各种气体分压的总和 (气体总压力)大于作用于气泡的降低。 (2)溶解在铁液中的某种气体析出的分压力应大于该气体在气泡中的分压力, 该气体才能自动向气泡扩散而不断长大。要满足这一条件,主要领先铁液温 度的降低。 (3)必须要有大于某临界尺寸而稳定的气泡核心。铁液中存在的大量非金属 夹杂物,熔炼、炉前处理或浇注过程中形成和卷入的气泡,以及包衬、型壁 等都可能成为气泡的非自发核心的基础,气泡很容易在这些表面上形成 。
电炉铸造中常见缺陷防治方法汇总
1、元素烧损偏大感应炉中Si、Mn、Cr等易氧化元素的烧损,多在3%~5%。
烧损超值,铸铁化学成分波动,必然要引起一系列的组织和性能问题。
元素烧损大,一般发生在熔清时间过长,又未注意造渣保护的时侯。
若废钢用量大,轻薄料多,炉料带水带锈,问题更是加重。
避免元素烧损过大的办法是:(1)炉料尽量干净,形状不要枝叉,尺寸不能过大、过薄。
(2)杜绝架料,并创造一切能快熔的条件。
(3)熔炼前期要及时造渣,后期高温下有熔渣覆盖。
充分发挥熔渣的保护作用。
(4)如果工厂有切屑要利用,炉底可铺一些,熔清向熔池分批添加一些。
2、铁液中O偏高感应炉没有冲天炉的氧化性气氛,而且由于铁液中的[O]和[FeO]与[C]产生反应,使Fe受到了C的保护,铁液中的溶氧是不多的。
可是熔炼后期为了促使增C剂溶吸,常调低电频率以加强熔池搅动。
如果“驼峰”过高,调频时间过长,铁液与大气接触几率增加,被离解的O离子将进入铁液。
熔炼后期添加料未经烘烤,也会使[O]、[H]增加。
近期,有业内人士提出:在1500℃以上保温,[O]不会降低,而是提高的观点,可供参考。
防止O偏高的办法是:(1)熔炼后期调频不要过度。
(2)后期不要使用潮湿的物料和工具。
(3)过热温度不要过高,切忌高温下长时间保温。
3、铁液C量低于预期铁液温度超过平衡温度,反应SiO2+2C=Si+2CO向右进行,造成铁液降C增Si。
所以配料时不能忘了补C。
要掌握本厂的降C量,把C量如数补足。
还要提醒一点,灰铸铁后期调整成分,要采取先Mn再C后Si的顺序。
4、铸件机加工后,发现有裂隙状气孔裂隙状气孔是N气孔的特征。
当[N]超限时容易发生,铁液中非金属夹杂物多,发生的几率更高。
“病从口入”,所以要限制电弧炉废钢用量,电弧炉废钢的[N]高,而转炉废钢则不然。
更要防止混入含N高的废合金钢料,如高锰钢、耐热的高铬铁素体钢和铬锰氮钢,以及奥化体钢等。
当然这些合金钢带来的Mn、Cr、N、Ni对于铁素体球铁也是忌讳的。
铸造与熔炼相关的主要缺陷PPT课件
裂纹案例分析
总结词
裂纹是铸造和熔炼过程中常见的一种缺陷, 它通常是由于金属液冷却过程中产生的收缩 应力超过了材料的强度极限而形成的。
详细描述
裂纹的形成与多种因素有关,如金属液的收 缩率、铸件的结构设计、浇注温度和浇注速 度等。如果金属液的收缩率过大,或者铸件 结构设计不合理,就可能导致裂纹的形成。 裂纹的存在会对铸件的性能产生严重影响,
谢谢观看
夹渣产生原因及防止措施
夹渣产生原因
01
02
金属液中存在杂质或氧化物,未及时清除。
浇注时金属液与模具接触面形成“薄膜”, 导致杂质或氧化物夹带在铸件中。
03
04
防止措施
控制金属液中的杂质和氧化物含量,及时 清除。
05
06
浇注时保持金属液与模具接触面的清洁, 避免形成“薄膜”。
裂纹产生原因及防止措施
熔炼的定义与特点
定义
熔炼是一种将金属加热至熔化状态,去除杂质和气泡,然后倒入模具中形成所需 形状的工艺。
特点
熔炼可以获得纯净的金属材料,具有较高的力学性能和耐腐蚀性能。熔炼过程中 ,高温熔融状态下的金属容易发生氧化和吸气,可能导致零件出现气孔、夹渣等 缺陷。
铸造与熔炼的关系
• 关系:铸造和熔炼都是金属加工工艺,二者在生产过程中存在 一定的联系和区别。熔炼是铸造的原材料制备过程,铸造则是 熔炼的后续加工过程。通过合理的工艺控制和材料选择,可以 降低缺陷的产生,提高零件的质量和性能。
缩孔案例分析
总结词
缩孔是铸造和熔炼过程中常见的一种缺陷,它通常是由 于金属液在冷却过程中产生的收缩未能得到有效的补充 而形成的。
详细描述
缩孔的形成与多种因素有关,如金属液的收缩率、铸件 的结构设计、浇注温度和浇注速度等。如果金属液的收 缩率过大,或者铸件结构设计不合理,就可能导致缩孔 的形成。缩孔的存在会对铸件的性能产生严重影响,如 降低强度、增加脆性等。
铸造缺陷特征原因及预防措施图文并茂
特征产生的主要原因预防措施实例照片在铸件内部或表面有大小不等的光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等①降低熔炼时金属的吸气量,减少砂型在浇注过程中的发气量②改进铸件结构,提高砂型和型芯的透气性,使型内气体能顺利排出缩孔多分布在铸件厚断面处,形状不规则,孔内粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对;③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少①壁厚小且均匀的铸件要采用同时凝固②壁厚大且不均匀的铸件采用由薄向厚的顺序凝固③合理放置冒口的冷铁在铸件内部或表面有型砂充塞的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,内浇口方向不对,金属液冲坏了砂型;④合箱时型腔或浇口内散砂未清理干净①严格控制型砂性能和造型操作②合型前注意打扫型腔③改进浇注系统铸件表面粗糙,粘有一层砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄①适当降低金属的浇注温度②提高型砂、芯砂的耐火度铸件表面产生的金属片状突起物,在①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;①严格控制型砂、芯砂性能②改善浇注系统,使金属液流动平稳金属片状突起物与铸件之间夹有一层型砂②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢③大平面铸件要倾斜浇注④适当调整浇注温度和浇注速度铸件沿分型面有相对位置错移①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压铁,浇注时产生错箱④砂箱或模板定位不准确,或定位销松动①定期检查砂箱、模板的定位销及销孔、并合理地安装;②定期对套箱整形,脱箱后的铸型在搬运时要小心。
铸铁主要缺陷及防止资料
在热节部位出现白亮块或隐约呈现有方向的 白亮针。其金相特点为过冷密集细针状渗碳 体,穿透分布。小件多出现,厚大件的心部 有时会产生网状渗碳体。
1、碳化物稳定元素Cr、Mn、Mo、Mg、Ce 等富集在铸件中心。镁、铈偏析强烈形成反 白口。 2、铸件结构。反白口常发生在薄壁交叉的 热节处,如连杆的杆身。 3、孕育失效。如包底剩余铁水常造成反白 口。 4、铁液含氢量高,凝固过程中氢气集中在 铸件中心部位,阻止石墨化而促使形成反白 口。
皮下气孔的形成与铁液一铸型界面处的化学反应有关。在高温铁液的 作用下,铸型中的水分被蒸发,黏土中的结晶水分解,产生大量水蒸 气。铁液中的Fe、C、Mn、Mg、Al等元素都会与水蒸气发生作用,产 生汽化反应,析出H2.
(3)铸型刚度的大小将直接影响到灰铸铁在凝固过程中因型壁迁移所增加的缩孔体积 大小,所以应根据铸铁件的要求及实际生产条件合理地选择铸型。
(4)根据灰铸铁的凝固特点,采用合理补缩的原则来设计浇冒口系统。应充分利用铸 件的自补缩能力,冒口只是补充自补缩不足的差额。
三、铸造应力、变形和开裂
(一)影响铸造应力的因素
(二)减小铸造应力的方法
减小铸铁件中的铸造应力,可使经机械加工后的铸件具有较好的尺寸稳定性和精度的持 久性。主要应设法减小铸件在冷却过程中各部分的温度差,实现同时凝固原则;改善铸 型和型芯退让性;适当增加铸铁件在型内的冷却时间,以免扩大各部分的温差。
形状比较复杂,尺寸稳定性要求较高的铸铁件应用人工加热时效、振动时效或自然时效 的方法来降低铸造应力。
1.流动性。当铁水中含有悬浮状难熔固体夹杂物时,其数量越多,对于流动性影响越大。低 温氧化铁水的流动性极差,就是因为其中含有大量悬浮状硅、锰和其他合金元素的氧化夹 杂物,这种铁水是由于炉内温度低,强氧化性炉气和氧化物不能被碳不愿所致 2.裂纹。易熔的非金属夹杂物往往是造成铸件热裂的主要原因 3.疏松与渗漏。一些非金属夹杂物,由于热膨胀系数的差异,在铸铁凝固时形成缩松组织, 使承受水压或气压的铸件发生渗漏。
常见铸造缺陷产生的原因及防止方法
常见铸造缺陷产生的原因及防止方法铸件缺陷种类繁多,产生缺陷的原因也十分复杂.它不仅与铸型工艺有关,而且还与铸造合金的性制、合金的熔炼、造型材料的性能等一系列因素有关。
因此,分析铸件缺陷产生的原因时,要从具体情况出发,根据缺陷的特征、位置、采用的工艺和所用型砂等因素,进行综合分析,然后采取相应的技术措施,防止和消除缺陷。
一、浇不到1、特征铸件局部有残缺、常出现在薄壁部位、离浇道最远部位或铸件上部。
残缺的边角圆滑光亮不粘砂.2、产生原因(1)浇注温度低、浇注速度太慢或断续浇注;(2)横浇道、内浇道截面积小;(3) 铁水成分中碳、硅含量过低;(4)型砂中水分、煤粉含量过多,发气量大,或含泥量太高,透气性不良;](5)上砂型高度不够,铁水压力不足。
3、防止方法(1)提高浇注温度、加快浇注速度,防止断续浇注;(2) 加大横浇道和内浇道的截面积;(3)调整炉后配料,适当提高碳、硅含量;(4)铸型中加强排气,减少型砂中的煤粉,有机物加入量;(5)增加上砂箱高度。
二、未浇满1、特征铸件上部残缺,直浇道中铁水的水平面与铸件的铁水水平面相平,边部略呈圆形。
2、产生原因(1) 浇包中铁水量不够;(2)浇道狭小,浇注速度又过快,当铁水从浇口杯外溢时,操作者误认为铸型已经充满,停浇过早。
3、防止方法(1)正确估计浇包中的铁水量;(2)对浇道狭小的铸型,适当放慢浇注速度,保证铸型充满。
三、损伤1、特征铸件损伤断缺。
2、产生原因(1)铸件落砂过于剧烈,或在搬运过程中铸件受到冲撞而损坏;(2)滚筒清理时,铸件装料不当,铸件的薄弱部分在翻滚时被碰断;(3)冒口、冒口颈截面尺寸过大;冒口颈没有做出敲断面(凹槽).或敲除浇冒口的方法不正确,使铸件本体损伤缺肉。
3、防止方法(1)铸件在落砂清理和搬运时,注意避免各种形式的过度冲撞、振击,避免不合理的丢放;(2)滚筒清理时严格按工艺规程和要求进行操作;(3)修改冒口和冒口颈尺寸,做出冒口颈敲断面,正确掌握打浇冒口的方向.四、粘砂和表面粗糙1、特征粘砂是一种铸件表面缺陷,表现为铸件表面粘附着难以清除的砂粒;如铸件经清除砂粒后出现凹凸不平的不光滑表面,称表面粗糙。
常见铸造缺陷的成因与消除
常见铸造缺陷的成因与消除任何铸造缺陷都直接影响着企业的经济效益与社会效益。
可惜的是,未有一个铸造厂是没有铸造缺陷的。
现列出几种主要(常见)的铸造缺陷,如气孔,缩孔,夹渣及球化不良等来分析它们产生的原因并提出消除措施,与诸君共议。
一气孔(Gas hole)1、产生原因金属液中的气体未彻底释放出来和铸型内的气体侵入进金属液中,从而滞留在凝固后的铸件之内(图1)。
(1)金属液中的气体来源 g 劣质炉料含泥沙、油垢、锈蚀及湿气等,熔炼中生成大量的O、H、N等气体和渣釉;炉温低;精练不够;浇注温度低,浇注时间长及浇注速度慢、浇包潮湿等。
上述因素,都促使金属液表面过早形成氧化膜而凝固,气体虽然挣扎着向外逃逸但却无法实现。
反映在铸件上则成为向上的“梨形”气泡,梨把朝内。
气孔表面光滑。
通常称这种气孔为“析出性气孔”(图2)。
在薄壁件的表皮下或外观形成密集的小圆孔或针孔(图3)。
(2)型腔内气体来源砂型水分≥4.5%,死灰>12%,透气性差;水玻璃砂未干透(仅吹C O2是不够的);树脂砂的树脂量>1.8%,固化剂量也多;消失模厚大,比重大又未干透,涂料层>2㎜且未干透;粗大砂芯樁的过实,未中空,气体未引出型外;合箱后等待浇注时间>8h,或过夜等,使铸型和砂芯返潮。
(3)工艺设计不合理直浇道粗大,金属液不能很快充满或断流而将气体卷入;内浇口喷射,金属液紊乱;冒口处低位,排气孔少;底注,温度场为上低下高,导致金属液迅速形成氧化膜而快速凝固。
上述(2)、(3)所产生的气体在排气不畅且型内压力大的情况下,气体被卷入或钻入未凝固的金属液内。
通称这种气孔为“侵入性气孔”(图4)。
气孔也似梨状而梨把朝外。
2 消除方法消除金属液中可能产生气体的一切因素;提供气体从金属液内和铸型(砂芯)中容易逸出的机会或条件。
应当着重指出的是,彻底排出金属液中的气体是第一位的!具体做法:选用优质、干净干燥的炉料,提高熔炼温度(灰铁1520℃,铸钢1650℃,不锈钢1680℃),充分精炼脱气与静置,高温且快速浇注,消失模浇注温度比砂铸高50℃,因为泡沫燃烧是一个吸热过程,充型前沿的金属液温降比随后之金属液的温降大得多。
铸件常见缺陷及防止方法
一、表面缺陷和内部缺陷
产生原因
防止方法
A、欠铸(浇不到):液体金属未充满型腔造成铸件缺肉
1、浇铸温度和型壳温度低,流动性差
2、金属液含气量大,氧化严重以致流动性下降
3、铸件壁太薄
4、浇铸系统大小和设置位置不合理,直浇道高度不够
5、型壳焙烧不充分或型壳透气性差,在铸型中形成气袋
6、浇铸速度过慢或浇注时金属液断流
2、壳烧不充分,没排除蜡残余及壳中发气杂质
3、冷壳浇铸,型壳受潮
4、钢水含气多,脱氧不良
5、浇铸系统设计不合理,浇铸时卷入气体
1、改善壳透气性,
2、充分焙烧型壳
3、热壳浇铸,防止受潮
4、改进脱氧方法
5、改进浇铸系统结构
N、多孔性气孔和针孔:铸件上的细小、分散或密集的孔眼
1、炉料不干净,
2、钢水脱氧不良,镇静时间不够,含气量高
1、水玻璃型壳热水脱蜡时,脱蜡液碱性偏大,模料皂化,造成型壳内层局部酥软煮烂
2、面层涂料粘度过大,局部堆积,硬化不透,热水脱蜡时,局部面层涂料层不规则脱落
3、模料熔失不充分,焙烧不彻底,使皂化物和其它有害杂质沉积在型壳内表面某个部位
4、水玻璃型壳的水玻璃模数高、密度大、硬化不充分,造成型壳局部钠盐集聚
5、改进涂料配方,适当增加层数,必要时可采用一些局部强化措施
H、铁刺:铸件表面上出现许多分散或密集的小突刺
1、面层涂料中粉料量少,粘度低
2、面层涂料相对易熔模的涂挂性差
3、面层涂料配制时搅拌时间不充分,涂挂时面层涂料中的粉料趋向撒砂砂粒分布
4、表面层撒砂砂粒较大
1、适当增加面层涂料中粉料加入量,提高粘度
2、严格控制涂料粘度,涂料要涂均匀,力求减少局部堆积,合理选择硬化工艺参数
电炉熔炼铸铁工艺及常见缺陷防治
电炉熔炼铸铁工艺及常见缺陷防治一、电炉铸铁炉料配比及合成铸铁二、在铸造行业,人们常说,铸造材料的成分决定组织,组织左右性能;这句话其实并不全面。
我们在生产实践中发现许多铸铁,在相同成分时,机械性能却有较大差异。
铁水的质量除与其成分有关联外,还与炉料配比(生铁用量、废钢用量、返回料用量、合金加入量),熔化与出炉温度,孕育工艺等有密切关系。
所谓合成铸铁,就是指配料中使用50%以上的废钢,通过增碳合成的方法制取的铸铁材料,因为需要较高的熔化温度,只宜在电炉中熔炼。
目前合成铸铁主要有合成灰铁和球铁。
通过大量实践,对于HT250、HT300等高强度灰铸铁来说,废钢左右强度、生铁影响组织.1、配料禁忌(1)、高比例废钢(尤其是船板)与高比例回炉料(浇冒口、废铸件、铁屑)搭配,合成灰铁的废钢加入量不宜超过50%;(2)、高比例废钢(尤其是船板)与含硫磷高的生铁搭配;(3)、回炉料超过40%(浇冒口、废铸件、铁屑)。
2、配料优化组合(%)组成生铁废钢回炉料:配比A403030配比B304030配比C204040配比D2050303、锰硫含量需要提高硬度时锰的含量可达1.0-1.2%,但不要求相应提高硫的含量(关于灰铁中的硫含量,另行分析)。
某公司为了节约成本,多用废钢,在两个月内试制合成高牌号灰铸铁,废钢用量一度达60%,有一段时间除加入废钢外另加回炉料和少量铁屑,最初质量不错,但一段时间后发现铸件批量缩孔、缩松和有白色硬斑,并且持续不断越来越严重。
此缺陷成因:初步判断是铁水中MnS的含量过高而引起的铸件显微缩孔、缩松,MnS富集形成白色硬斑。
这是由于高牌号灰铁HT300成分要求Mn含量较高(1%左右),加之废钢自身锰也高(船板中的16锰钢含Mn在1.6%),而废钢中的S以及回炉铁(包括铁屑)中的S和锰反应产生的MnS 在炉料中的积累达到一定程度,就会产生过量,从而产生上述缺陷。
为了减少铁水中的MnS含量,一般用加入一定量的优质新生铁(低S低Mn)来调整,另外提高孕育效果,可使MnS细化,减弱其不良影响。
熔炼铸造缺陷分析及解决方案
1、各种液态铸造合金在熔炼和浇注过程中均会产生夹杂物,金属夹杂物依据其来源可以分为两大类:⑴外来夹杂物。
来源于炉衬、浇包耐火材料的侵蚀,熔渣或与空气反应形成的浮渣,型砂的冲蚀,或其它任何与金属熔体接触的材料的侵蚀;⑵内生夹杂物。
这类夹杂物是由金属熔体内的反应形成,如镁硫夹杂物。
镁硫夹杂物是由于球化处理过程中加入镁硅铁合金后在铁液内反应而形成。
2、夹渣产生的原因(1)硅:硅的氧化物也是夹渣的主要组成部分,因此尽可能降低含硅量;⑵硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。
硫化物的熔点比铁液熔点低,在铁液凝固过程中,硫化物将从铁液中析出,增大了铁液的粘度,使铁液中的熔渣或金属氧化物等不易上浮。
因而铁液中硫含量太高时,铸件易产生夹渣。
球墨铸铁原铁液含硫量应控制在0.06%以下,当它在0.09%〜0.135%时,铸铁夹渣缺陷会急剧增加;⑶稀土和镁:近年来研究认为夹渣主要是由于镁、稀土等元素氧化而致,因此残余镁和稀土不应太高;(4)浇注温度:浇注温度太低时,金属液内的金属氧化物等因金属液的粘度太高,不易上浮至表面而残留在金属液内;温度太高时,金属液表面的熔渣变得太稀薄,不易自液体表面去除,往往随金属液流入型内。
而实际生产中,浇注温度太低是引起夹渣的主要原因之一;⑸浇注系统:浇注系统设计应合理,具有挡渣功能,使金属液能平稳地充填铸型,力求避免飞溅及紊流;(6)型砂:若型砂表面粘附有多余的砂子或涂料,它们可与金属液中的氧化物合成熔渣,导致夹渣产生;砂型的紧实度不均匀,紧实度低的型壁表面容易被金属液侵蚀和形成低熔点的化合物,导致铸件产生夹渣。
3、防止夹渣措施(1)控制铁液成分:尽量降低铁液中的含硫量(<006%),适量加入稀土合金(01%〜02%)以净化铁液,尽可能降低含硅量和残镁量;⑵熔炼工艺:要尽量提高金属液的出炉温度,适宜的静置,以利于非金属夹杂物的上浮、聚集。
扒干净铁液表面的渣子,铁液表面应放覆盖剂(珍珠岩、草木灰等),防止铁液氧化。
铸钢件常见铸造缺陷及预防措施
铸钢件在生产过程中经常会发生各种不同的铸造缺陷,如何预防这些缺陷,一直是铸件生产厂家关注的问题。
本文主要介绍了笔者在这方面的一些认识和实践经验。
我车间主要采用传统湿型砂铸造工艺生产铸钢件,在长期的生产中,发现铸钢件主要出现以下铸造缺陷,砂眼,粘砂,气孔,缩孔,夹砂结疤,胀砂等等。
1砂眼砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,砂眼是一种常见的铸造缺陷,往往导致铸件报废。
砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型,合箱操作中落人型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。
砂眼的预防措施:(1)严格控制型砂性能,提高砂型芯的表面强度和紧实度,减少毛刺和锐角,减少冲砂。
(2)合箱前把型腔和砂芯表面的浮砂处理干净,平稳合箱,如果是明冒口或贯通出气眼,应避免散砂从中掉人型腔,合箱后要尽快浇注。
(3)设置正确合理的浇冒系统,避免金属液对型壁和砂芯的冲刷力过大。
(4)浇口杯表面要光滑,不能有浮砂。
2粘砂在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。
粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。
机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度大于砂粒半径时,就形成机械粘砂,化学粘砂是金属氧化物和造型材料相互进行化学作用的产物,与铸件牢固地结合在一起而形成的。
粘砂的预防措施:(1)选用耐火度高的砂,以提高型砂,芯砂的耐火度,原砂的SiO2含量在96%(质量分数)以上,而且砂粒应对粗些。
铸钢件的浇注温度越高,壁厚越厚,对原砂中SiO2含量的要求越高。
(2)适当降低浇注温度和提高浇注速度,减轻金属液对砂型的热力学和物理化学作用。
(3)砂型紧实度要高(通常大于85)且均匀,减少砂粒间隙;型、芯修补到位,不能有局部疏松。
铸铁件常见缺陷的防止方法
铸铁件常见铸造缺陷的防止方法来源:《现代铸铁》铸铁件经常会发生各种不同的铸造缺陷,如何防止这些缺陷发生,一直是铸件生产厂关注的问题。
本文介绍了笔者在这方面的一些认识和实践经验。
1 气孔特征:铸件中的气孔是指在铸件内部,表面或接近表面处存在的大小不等的光滑孔洞。
孔壁往往还带有氧化色泽,由于气体的来源和形成原因不同,气孔的表现形式也各不相同,有侵入性气孔,析出性气孔,皮下气孔等。
1.1 侵入性气孔这种气孔的数量较少,尺寸较大,多产生在铸件外表面某些部位,呈梨形或圆球形。
主要是由于铸型或砂芯产生的气体侵入金属液的未能逸出而造成。
防止措施:(1)减少发气量:控制型砂或芯砂中发气物质的含量,湿型砂的含水量不能过高,造型与修模时脱模剂和水用量不宜过多。
砂芯要保证烘干,烘干后的砂芯不宜存放太长时间,隔天使用的砂芯在使用前要回炉烘干,以防砂芯吸潮,不使用受潮、生锈的冷铁和芯撑等。
(2)改善型砂的透气性,选择合适的型空紧实度,合理安排出气眼位置以利排气,确保砂芯通气孔道畅通。
(3)适当提高浇注温度,开排气孔和排气冒口等,以利于侵入金属液的气体上浮排出。
1.2 析出性气孔这种气孔多而分散,一般位于铸件表面往往同批浇注的铸件大部分都发现有。
这种气孔主要是由于在熔炼过程中,金属液吸收的气体在凝固前未能全部析出,便在铸件中形成许多分散的小气孔。
防止措施:(1)采用洁净干燥的炉料,限制含气量较多的炉料使用。
(2)确保“三干”:即出铁槽、出铁口、过桥要彻底烘干。
(3)浇包要烘干,使用前最好用铁液烫过,包中有铁液,一定要在铁液表面放覆盖剂。
(4)各种添加剂(球化剂、孕育剂、覆盖剂)一不定期要保持干燥,湿度高的时候,要烘干后才能使用。
1.3 皮下气孔这种气孔主要出现在铸件的表层皮下2~3mm处,直径为1~3mm左右。
而且数量较多,铸件经热处理或粗加工去除外皮后,就会清晰地显露出来。
防止措施;(1)适当提高浇注温度,严格控制各种添加剂的加入量,尽可能缩短浇注时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电炉熔炼铸铁工艺及常见缺陷防治
一、电炉铸铁炉料配比及合成铸铁
二、在铸造行业,人们常说,铸造材料的成分决定组织,组织左右
性能;这句话其实并不全面。
我们在生产实践中发现许多铸铁,在相同成分时,机械性能却有较大差异。
铁水的质量除与其成
分有关联外,还与炉料配比(生铁用量、废钢用量、返回料用
量、合金加入量),熔化与出炉温度,孕育工艺等有密切关系。
所谓合成铸铁,就是指配料中使用50%以上的废钢,通过增碳
合成的方法制取的铸铁材料,因为需要较高的熔化温度,只宜
在电炉中熔炼。
目前合成铸铁主要有合成灰铁和球铁。
通过大量实践,对于HT250、HT300等高强度灰铸铁来说,废钢左右强度、生铁影响组织.
1、配料禁忌
(1)、高比例废钢(尤其是船板)与高比例回炉料(浇冒口、废铸件、铁屑)搭配,合成灰铁的废钢加入量不宜超过50%;
(2)、高比例废钢(尤其是船板)与含硫磷高的生铁搭配;(3)、回炉料超过40%(浇冒口、废铸件、铁屑)。
2、配料优化组合(%)
组成生铁废钢回炉料:配比A403030配比B304030配比C204040配比D205030
3、锰硫含量
需要提高硬度时锰的含量可达 1.0-1.2%,但不要求相应提高硫的含量(关于灰铁中的硫含量,另行分析)。
某公司为了节约成本,多用废钢,在两个月内试制合成高牌号灰铸铁,废钢用量一度达60%,有一段时间除加入废钢外另加回炉料和少量铁屑,最初质量不错,但一段时间后发现铸件批量缩孔、缩松和有白色硬斑,并且持续不断越来越严重。
此缺陷成因:初步判断是铁水中MnS的含量过高而引起的铸件显微缩孔、缩松,MnS富集形成白色硬斑。
这是由于高牌号灰铁HT300成分要求Mn含量较高(1%左右),加之废钢自身锰也高(船板中的16锰钢含Mn在1.6%),而废钢中的S以及回炉铁(包括铁屑)中的S
和锰反应产生的MnS在炉料中的积累达到一定程度,就会产生过量,从而产生上述缺陷。
为了减少铁水中的MnS含量,一般用加入一定量的优质新生铁(低S低Mn)来调整,另外提高孕育效果,可使MnS细化,减弱其不良影响。
废钢加入量过大时,由于废钢熔点在1530度左右,而生铁和回炉料的熔点只是1230度左右,多用废钢增加了电耗,加大了铁水的过冷倾向,还吸附大量的氮气,一般来说合成铸铁工艺并不适用于灰铸铁,而比较适用于球铁。
二、关于电炉灰铸铁增硫问题
前面已经说过,中频感应电炉熔炼铸铁工艺对比冲天炉熔炼,除了具有熔化温度高的优势外,却有不少缺点,主要有三个方面的问题:一是铁水过冷倾向较大,极易产生影响材料机械性能的D、E型石墨;二是铁水纯净,异质结晶核心较少,导致孕育效果差,在同等成分条件下,铸件强度偏低铁质偏硬;三是收缩倾向较大,在高牌号灰铸铁中锰含量较高时,容易产生显微缩孔、缩松。
针对上述问题,应对的措施是:
1、在熔化后期增加一个高温保持时间,尽可能使各种炉料熔化的铁水晶粒均匀,尤其是细化石墨;
2、适量增加外来异质核心(如硫化物),强化孕育效果,促进A型石墨的形成;
3、控制高牌号灰铸铁的硫、锰含量及其比例,控制回炉料比例,达到合适成分。
这些措施,对不同结构的铸件产品是有差别的,需在实践中掌握。
某公司某日,用电炉熔炼6炉灰铁HT300铁水,浇铸液压阀G03、G02等产品,经解剖内部组织发现大面积显微缩孔、缩松、缩裂,共830只全部报废(见附图)。
检测布氏硬度HBS241,化学成分C3.27,Si1.78,Mn0.83,S0.087,P0.04。
珠光体98%,E形石墨达80%(A 型20%),石墨长度5级。
据有关人员研究分析,应是铁水材质出了问题。
化学成分分析的结果,对一般的薄壁HT300铸件来说似乎是正常的,然而对于液压阀铸件(壁较厚)却出了问题。
此缺陷成因:初步判断是铁水中MnS的含量过高而引起的铸件显微缩孔、缩松、缩裂,也就是说铁水中的S、Mn含量超出铸件所适应的范围(对不同铸件其成分量有差别)。
由于在熔炼中加入了一定量的增S剂,铁水中的S、Mn含量积累达到一定程度,就会导致铁水含S量超出铸件自身正常凝固结晶的要求,从而产生此类缺陷。
对策:停止加入增S剂,调整Mn的含量,保证HT300灰铁的五元素的正常含量,调整后,缺陷全部消除。
在电炉灰铁铁水中通过加入增S剂形成一定量的MnS,作为异质核心,提高孕育效果,这从理论来说是正确的,但是近年来大多数文献资料所说,电炉高牌号灰铁的含S量需控制在0.05-0.10%比较合适,然而许多工厂的实践证明,当含Mn量在1%左右时,若铸件成分分析含S量超过0.05%,铸件就开始产生缩孔缺陷,当含S量超过0.07%时就会发生批量缩孔,这种现象如何解释呢?
灰铸铁中的S有两种存在形式,一种是单质,另一种是化合状态的MnS,灰铁中起结晶核心作用的硫,主要是化合状态的MnS,我们现在的化验手段(无论是化学分析还是光谱分析),都只能分析出铸件和铁水中单质状态的S,而以化合状态(MnS)存在的S是化验不出来的。
当单质S含量超过0.05%时,化合态的S含量就比较高了,此时的铁水中:
MnO+FeS=MnS+FeO,FeO+C=Fe+CO,或2FeO+C=2Fe+CO2
这时铁水在凝固过程中就在析出CO或CO2的同时产生部分棕色的MnS粉沫,形成铁渣反应气缩孔。
只要具备一定的条件,这种气缩孔,不仅在电炉铁水也在冲天炉铁水中发生。
其实我们在电炉熔化过程中,已经增加了一部分硫,这些硫来自于:
1、由回炉的浇注系统带来,浇注系统中的硫磷含量远高于铸件中的含量;
2、生铁中的硫,一般生铁中的硫含量是不高的,而我们购买的普通生铁上面都携带不同程度的炉渣(拉圾),我们是不会化验的,但这些拉圾却含有较高的硫磷,会带入炉内;
3、废钢和生铁等炉料的铁锈,氧化铁含量较高,进入铁水中会增加硫的吸收率。
在这样的情况下,如果我们再补加硫化铁来增S,就过分了。
实际生产高牌号灰铸铁件时,铁水中的单质S控制在0.03-0.05%之间为妥。
三、电炉高牌号灰铁的孕育和变质处理
关于高牌号灰铁(以HT300为例)的孕育工艺,传统的孕育量是处理铁水量的0.3-0.4%(以冲天炉生产为主),近年来随着电炉的普及,孕育量逐渐增加,最新资料推荐0.5-0.6%,本人通过长期实践,选择孕育量在0.8%左右,取得强度硬度和切削加工性能的全面提高,铸件加工后的内部缺陷大幅度减少。
某公司生产高牌号的电磁阀,技术要求铸件硬度大于HB200,强度大于300N/mm2,该产品主要壁厚超过50mm,通过多次试验,在加大一次孕育量的同时,采取二次随流孕育,消除了厚壁带来组织粗大的缺陷,提高了铸件致密度,保证了产品质量。
关于铁水二次随流孕育,在浇注前加入粒度0.2-0.7mm的均匀的孕育剂,比较适用于厚件,而用于小件时反而增大了铁水的收缩性能。
有一个时期,某公司部分产品加工后表面呈现白色亮斑硬度很高,刀具打滑,经分析,原来是孕育剂的块度过大,与铁水包容量不相适合,致使孕育剂在铁水浇注时未能完全熔解,铸件局部硅量富集形成硬化相;当在铁水温度偏低进行二次随流孕育时,也会产生同样的缺陷。
有一家专业生产HT300灰铁液压件的工厂,浇注一种KP泵体,铸件壁厚30mm左右,按照HT300的经验成分配料,铁水成分:C3.0-3.1%,
Si1.7-1.8%,Mn0.95-1.05%,P0.05%,S0.04%,铸件本体解剖抗拉达300N/mm2,但是连续多批产品在内浇口附近发生缩陷和缩裂,无论对浇注系统如何调整,就是不见效果,
没有办法,只能提高碳当量降低强度,调整到C3.2-3.3%,Si1.8-2.0%时,缺陷消失,但产品经加工后试压,大部分产生膨胀渗漏,本体测试抗拉也不合格,造成主机厂批量退货。
联想到以往有一批同类泵体,由于听了别人的建议,用硫铁增S,铁水含S在0.07%以上时,铸件大面积缩孔,积存大量废品,为了处理这批废品,根据稀土脱硫的原理,当加入此类废品时,在孕育过程中补加少量稀土镁硅铁(约0.2%),有效地降低了硫含量,解决了缩孔问题。
针对当时KP泵存在的缩陷和缩裂,虽然原铁水含硫并不高,在孕育时同样试加了少量稀土镁硅铁(约0.2%),也取得了理想的结果,缩孔问题完全解决。
分析其机理,铸铁产生缩陷,主要还是铁水中的气体(包括氧、氮、氢等)作怪,这些气体在凝固后期析出时,铁水无法补充,产生了缺陷,而稀土镁硅铁作为一种灰铁变质剂(也是一种孕育剂),却好是脱除气体的能手,铁水含气量大幅度减少,缺陷也就消除了。